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Abstract: We present a novel spectral domain polarization sensitive OCT 
system (PS-OCT) that operates at an A-scan rate of 70 kHz and supports 
scan angles of up to 40° × 40°. The high-speed imaging allows the 
acquisition of up to 1024 × 250 A-scans per 3D scan, which, together with 
the large field of view, considerably increases the informative value of the 
images. To demonstrate the excellent performance of the new PS-OCT 
system, we imaged several healthy volunteers and patients with various 
diseases such as glaucoma, AMD, Stargardt’s disease, and albinism. The 
results are compared with clinically established methods such as scanning 
laser polarimetry and autofluorescence. 
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1. Introduction 

Since its first introduction in the 1990s [1] OCT has developed into a powerful noninvasive 
imaging technique that provides high resolution, cross sectional images of translucent tissues 
[2,3]. In the meantime OCT has found a variety of applications in different fields such as 
neurology, dermatology, gastro-intestinal imaging and cardiology. Nevertheless it still has its 
main application in the field of ophthalmology [4]. Since 1992 a functional extension of 
conventional intensity based OCT called polarization sensitive OCT (PS-OCT) has been 
developed [5–7]. PS-OCT enables the differentiation of several layers within the retina due to 
the different light-tissue interaction mechanisms. The retinal layers can be categorized into 
polarization preserving layers (e.g. photoreceptor layer), birefringent layers (e.g. retinal nerve 
fiber layer (RNFL) or Henle’s fiber layer) [8–11] and depolarizing (polarization scrambling) 
layers (e.g. retinal pigment epithelium (RPE)) [10,12]. PS-OCT is not only capable to 
distinguish these layers, which is important for segmentation, but it can also retrieve 
quantitative information about different structures within the retina. 

One example for this is the ability of PS-OCT to measure the birefringence of the RNFL. 
This is especially interesting for diagnosis of glaucoma, one of the leading causes of blindness 
in the world [13,14]. During the progression of the disease ganglion cell axons within the 
RNFL degenerate which leads to a thinning of the RNFL and finally to visual field defects 
and blindness. One clinically established method for glaucoma diagnosis is scanning laser 
polarimetry (SLP) [15,16] such as the GDx VCC and ECC from Carl Zeis Meditec, which 
measures the circumpapillary retardation distribution caused by the RNFL, from which the 
status of the RNFL is derived. In comparison with SLP, PS-OCT has the fundamental 
advantage that it combines the ability of intensity based OCT to provide cross sectional 
images of the retina, giving direct access to the thickness of the RNFL, with the polarization 
sensitivity of SLP. With PS-OCT, RNFL thickness and retardation can be measured 
simultaneously but independently, providing access to the birefringence, the quotient of the 
two quantities. SLP measures only the retardation, which is a combined effect of thickness 
and birefringence. 

The ability of PS-OCT to provide tissue specific contrast is also important in other 
diseases such as age related macular degeneration (AMD). AMD is another leading cause of 
visual loss and blindness. At an early stage of the disease, accumulations of extracellular 
material build up in Bruch’s membrane. These deposits lead to an irregular RPE shape and 
detachments, which are called drusen. At an advanced stage of the disease, AMD can be 
classified into wet or dry AMD. The wet form of AMD is characterized by abnormal vessel 
growth in the choroid (choroidal neovascularization), which leads to subretinal fluids, RPE 
detachments, hard exudates, bleeding and scaring of tissue. The dry form of AMD is 
characterized by geographic atrophies (GA), areas with absence of RPE. The RPE plays a key 
role in all forms of AMD. Based on the depolarization effect of the RPE, PS-OCT can reliably 
segment and identify the RPE layer, which makes PS-OCT a valuable tool for AMD diagnosis 
[12,17–19]. 

In this paper we present a novel high-speed, large-field PS-OCT system. In contrast to 
previous PS-OCT systems [17,20], the new PS-OCT system supports a denser sampling (up to 
1024 × 250 A-scans) over a larger scan field (up to 40° × 40°), which increases the 
explanatory power of the recorded images. Several healthy subjects and patients diagnosed 
with a variety of diseases, such as glaucoma, AMD, Stargardt’s disease and albinism have 
been imaged with the new PS-OCT system. The high quality of the measurement results 
demonstrate that the novel PS-OCT system is able to combine the abilities of clinically 
established imaging methods, such as SLP and conventional intensity based OCT. 
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Furthermore, the new PS-OCT system is capable of providing specific information on the 
RPE layer as autofluorescence imaging. This is achieved due to the variety of information, 
which is acquired during a single measurement, combined with several additional post-
processing steps. 

