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Expression and Role of VEGF-A in the Ciliary Body
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PURPOSE. The role of VEGF-A in the normal ciliary body is
largely unexplored. The ciliary body is similar in many respects
to the choroid plexus of the brain, and we demonstrated
previously the importance of VEGF-A in maintenance of
choroid plexus vasculature and ependymal cells. Therefore,
the role of VEGF-A in ciliary body homeostasis was explored.

METHODS. Swiss-Webster mice (VEGF-LacZ) were used to
determine VEGF-A expression during ciliary body development
and in the adult. VEGFR2 expression was determined in adult
wild type C56BL/6J mice. Systemic VEGF-A neutralization in
vivo was achieved with adenovirus-mediated overexpression of
soluble VEGFR1 (sFlt1). Following VEGF-A neutralization, the
ciliary epithelium was analyzed by light microscopy and
transmission electron microscopy (TEM). The effect of VEGF-
A blockade on ciliary body function also was assessed by
measuring intraocular pressure.

RESULTS. VEGF-A expression was detected at embryonic day
18.5 (E18.5), the onset of ciliary process formation. In the adult
ciliary body, VEGF-A was expressed by the pigmented
epithelium, whereas VEGFR2 was localized primarily to the
capillary endothelium and nonpigmented epithelium. Systemic
VEGF-A neutralization led to a thinning of the nonpigmented
epithelium, vacuolization of the pigmented epithelium, loss of
capillary fenestrations, and thrombosis. These changes were
associated with impaired ciliary body function, as evidenced by
decreased intraocular pressure in sFlt1-overexpressing animals
(15.31 6 2.06 mm Hg) relative to controls (18.69 6 1.49 mm
Hg).

CONCLUSIONS. VEGF-A has an important role in ciliary body
homeostasis. Potential for undesired off-target effects should be
considered with the chronic use of anti–VEGF-A therapies.
(Invest Ophthalmol Vis Sci. 2012;53:7520–7527) DOI:
10.1167/iovs.12-10098

The ciliary body, which is located in the anterior segment of
the eye, mediates the critical functions of lens accommo-

dation and aqueous humor secretion, and is comprised of
smooth muscle fibers (ciliary muscles) and ciliary processes.
The inner core of fenestrated capillaries of each ciliary process
is covered by a double-layered epithelium, which consists of
pigmented and nonpigmented layers. The epithelial layers are

connected at their apical membranes through gap junctions.
Tight junctions at the apical borders of the nonpigmented
epithelium form the blood–aqueous barrier.1 The pigmented
epithelium faces the ciliary stroma, whereas the nonpigmented
epithelium is in closest proximity to the lens. Ciliary processes
secrete aqueous humor through fenestrated capillaries; the
balance between aqueous humor inflow and outflow deter-
mines intraocular pressure (IOP).

VEGF-A, a potent angiogenic factor, is a prime target for the
treatment of ocular pathologies that involve neovascularization
and vascular permeability, such as age-related macular degener-
ation (AMD), macular edema, and proliferative diabetic retinop-
athy. However, VEGF-A also has a role in the stability of quiescent
vasculature in adult tissues, illustrated by the VEGF-A–dependent
plasticity of fenestrated capillaries2 as well as the role of retinal-
pigment-epithelium-(RPE)-derived soluble VEGF-A in mainte-
nance of the choriocapillaris.3 There also is increasing evidence
for a role for VEGF-A in nonvascular cells, as evidenced by
significant retinal ganglion cell death associated with the
inhibition VEGF-A function,4 and the impaired retinal function
and increased apoptosis in photoreceptors and Müller cells
observed following VEGF-A neutralization in the adult mouse.5

However, virtually nothing is known about the role of VEGF-A in
the normal ciliary body. Given that intravitreal anti–VEGF-A agents
display rapid penetration into the ciliary body,6 it is important to
understand the role of VEGF-A in ciliary body homeostasis.