2. Methods 

2.1. Polarization sensitive OCT instrument 

A schematic diagram of the novel PS-OCT is presented in Fig. 1. The system is based on a 
Michelson interferometer incorporating polarization maintaining (PM) fibers similar to the 
system described in [20]. Light from a superluminescent diode (center wavelength 836 nm, 
FWHM 54 nm) is coupled into a PM fiber polarizer. A polarization control paddle is inserted 
beforehand to match the polarization state with the orientation of the PM fiber polarizer. 
Afterwards the light is split into sample and reference arm at a 90:10 PM fiber beam splitter. 

In the reference arm the light passes a quarter wave plate (QWP) oriented at 22.5°, a prism 
pair, which is used to compensate the dispersion mismatch between sample and reference arm 
and is reflected by a mirror which is mounted on a motorized stage to control the coherence 
gate position. An additional lens is mounted in front of the mirror, which introduces a defocus 
depending on the distance between the lens and the mirror. This defocus is used to adjust the 
reference arm power at the spectrometer. After double-passing the QWP the polarization state 
of the light is orientated at 45°. This configuration provides equal reference arm power for 
both channels of the polarization sensitive detection. 

 
Fig. 1. Schematic diagram of the PS-OCT system. SLD, superluminescent diode; PC, 
polarization controller; FBS, fiber nonpolarizing beam splitter; PBS, fiber polarizing beam 
splitter; FC, fiber collimator; QWP, quarter-wave plate; DCP, dispersion compensating prism 
pair; L1-L3, lens; MS1-2, motorized stage; GS, galvanometer scanner; M, mirror; Pellicle BS, 
pellicle beam splitter; green lines, single mode fiber; red lines, free space beam path; blue lines, 
polarization maintaining fiber; black lines, cable connection. 

In the sample arm light passes a QWP oriented at 45° to provide circular polarized light 
onto the eye. An x-y galvanometer scanner and a telescope consisting of an 80 mm (L1) and a 
50 mm (L2) achromatic lens is used to scan the beam over the retina. The second telescope 
lens is mounted on a motorized stage to compensate for refractive errors of the patient. 
Additionally, a pellicle beam splitter can be flipped into the sample arm, which, in 
combination with an infrared camera, can be used as an anterior segment monitor. This 
anterior segment monitor is used to align the patient’s head and the pellicle beam splitter is 
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removed prior to the measurement. As a fixation target we display a colored cross on a 
computer monitor, which is mounted on top of the sample arm unit. Two mirrors beside the 
last telescope lens allow the patient to see this fixation target with the eye that is currently not 
measured by the PS-OCT. 

Light returning from the sample and reference arm interferes at the beam splitter and is 
afterwards split into two orthogonal polarization channels by a PM fiber based polarizing 
beam splitter. The two polarization channels are guided to a spectrometer. Contrary to the 
setup described in [20] where two individual spectrometers with two line scan cameras are 
used, the new PS-OCT system uses only a single line scan camera [21]. This configuration has 
the advantage of significantly reduced system costs and complexity, however, it requires 
several additional post-processing steps which are described in [21]. 

With an A-scan rate of 70 kHz and a light power of 730 µW incident at the cornea we 
measured a maximum sensitivity of 98 dB close to the zero delay line. The sensitivity dropped 
to 90 dB at 1.8 mm imaging depth. The measured axial resolution of the system is 7.8 µm in 
air. Various scan patterns ranging from 512 × 125 A-scans up to 1024 × 250 A-scans are 
available. However, for the results presented in this paper we used only the 1024 × 250 A-
scan pattern because we found this pattern provided the best image quality. The maximum 
scan field is 40° × 40°. 