The ciliary body is similar to the choroid plexus of the brain
in many respects. First, both are derived from the neuroepi-
thelium and are comprised of a central core of fenestrated
capillaries overlaid by epithelial cells. Second, members of the
bone morphogenetic protein family have been shown to be
involved in the development of both structures.7,8 Third, both
are secretory structures responsible for the production of
aqueous humor and cerebrospinal fluid, respectively. Finally,
each constitutes a ‘‘blood barrier’’; the choroid plexus forms
the blood–cerebrospinal fluid barrier and the ciliary body is the
site of the blood–aqueous humor barrier. We previously
demonstrated the importance of VEGF-A in the maintenance
of vascular and nonvascular cells of the choroid plexus. Our
observation that systemic VEGF-A neutralization causes throm-
bosis and decreased choroid plexus vascular perfusion9 led us
to investigate the effect of VEGF-A blockade on the ciliary body
structure and function.

MATERIALS AND METHODS

Animals

Timed-pregnant Swiss-Webster VEGF-LacZ mice10 were used to

determine the time course of VEGF-A expression during ciliary body

development. Pregnant mothers were euthanized by CO2 inhalation

and embryos were collected at embryonic day 18.5 (E18.5). Adult mice

8 weeks old were euthanized by CO2 inhalation and the eyes collected.

Embryos and adult eyes were fixed overnight at 48C in 4%

paraformaldehyde in PBS.

VEGFR2 expression in adult mice was determined in 8-week-old

wild type C56BL/6J mice. After fixation and extensive washing with
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PBS, eyes and embryos were subjected to a sucrose gradient of 5% to

20% sucrose for 4 hours, followed by embedding in OCT compound

(Sakura Finetechnical, Torrance, CA). Samples were cryosectioned (10

lm) and stored at �208C until use.

Adenoviral-Mediated soluble VEGFR1 (sFlt1)
Overexpression

To achieve systemic VEGF-A neutralization, 6- to 8-week-old CD-1 mice

(Charles River Laboratories, Inc., Wilmington, MA) were injected via

the tail vein with adenovirus expressing either soluble VEGFR1 (Ad-

sFlt1) or empty vector (Ad-null) as follows: 2.53109 viral particles (VP)

for Ad-null and 2.5 3 109 VP for Ad-sFlt1 as described previously.9

Circulating sFlt1 plasma levels were determined by ELISA (R&D

Systems, Minneapolis, MN) at day 12 post-injection and before animal

sacrifice at days 14 or 28. Mice with plasma sFlt1 >200 ng/mL were

included in the study. Ad-null–infected mice had no detectable sFlt1.

Circulating levels are sustained at >200 ng/mL for at least 21 days post-

infection.5,9 All animal experiments were conducted according to the

ARVO Statement for the Use of Animals in Ophthalmic and Vision

Research under protocols approved by the Schepens Eye Research

Institute Institutional Animal Care and Use Committee.

b-Galactosidase Histochemistry

LacZ, as a reporter of VEGF-A expression, was visualized in cryosections

of whole embryos (E18.5) and adult eyes of VEGF-LacZ mice. Tissue

sections were stained for LacZ using the in situ b-galactosidase staining kit

(Stratagene, La Jolla, CA), according to the manufacturer’s instructions.

Ultrastructural Analysis

At day 14 following adenovirus injections, mice were deeply

anesthetized by injection with ketamine (73 mg/kg) and xylazine

(1.8 mg/kg). Animals were perfused slowly with 10 mL of sodium

cacodylate buffer (0.2 M, pH 7.4), followed by 10 mL of half-strength

Karnovsky’s fixative (Electron Microscopy Sciences, Hatfield, PA) via

a 21-gauge cannula inserted into the aorta via the left ventricle. Fluid

was drained through an incision in the right atrium, and animal

death was immediate upon perfusion. Eyes were enucleated, fixed in

half-strength Karnovsky’s fixative, and dissected to remove a

quadrant containing the anterior segment for analysis of the ciliary

body. A secondary fixation in 2% osmium tetroxide was performed,

followed by dehydration and embedding. Ultrathin sections were

treated with uranyl acetate and visualized by transmission electron

microscopy (TEM) using a transmission electron microscope (Tecnai

G2 Spirit BioTwin; FEI Company, Hillsboro, OR).

Immunohistochemistry

VEGFR2 was localized by fluorescent immunohistochemistry. Tissue

sections were air-dried, then washed in PBS containing 0.2% Tween

(PBST), blocked for one hour at room temperature with 5% goat serum,

1.5% BSA in PBST, and then incubated overnight at 48C with a rabbit

polyclonal antibody directed against murine VEGFR2 (5 lg/ml; a

generous gift from Rolf Brekken, University of Texas Southwestern

Medical Center, Dallas, TX) or in blocking buffer only as a negative

control. Samples were washed in PBS, and a mixture containing goat anti-

rabbit cy3 antibody (1:300; Jackson ImmunoResearch Laboratories, West

Grove, PA) as well as 40, 6-diamidino-2-phenylindole (DAPI; 1:100) was

added for one hour at room temperature. Tissue sections were washed in

PBS, slides were mounted, and images were taken with the Axioscope

microscope (Axioscope Mot 2; Carl Zeiss Meditec, Inc., Dublin, CA).