2.2. PS-OCT data analysis 

Since the new PS-OCT system is based on a single line scan camera approach, a pixel-to-pixel 
correspondence of the two spectral interferograms, which is required for polarization sensitive 
imaging, can only be achieved by applying several additional post-processing steps. The 
reason for this is the following: due to the fact that both spectra illuminate the diffraction 
grating at different incident angles, the recorded spectra will be distorted with respect to each 
other and the spectral range is imaged onto a different number of line scan camera pixels. The 
first post-processing step is to split the two spectra into two subsets consisting of an equal 
number of camera pixels. Afterwards the recorded wavelength range of one spectrum is 
adjusted to match the wavelength range of the other spectrum. This is done by either 
squeezing or stretching one spectrum with respect to the other. Then the two subsets are 
overlaid and one spectrum is shifted along the pixels to assure that each wavelength 
component of the two spectra corresponds to the same pixel. In this way a pixel to pixel 
correspondence between the two polarization channels is achieved. A more detailed 
discussion of these post-processing steps can be found in [21]. Afterwards standard post-
processing steps, such as subtraction of the mean spectrum and rescaling from λ to k-space 
and Fourier-Transformation are performed. 

From the processed 3D data set, which contains amplitude and phase information of both 
polarization channels, we can calculate the intensity, retardation, optic axis orientation [22] 
and degree of polarization uniformity (DOPU) values [23]. The DOPU values allow us to 
quantify the amount of depolarizing material within the retina. For this purpose every pixel 
with a DOPU value lower than 0.75 is extracted. 

These post-processing steps are carried out for each recorded data set. Depending on the 
pathology of the patients various different additional post-processing steps are performed, 
which are described below. 

2.2.1. Glaucoma 

With PS-OCT the polarization properties of the birefringent RNFL can be quantified. In order 
to observe this birefringence, which leads to a linear increased retardation with depth, we first 
need to compensate the 3D polarization sensitive data for the birefringence of the anterior 
segment. This is achieved by measuring the polarization state at the surface of the retina and 
using a software based correction algorithm [24]. 
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Afterwards we generate 2D en face retardation maps from the 3D polarization sensitive 
data. For this purpose, light that has double passed the birefringent RNFL and is reflected 
from a polarization-preserving layer needs to be detected. Here we choose the signal from the 
inner/outer photoreceptor junction (IS/OS junction) and the end tips of photoreceptor (ETPR) 
because these layers have a high reflectivity. This high reflectivity is desirable because it 
reduces noise of the retardation values. In order to segment the IS/OS junction and ETPR we 
take advantage of the depolarization effect (polarization scrambling) of the RPE that can be 
observed with PS-OCT [23]. After the segmentation of the anterior border of the RPE we 
analyze every retardation value along each A-scan within a window of 80 µm anterior to the 
RPE (this window contains the IS/OS and ETPR layer). These values are plotted in a 
histogram and the peak of the histogram is regarded as the retardation value that is assigned to 
the respective transverse position of the 2D retardation en face maps [25]. Afterwards the en 
face maps are thresholded, based on the corresponding intensity values, to exclude areas with 
low signal quality (e.g. regions that are shaded by blood vessels). 

The next post-processing step is to generate 2D en face RNFL thickness and birefringence 
maps. For this purpose we segment the RNFL thickness from the intensity images. Our 
algorithm relies on the fact that the RNFL has a higher reflectivity than the surrounding 
layers. First a combination of a bilateral and median filter is applied to smoothen the intensity 
image and hence reduce speckle noise. Afterwards the anterior border of the RNFL is detected 
by searching for the first pixel along each A-scan that is above a certain intensity threshold. 
The posterior border of the RNFL is segmented by searching for the first pixel below another 
intensity threshold starting from the anterior border of the RNFL. From the obtained values 
for the posterior border of the RNFL, outliers, which are located far away from neighboring 
values, are removed before fitting with a polynomial function (polynomial order: 3). Again an 
intensity threshold is applied to the final 2D en face RNFL thickness maps to exclude areas 
with low signal quality. 

For calculating en face birefringence maps, we use an algorithm that was previously 
published by Cense et al. [9,26]. First, the retardation values within the segmented RNFL are 
plotted against depth. Secondly, these values are fitted by a linear regression and the slope of 
this fit is regarded as the birefringence value of the RNFL at this transverse position. By 
repeating this procedure for every A-scan within the 3D data set, 2D en face birefringence 
maps are generated. Note that in contrast to previous works no averaging is performed [25]. 