Measurement of IOP

Mice were anesthetized by isoflurane inhalation (2%–4%) using a

precision vaporizer, delivered in 100% O2. IOP measurements were

FIGURE 1. VEGF-A expression during ciliary body development and in adult. Cryosections (10 lm) of nonpigmented (A, D) E18.5 and (B, E) adult
VEGF-LacZ/þ eyes were stained for b-galactosidase (blue). (A, D) VEGF-A was detected in the primitive ciliary body at E18.5, the stage at which
ciliary process infolding begins. (B, E) In the adult, VEGF-A expression (black arrows) was localized primarily to the presumptive pigmented
epithelium. (C, F) TEM micrograph of adult ciliary body indicates location of pigmented epithelium, nonpigmented epithelium, and capillaries.
Scale bar: 160 lm (A, D) and 20 lm (B, C, E, F). NPE, nonpigmented epithelium; PE, pigmented epithelium; FC, fenestrated capillary.
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taken on the right eye using a TonoLab Tonometer (Colonial Medical

Supply, Franconia, NH), which allows noninvasive, accurate, and rapid

measurement based on the rebound method.11 IOP measurements

were taken immediately after the animal lost consciousness by placing

the tip of the pressure sensor approximately 1/8 inch from the central

cornea. The average IOP was displayed automatically after six

measurements. The mean IOP of three measurements for each animal

was then averaged for the entire group (n ¼ 10). IOP measurements

were taken at the same time of day at the indicated time points, and

data are represented as the mean 6 SD.

Statistical Analysis

Values are expressed as the mean 6 SD, unless otherwise indicated.

Statistical analysis was performed using an unpaired Student’s t-test

(***P < 0.001, **P < 0.01, *P < 0.05, not significant P > 0.05).

RESULTS

VEGF-A Expression during Ciliary Body

Development

We first determined the pattern of VEGF-A expression during
ciliary body development. Between E14.5 and E15.5 of mouse
development, the rim of the optic cup begins to differentiate
into the presumptive iris and ciliary body. The ciliary
epithelium is derived from the two neuroepithelial layers,
retina and RPE, at the optic cup rim; the nonpigmented
epithelium is continuous with the neural retina, and the

pigmented epithelium is juxtaposed between the RPE and
outer iris.12 Before the initiation of ciliary infolding at E18.5,
radial capillaries appear in the mesenchyme on the outer
surface of the ciliary epithelium.12,13 In the VEGF-LacZ
reporter mice,10 VEGF-A expression was detected in the ciliary
body epithelium at E18.5, the time at which ciliary process
infoldings first appear (Figs. 1A, 1D). This finding is consistent
with our previous observations that VEGF-A is expressed at this
developmental stage in the RPE and neural retina, the
neuroepithelium from which the ciliary body arises.14

Localization of VEGF-A and VEGFR2 in Adult
Ciliary Epithelium

The next step was to determine the localization of VEGF-A and
VEGFR2 in the adult ciliary body. Bright field microscopy
revealed the extensive pigmentation of the pigmented
epithelium, and its absence in the nonpigmented epithelium
(Fig. 2A). Immunohistochemical localization revealed that
VEGFR2 was expressed primarily by the nonpigmented
epithelium and the capillary endothelial cells (Fig. 2B); this
was confirmed by merging the fluorescent and bright field
images (Figs. 2C, 2D). VEGF-A expression was examined in the
VEGF-LacZ mouse, which is in a genetic background that is
nonpigmented. Based on ultrastructural localization of pig-
mented and nonpigmented epithelial layers (Figs. 1C, 1F),
VEGF-A expression, detected by b-galactosidase activity, was
limited to the pigmented epithelium and virtually was absent
from the nonpigmented epithelium (Figs. 1B, 1E). The finding
that VEGF-A is expressed by the epithelium in closest

FIGURE 2. VEGFR2 expression by the nonpigmented ciliary epithelium. VEGFR2 expression in the adult ciliary body was localized by
immunofluorescent microscopy using a rabbit polyclonal anti-mouse VEGFR2 antibody. (A) Bright field microscopy demonstrates the extensive
pigmentation of the pigmented epithelial layer, and the location of the nonpigmented layer (dotted line and arrow). (B) DAPI staining of nuclei
along with immunofluorescent labeling reveals VEGFR2 primarily in the nonpigmented epithelium and capillaries (white arrowhead). (C, D)
Merging of the bright field and fluorescent images confirms localization of VEGFR2 expression in nonpigmented epithelial cells. Scale bar: 20 lm.
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proximity to the capillary core is consistent with our
observation of VEGF-A expression by the RPE14 and its
function in the maintenance of the capillary fenestrations.2,9

Effect of VEGF-A Neutralization on Ciliary Body
Structure

To determine if VEGF-A has a role in the adult ciliary body,
VEGF-A was neutralized systemically by adenoviral expression
of sFlt1 (Ad-sFlt1). Histologic analysis of mice expressing Ad-
sFlt1 at 28 days post-infection revealed microthrombi in ciliary
capillaries. There was also an intermittent breakdown of
nonpigmented epithelium, as indicated by the marked thinning
(compare Figs. 3C, 3D to Figs. 3A, 3B). Ultrastructural
examination of the ciliary body at day 14 post-infection
confirmed the degeneration and revealed shrunken cytoplasm
of nonpigmented epithelial cells (compare Figs. 4C, 4D to Figs.
4A, 4B). The changes in the pigmented epithelial layer of the
Ad-sFlt1 expressing mice were not uniform, with some normal
regions (data not shown) and other highly vacuolated areas in
comparison to that of the Ad-null-infected control group
(compare Figs. 5C and 5A). The ciliary capillary endothelium
was also affected by VEGF-A neutralization; the capillary
endothelial wall of Ad-sFlt1–expressing mice displayed a
complete loss of fenestrations and appeared significantly
thickened (compare Figs. 5B and 5D). These observations
indicated that VEGF-A neutralization leads to dramatic loss of
ciliary body integrity.

Effect of VEGF-A Blockade on IOP

In light of the changes in the ciliary body structure in mice
with systemic VEGF-A neutralization, the next step was to
assess effects on ciliary body function. One important role of

the ciliary body is the production of aqueous humor, which
provides nutrients to the anterior segment and contributes to
the maintenance of IOP. IOP is determined by the balance
between aqueous humor production and drainage through the
trabecular meshwork, juxtacanalicular tissue, and Schlemm’s
canal.15,16 Aqueous humor secretion across the ciliary epithe-
lium is mediated by the transfer of solute, primarily NaCl, from
the ciliary muscles to the posterior chamber, coupled with
passive diffusion of water.17

IOP of Ad-sFlt1 and Ad-null animals was measured over the
course of 14 days post-infection. Measurements were taken in
the same eye and at approximately the same time of day to
avoid any variation due to circadian rhythm.18 There was a
statistically significant reduction in IOP in the Ad-sFlt1 animals
as early as day 11 post-infection. The mean IOP of the Ad-sFlt1–
expressing mice was 15.31 6 2.06 mm Hg versus 18.69 6

1.49 mm Hg for the Ad-null–infected mice (Fig. 6), an
observation that is consistent with impaired aqueous humor
production.

DISCUSSION

The expression of VEGF-A and its receptors, VEGFR1 and
VEGFR2, is regulated spatially and temporally during eye
development. We demonstrated that VEGF-A is expressed in
the developing ciliary body at E18.5, the time point at which
the ciliary infoldings first appear. We reported previously that
VEGF-A expression is detected first in the developing optic
vesicle at E9.5, before the formation of specialized eye
structures.19 One proposed function of this early VEGF-A
expression is to support choroidal development, which
commences around optic cup formation at E10.5. VEGF-A is
observed in the posterior fibers of the lens at E12.5,14,20 and

FIGURE 3. VEGF-A neutralization leads to ciliary capillary thrombosis. Richardson stain of epoxy embedded ultrathin sections of eyes from (A, B)
Ad-null and (C, D) Ad-sFlt1–expressing mice at day 28 post-infection revealed numerous microthrombi (white arrowheads) in the capillaries of Ad-
sFlt1–expressing mice, but not in the capillaries of Ad-null animals. Regions of the nonpigmented epithelium appeared markedly thinner (black

arrow), indicating degeneration. Scale bar: 20 lm.