2.2.2. RPE related retinal diseases 

The post-processing procedure for patients with RPE related retinal diseases depends on the 
form of the disease. In the case of drusen, pigment epithelial detachments (PED) or irregular 
RPE shapes we apply a segmentation algorithm that is similar to the one described in [17]. In 
short, the algorithm works as follows. First the lowest DOPU value within every A-scan is 
detected. This pixel is usually located in the center of the RPE layer. From the obtained 
positions of the depolarizing pixels, outliers, which are located far away from the neighboring 
segmented pixels, are removed and the obtained data points are fitted with an iterative 
Savitzky–Golay filter (filter length: 100 A-scans, polynomial order: 3) [17]. The result of this 
computation yields the approximated normal posterior position of the RPE (the posterior 
position where the RPE would be in the absence of drusen or PEDs). In the next step we first 
detect the anterior border of the RPE by searching for the first depolarizing pixel within every 
A-scan starting from the inner limiting membrane. The obtained values are again fitted with 
an iterative Savitzky-Golay filter (filter length: 6 A-scans, polynomial order 3). The result of 
this fit yields the actual anterior border position of the RPE. Drusen, RPE irregularities and 
PEDs can now be detected by calculating the difference between the estimated normal 
posterior position of the RPE and the actual anterior border. The values are recalculated to 
thickness, assuming a refractive index of 1.38. These RPE elevation maps allow us to quantify 
e.g. the number and size of drusen or the elevations of PEDs within the retina. 
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In order to detect atrophic zones in dry AMD we simply add the number of depolarizing 
pixels along each A-scan within the 3D PS-OCT data set. The resulting 2D en face map gives 
us information about the amount of depolarizing material within the retina. These maps reveal 
the area and size of geographic atrophies, which appear as sharp delineated areas with absent 
RPE. Again these maps are recalculated to thickness assuming a refractive index of 1.38. 

The same post-processing algorithms can be applied to patients with Stargradt’s disease. 

3. Results—healthy eyes 

Exemplary measurement results with the new high-speed, large-field PS-OCT system are 
presented in Fig. 2. Figure 2(A) shows the pseudo SLO image from a 3D PS-OCT data set 
recorded in a healthy human volunteer (scan pattern 1024 × 250, scan angle 40° × 40°). The 
yellow line indicates the position of the extracted B-scans (2(B) intensity, 2(C) retardation, 
2(D) optic axis orientation, 2(E) DOPU, 2(F) segmented depolarizing material overlaid with 
the intensity image). Figures 2(B1), 2(E1) and 2(F1) show magnified areas of the RPE and  

 
Fig. 2. Exemplary PS-OCT measurement results from a healthy human volunteer (scan angle: 
40° × 40°, scan pattern 1024 × 250 A-scans). (A) Pseudo SLO, yellow line marks the location 
of the corresponding B-scans. (B) Intensity B-scan on logarithmic gray scale. Yellow box 
indicates area of the magnified image, B1. (C) Retardation image (color scale 0-90°). (D) Optic 
axis orientation (color scale 0-180°). (E) DOPU image (color scale 0-1). Yellow box indicates 
area of the magnified image, E1. (F) Segmented depolarizing material (red) overlaid with the 
intensity image. Yellow box indicates area of the magnified image, F1. (G) Average of 50 
intensity B-scans recorded at the same position. (H) Average retardation image. (I) Average 
optic axis orientation image. (J) DOPU image calculated from a temporal window over 50 B-
scans. (K) Depth summation of the number of depolarizing pixels along each A-scan within the 
3D data set (color scale 0-100 µm). Areas with low signal quality are displayed in white. 
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photoreceptor layer extracted from the corresponding intensity (Fig. 2(B)), DOPU (2(E)) and 
RPE segmentation image (Fig. 2(F)). The area which is magnified is indicated by yellow 
boxes in the corresponding images. Figures 2(G)–2(I) show averaged intensity, retardation 
and optic axis orientation images. For these images, 50 B-scans, recorded at approximately 
the same position, were averaged using the same averaging procedure as in [27,28]. Figure 
2(J) shows a DOPU image where a temporal window over 50 B-scans, instead of a spatial 
window (Fig. 2(E)), was used. Figure 2(K) shows a 2D depolarizing material en face map. For 
this image the amount of depolarizing material along each A-scan was added in depth. The 
image clearly shows the hyperpigmentation of the RPE in the foveal region. The brighter 
spots in the periphery, which can be seen at the edges of the image, are not due to stronger 
pigmentation in the RPE but they originate from a higher amount of depolarizing material in 
the choroid. In order to obtain a pure RPE thickness map one would need to exclude the signal 
from the choroid [17]. Nevertheless this type of image is very useful, especially in patients 
with geographic atrophies, as we will show later. 

From the same data set 2D en face RNFL retardation, thickness and birefringence maps 
can be calculated. The results are presented in Fig. 3. The images show an increased RNFL 
retardation, thickness and birefringence in the superior and inferior region around the optic 
nerve head, which is in good agreement with previous findings [9,25,26,29,30]. With the new 
PS-OCT system very thin nerve fiber bundles and their distribution along the larger blood 
vessels within the retina can be observed. Noticeable is also the effect of Henle’s fiber layer 
that generates a doughnut shape retardation pattern in the foveal region. The red rectangle in 
Figs. 3(B) and 3(C) indicate an area around the fovea where our RNFL thickness 
segmentation algorithm failed to segment the posterior border of the RNFL correctly. Blood 
vessels and areas with low signal quality are displayed in gray. Please note that in the 
birefringence map larger areas are excluded from the final image (gray values). Here we 
exclude areas where the RNFL thickness is below 60 µm because the birefringence cannot be 
calculated accurately. 

 

Fig. 3. 2D en face RNFL retardation (A) (color scale 0-50°), thickness (B) (color scale 0-200 
µm) and birefringence (C) (color scale 0-0.3°/µm) maps calculated from the same data set 
presented in Fig. 2. Areas with low signal quality are displayed in gray. Additionally, in the 
birefringence en face map, areas with RNFL thickness bellow 60 µm are displayed in gray. Red 
rectangle in B and C indicates an artifact due to incorrect segmentation of the posterior border 
of the RNFL. 

Figure 4 shows averaged RNFL retardation, thickness and birefringence images from 
another healthy volunteer. The volunteer was imaged five times with the PS-OCT system. For 
each obtained data set RNFL retardation, thickness and birefringence maps were calculated. 
The images were registered with respect to each other and averaged. Again, very thin nerve 
fiber bundles are clearly visible in the retardation and birefringence map. These fine details 
cannot be observed in the corresponding SLP measurement result (see Fig. 4(D)). The  
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Fig. 4. Averaged RNFL retardation (A) (color scale 0-50°), thickness (B) (color scale 0-200 
µm) and birefringence (C) (color scale 0-0.3°/µm) en face map, calculated for 5 repeated 
measurements recorded in the same eye of a healthy human volunteer. Scan protocol for each 
individual measurement: 1024 × 250 A-scans, scan angle 27° × 24°. Areas with low signal 
quality are display in gray. Additionally, in the birefringence en face map, areas with RNFL 
thickness below 60 µm are displayed in gray. (D) Retardation measured by SLP (GDx VCC) in 
the same subject. 

birefringence map further shows that the birefringence is not constant throughout the RNFL. 
Instead a clear increase of RNFL birefringence can be observed in the superior and inferior 
region around the optic nerve head [25,29,30]. 

4. Results - diseased eyes 

4.1. Glaucoma suspect 

An exemplary measurement result for a glaucoma suspect patient can be seen in Fig. 5. The 
en face retardation image clearly shows a reduced RNFL retardation and hence nerve fiber  

 
Fig. 5. RNFL retardation (a), thickness (B) and birefringence (C) en face map obtained from a 
glaucoma suspect patient. Color scaling is the same as in Fig. 3 and Fig. 4. Areas with low 
signal quality are displayed in gray. Red rectangle in B and C indicates an artifact due to 
incorrect segmentation of the posterior border of the RNFL. 
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bundle defects in the superior region. Nevertheless residual small nerve fiber bundles are still 
visible. The thickness map shows a decreased RNFL thickness in the superior region 
compared to the inferior part. Due to this decreased RNFL thickness the birefringence could 
not be calculated accurately in the superior region. 

These images nicely show the advantage of large-field PS-OCT imaging for glaucoma 
diagnosis. Commercial SLP images only cover a relatively small area around the optic nerve 
head and hence hinder the detection of nerve fiber bundle defects located far away from the 
optic disc. 

4.2. RPE related retinal diseases 

Figure 6 shows a measurement result obtained from a patient with a large PED. Figure 6(B) 
shows the RPE elevation map (color scale range 0-1.2 mm). In order to calculate the elevation 
of this PED we used our RPE elevation map algorithm and changed the setting of the fit that 
estimates the normal RPE position (Savitzky–Golay filter length: 300 A-scans, polynomial 
order: 3). The B-scan presented in Fig. 6(C) nicely shows the advantage of the low sensitivity 
decay with depth of the new PS-OCT system. Although the zero delay line is located anterior 
to the retina (on top of the image) and the size of the PED spans almost half of the available 
imaging range, the new PS-OCT system is capable to image the retina without a substantial 
reduction of image quality. 