IOVS, November 2012, Vol. 53, No. 12 Expression and Role of VEGF-A in the Ciliary Body 7523



increases in lens fiber and epithelial cells with age, reaching its
maximum expression in the adult.20 VEGF-A secretion by the
lens is believed to be involved in the regulation of vasculo-
genesis, likely by stimulating the proliferation and migration of
angioblasts, which are at the origin of the future tunica
vasculosa lentis.21 VEGF-A functions not only in lens differen-
tiation,22 but also in the promotion of lens growth during fetal
maturation.23 In the posterior segment, VEGF-A is detected in
the primitive RPE and inner nuclear layer (INL) of the retina at
E10.5; by E13.5, its expression in the outer retina is restricted
to the RPE where it persists throughout adulthood.14 Postnatal
expression of VEGF and its receptors not only supports retinal
vascularization, but also is critical to proper neural retina
development.24

In the adult ciliary body, VEGFR2 is expressed primarily by
the nonpigmented epithelium and by capillary endothelium,
whereas VEGF-A is expressed by the pigmented epithelium,
the epithelium that lies in closest proximity to the capillaries.
Our finding contradicts a previous report that VEGF-A was
detected in both epithelial layers25; however, as VEGF-A is a
secreted protein, immunolocalization is not a reliable method
to determine the site of its production. Since the nonpigment-
ed epithelium expresses VEGFR2, it is most likely that the
VEGF-A detected in the nonpigmented epithelium of the latter
study was produced in the pigmented epithelium and was
taken up by the nonpigmented cells (Fig. 7A).

The expression of VEGF-A by the pigmented epithelium and
VEGFR2 by the nonpigmented epithelium points to a role for
VEGF-A in maintaining the integrity of the nonpigmented cells.
Furthermore, the expression of VEGF-A by the pigmented

epithelium and VEGFR2 by the capillary endothelium also
suggests that it functions in the maintenance of capillary
fenestrations. The role of VEGF-A in capillary survival, and in
the formation and maintenance of fenestrations has been well
documented.3,9,26 VEGF-A has been shown to induce the
formation of fenestrations in vitro.26,27 Fenestrated endotheli-
um is a characteristic of tissues that perform filtration, such as
the kidney glomerulus, or secretion as in the choroid plexus of
the brain and the ciliary body of the eye. VEGF-A–dependence
of fenestrated capillaries was demonstrated by neutralizing
VEGF-A with small molecule VEGF receptor tyrosine kinase
inhibitors as well as soluble VEGF-A receptors.2,9 VEGF-A
neutralization for one to three weeks led to vessel regression in
the pancreas and thyroid, for instance, and capillaries
recovered once VEGF-A neutralization was terminated.2

Maintenance of capillary fenestrations by pigmented ciliary
epithelium–derived VEGF-A is critical to normal eye physiolo-
gy. Aqueous humor secretion through the capillary fenestra-
tions provides the oxygen and nutrients to the avascular
anterior chamber, and IOP is determined by the balance
between aqueous humor inflow and outflow.17,28,29 Aqueous
humor secretion is driven primarily by the transepithelial
transport of ions, primarily Naþ, Cl�, and to a lesser degree
HCO3

�, across the ciliary epithelium, which generates an
osmotic gradient for water movement.30 First, ion uptake by
pigmented epithelial cells is facilitated by the fenestrations of
the ciliary capillaries. Next, the ions diffuse from the
pigmented epithelium to the nonpigmented epithelium
through the gap junctions. Lastly, ions are released from the
nonpigmented epithelium into the posterior chamber through

FIGURE 4. Alterations in ciliary body ultrastructure following VEGF-A neutralization. Ultrastructural analysis of the ciliary body 14 days post-
infection illustrates the normal ultrastructure of (A, B) Ad-null animals in comparison to the degeneration of the nonpigmented epithelial layer
observed in (C, D) Ad-sFlt1–expressing mice. Arrow indicates the shrunken and nearly nonexistent cytoplasm of a nonpigmented epithelial cell.
Scale bar: 2 lm.
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Naþ Kþ-activated ATPase and Cl�channels.31,32 Carbonic
anhydrase, either directly or indirectly, mediates the transport
of HCO3