Media 1 shows a 3D volume rendering of the intensity values in gray scale with the RPE 
layer colored in red. Media 2 shows the same volume rendering of the red RPE without the 
overlaying tissue. 

 

Fig. 6. PS-OCT measurement result in a patient with a large PED. (A) Pseudo SLO image. 
Yellow line indicates the position of the intensity B-scan overlaid with the segmented RPE in 
red. (B) RPE elevation map (color scale 0-1.2 mm). Media 1 shows a 3D volume rendering of 
the intensity values with the RPE colored in red. Media 2 shows the same volume rendering of 
the RPE layer in red without the overlaying tissue. 

A PS-OCT measurement result obtained from a patient with drusen and GA is presented in 
Fig. 7. The atrophic area in the fovea region can be clearly observed in the autofluorescence 
image (Fig. 7(F)) and in the depolarizing material thickness map (Fig. 7(E)). Drusen, which 
are present superior to the GA, appear to be more pronounced and easier to distinguish in the 
PS-OCT image. The residual bright spots in the center of the GA that can be seen in the 
depolarizing material thickness map (Fig. 7(E)), mainly originate from depolarizing material 
in the choroid. 

Figure 7 shows a typical example for an AMD related atrophic area, where only residual 
depolarizing material in the choroid can be observed. In contrast, Fig. 8 shows a measurement 
result from a patient with Stargardt’s disease. Again the autofluorescence image (Fig. 8(F)) 
shows an atrophic zone in the fovea region. In contrast to the GA in Fig. 7, the choroid 
contains significantly more depolarizing material, as can be seen from the depolarizing 
material thickness map (Fig. 8(E)), the RPE segmentation B-scan (Fig. 8(C)) and from the 
DOPU image (Fig. 8(D)). The striking difference in the appearance of the two different cases  
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Fig. 7. PS-OCT measurement result from a patient with GA and drusen. (A) Pseudo SLO 
image; yellow line indicates the position of the intensity (B). (C) RPE segmentation B-scan and 
(D) DOPU image. (E) Depolarizing material thickness map (color scale 0-160 µm). (F) 
Corresponding autofluorescence image. 

 
Fig. 8. PS-OCT measurement result from a patient with Stargardt’s disease (pathologic 
mutations in the ABCA4 gene). (A) Pseudo SLO image; yellow line indicates the position of 
the intensity. (B). (C) RPE segmentation B-scan and (D) DOPU image. (E) Depolarizing 
material thickness map (color scale 0–160 µm). (F) Corresponding autofluorescence image. 

of atrophies is only visible in the PS-OCT map, the autofluorescence images look very 
similar. 

An exemplary measurement result obtained from a patient with albinism is presented in 
Fig. 9. The DOPU image clearly shows the reduced depolarization effect in the RPE (Fig. 
9(C)) compared to a normal healthy subject (Fig. 2(E)). The depolarizing material thickness 
map (Fig. 9(E)) clearly reveals the reduced amount of depolarizing material within the retina 
compared to a healthy subject (Fig. 2(K)). This finding supports our hypothesis that the 
depolarizing effect of the RPE is due to multiple scattering of the imaging light caused by 
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melanin granules. The reduced pigmentation of the RPE in albino patients further enables a 
deeper penetration into the choroid. Therefore choroidal vasculature becomes visible in the 
pseudo SLO image (Fig. 9(A)). Noticeable is also the magnified image (zoom in) of the 
intensity B-scan (Fig. 9(B)). Due to the reduced multiple scattering within the RPE, an 
additional layer bellow the RPE can be visualized that might correspond to Bruch’s 
membrane. This effect cannot be observed in healthy subjects (see Fig. 2(B)). 

 
Fig. 9. PS-OCT measurement results from a patient with albinism. (A) Pseudo SLO image; 
yellow line marks the position of the exemplary intensity (B). (C) DOPU and (D) RPE 
segmentation B-scans . The yellow boxes in (B)-(D) mark the position of the magnified areas 
on the right. (E) Depolarizing material thickness map (color scale 0-100 µm). 

5. Discussion 

The presented data demonstrates the good performance of the new PS-OCT system. Due to 
the higher imaging speed, a denser sampling over a larger scan field is possible. These 
properties considerably increase the explanatory power of the recorded images. 