� across the ciliary epithelium33 (Fig. 7B).
The defects in regions of the pigmented epithelial layer

following VEGF-A neutralization could be secondary to damage
of the neighboring nonpigmented cells and/or to the reduced
function of the ciliary body vasculature. These notions are
corroborated by the ultrastructural analysis, which revealed

ciliary body epithelium degeneration, loss of capillary fenes-
trations and the formation of microthrombi following VEGF-A
blockade. The loss of fenestrations from the ciliary body
capillaries in Ad-sFlt1 mice was associated with an apparent
impairment of ciliary body function, as evidenced by reduced
IOP. Given that the secretion of aqueous humor is facilitated by
capillary fenestrations, a loss of fenestrations might be
expected to compromise aqueous humor secretion, thereby
lowering IOP. This observation is consistent with a previous
study in which selective destruction of the pigmented ciliary
epithelial cells in a primate model led to a loss of capillary
fenestrations and dramatically lowered IOP.34 We demonstrated
previously the reformation of fenestrations in the choriocap-
illaris, a capillary bed located in the back of the eye, in spite of
continued VEGF-A neutralization (either local or systemic).5

Subsequent analysis revealed that there was an apparent
compensatory upregulation of VEGF-A by RPE cells.19 Howev-
er, unlike the RPE, the ciliary body epithelium either lacks the
compensatory mechanism exhibited by the RPE or the
recovery takes longer than the 28-day period we assessed.

A study in nonhuman primates showed that bevacizumab, a
VEGF-A neutralizing agent, penetrates quickly into the ciliary
body following intravitreal injection, with the most intense
staining detected at day four and remaining prominent through
day 14.6 Nevertheless, reduced IOP is not a common
complication of anti–VEGF-A treatment, most likely due to
the fact that, unlike our experimental model of adenoviral
expression of sFlt1, VEGF-A neutralization in the clinical setting
neither is continuous nor complete. Rather, anti-VEGF-A

FIGURE 5. VEGF-A neutralization leads to loss of capillary fenestrations. TEM micrographs of the ciliary body from (A, B) Ad-null and (C, D) Ad-
sFlt1–expressing mice at day 14 post-infection revealed a thickening of the capillary endothelial wall and associated loss of fenestrations (black

arrowheads) in (D) Ad-sFlt1 eyes, whereas (B) Ad-null capillaries retained their normal appearance. The normal organization of the ciliary epithelia
was observed in (A) Ad-null animals whereas (C) Ad-sFlt1–expressing animals displayed degenerated nonpigmented epithelium (black arrow) and
vacuolization of the pigmented epithelium (black asterisks). Scale bar: 2 lm.

FIGURE 6. VEGF-A neutralization leads to decreased IOP. The IOP of
CD-1 mice was measured with a TonoLab tonometer before and at
various time points following injection of the Ad-null or Ad-sFlt1. By
day 11, there was a statistically significant reduction in IOP in the Ad-
sFlt1–expressing animals. The values are expressed as the mean IOP 6

SD of the animals in each group (n ¼ 10). ***P < 0.001
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delivered intravitreally has been shown to be cleared rapidly, as
the half-life of the clinical dose of bevicizumab (1.25 mg) in the
vitreous is 6.7 days.35

The name ‘‘vascular endothelial growth factor’’ now is
rather misleading because of the increasing list of ‘‘nonvascu-
lar’’ functions of VEGF-A. VEGF-A and its receptors have been
immunolocalized to neurons and astrocytes, and VEGF-A has
been reported to induce neurite outgrowth as well as provide
neuroprotection.20–22 Other evidence of nonvascular functions
of VEGF-A include the observation of increased apoptosis in
photoreceptors and Müller cells, and associated impaired
retinal function following VEGF-A neutralization in adult mice,5

as well as significant retinal ganglion cell death upon VEGF-A
neutralization in a model of ischemia preconditioning.4 In
addition, we demonstrated that VEGF-A has an autocrine role
in RPE survival in vitro,19 and others have reported that VEGF-
A signaling enhances RPE cell survival under oxidative stress.36

For these reasons, however, current efforts to develop methods
to achieve more sustained VEGF-A neutralization, either via
slow release mechanisms or through the use of reagents with
longer half-lives and/or higher VEGF-A affinities, may prove to
be problematic.
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