We have presented RNFL retardation, thickness and birefringence en face maps that reveal 
very small details that could not be observed in previous studies with PS-OCT [25]. 
Compared to SLP and intensity based OCT, PS-OCT has the advantage that RNFL 
retardation, thickness and birefringence can be measured simultaneously but independently. 
This makes PS-OCT more robust against possible errors e.g. registration errors or motion 
artifacts that might occur between separate measurements. All three quantities might be an 
early sign of glaucoma [31–33]. Therefore PS-OCT might become a valuable imaging tool for 
future glaucoma diagnostics. 

One limitation of the new PS-OCT is that the RNFL birefringence could not be measured 
accurately in cases where the RNFL thickness was below 60 µm. In these areas, the 
significance of the calculated birefringence values is limited due to the limited amount of 

#171147 - $15.00 USD Received 21 Jun 2012; revised 24 Sep 2012; accepted 1 Oct 2012; published 3 Oct 2012
(C) 2012 OSA 1 November 2012 / Vol. 3,  No. 11 / BIOMEDICAL OPTICS EXPRESS  2731



independent data points. One could reduce this problem by using a light source with a broader 
spectrum and hence a better axial resolution [20]. 

The large field of view RNFL retardation, thickness and birefringence maps presented 
here for the first time allow us to visualize the distribution of nerve fiber bundles originating 
from the optic nerve head and to evaluate these along the larger blood vessels within the 
retina. In contrast commercially available SLP images covers only a small area around the 
optic disc, which prevents the detection of nerve fiber bundle defects in the periphery. Further 
studies to investigate potential advantages of this feature are planned. 

Previously, it was already shown that PS-OCT is a reliable method for measuring the 
number and size of drusen and the area of GA [17,34]. The new PS-OCT system, presented in 
this work, offers several advantages compared to previous PS-OCT systems. The high 
imaging speed enables the acquisition of large field of view images with high sampling 
density. The large-field images are especially desirable in patients with large GA. From the 
results presented in Fig. 7 one can see that, in addition to the large GA in the fovea region, 
numerous drusen are located superior to the fovea and also small GA are present inferior. This 
important information might be missed if imaging systems with smaller scan fields are used. 
Large-field scanning is also desirable for follow-up studies in patients where the size of the 
GA is increasing. The large-field images are also useful for imaging patients with drusen. 
First of all, the number and size of drusen can be monitored over a larger area within the 
retina. Secondly, follow-up studies are improved because an increase in the number of drusen 
can be monitored easily. 

Another important feature of the new PS-OCT system is the low sensitivity decay with 
depth. This property makes it easier for clinicians to handle the system and it enables the 
acquisition of pathologies with large depth extensions such as the one presented in Fig. 6. 

PS-OCT is not only a valuable tool for imaging patients with glaucoma and AMD but it 
also gives novel insights into the pathologies of several diseases. By comparing the imaging 
results of healthy volunteers with the one from the albino patient it is obvious that the 
depolarizing effect of the RPE, which can be observed in healthy eyes, is greatly reduced in 
albinism. This finding supports our hypothesis that melanin granules are the main cause for 
the depolarization effect of the RPE. On the other hand the results obtained from a patient 
with Stargardt’s disease (presented in Fig. 8) show a strong depolarization effect in the 
choroid. This effect is usually not observed in patients with GA secondary to AMD. Up to 
now it is unclear why the choroid of this patient shows this strong depolarizing effect. 
Possible explanations could be that melanin granules or pigment-loaded macrophages have 
migrated into the choroid. Whether or not this finding provides any clinically relevant 
information, it might provide valuable insights for the future understanding of different 
diseases. This information cannot be retrieved from conventional intensity based OCT. 

6. Conclusion 

In this paper we have presented a novel high-speed large-field PS-OCT system. Several 
healthy volunteers and patients with various diseases have been imaged. The measurement 
results demonstrate the good performance of the system. We have shown that this new PS-
OCT system is capable to combine the imaging modalities of intensity based OCT and SLP 
into one single instrument. Furthermore, the new PS-OCT system is capable of providing 
specific information on the RPE layer as autofluorescence imaging. In addition, PS-OCT 
provides interesting new tissue specific information in patients with different pathologies. 
Therefore PS-OCT might become a valuable tool for several clinical applications. 
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