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Introduction

Seed formation is a critical adaptation in the plant life cycle, as 
it allows embryos to temporarily cease growth in adverse condi-
tions until the environment becomes favorable. During the matu-
ration phase of embryogenesis, the embryo accumulates nutrient 
reserves, acquires desiccation tolerance and enters a stage of dor-
mancy. The transition from embryonic to vegetative development 
(germination) is tightly regulated by the hormones abscisic acid 
(ABA), which promotes dormancy and inhibits germination, and 
gibberellic acid (GA), which has the opposite effect of break-
ing dormancy and stimulating germination.1,2 In Arabidopsis, 
B3-domain transcription factors of the AFL (ABSCISIC ACID 
INSENSITIVE3, FUSCA3, LEAFY COTYLEDON2) family 
act as master regulators of late embryogenesis, as loss- and gain-of-
function mutations in these genes greatly affect seed maturation.3

Genetic and molecular analyses indicate FUSCA3 (FUS3) 
inhibits the transition from the embryonic to the vegetative phase 
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of development by promoting ABA accumulation while inhibiting 
GA biosynthesis.4 The loss-of-function mutant, fus3‑3, bypasses 
dormancy and enters postembryonic development prematurely 
due to a lower ABA/GA ratio.4-7 Conversely, ectopic expression of 
FUS3 post-embryonically (ML1:FUS3) delays seed germination 
and plant development by increasing ABA level while repressing 
GA biosynthesis.4,8 The stability of the FUS3 protein also appears 
to be tightly regulated by ABA, GA and the 26S proteasome.4,9

In our recent study, AKIN10, was identified as an interactor 
of FUS3 from yeast two-hybrid screens.10 AKIN10 belongs to the 
sucrose-non-fermenting 1 (Snf1)-related kinase1 (SnRK1) family 
and acts as a central regulator of cellular energetics in plants.11 Our 
results indicate AKIN10 physically interacts with and phosphory-
lates FUS3 at its N-terminal region, and delays its degradation in a 
cell-free system. Overexpression of AKIN10 (35S:AKIN10) causes 
delays in developmental phase transitions (germination and flow-
ering) and defects in lateral organ formation. These phenotypes 
can be partially rescued by the fus3‑3 mutation, suggesting FUS3 
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SHORT COMMUNICATION

signaling pathways by global transcriptional modulations.12-16 
This prompted our investigation of the role of AKIN10 and FUS3 
in ABA and sugar responses during germination.

and AKIN10 act in overlapping pathways to regulate developmen-
tal phase transitions and lateral organ development.10 Interestingly, 
SnRK kinases also regulate stress responses, hormonal and sugar 

Figure 1. Overexpression of FUS3 or AKIN10 leads to ABA hypersensitivity and delayed germination, which is partly dependent on de novo ABA 
synthesis. Germination (radicle protrusion) kinetics of seeds from WT and two independent lines of ML1:FUS3 (A) or 35S:AKIN10 (B) on MS media or 
MS supplemented with 0.2 μM ABA or 10 μM fluridone (FLU). WT germination is significantly higher (p < 0.01) than 35S:AKIN10 on 10 μM FLU at 1 d 
after imbibition (DAI). (C) ABA dose-response curves for WT, ML1:FUS3 and 35S:AKIN10 seed germination (radicle protrusion) 2 d after imbibition. WT 
germination is higher (p < 0.01) than ML1:FUS3 and 35S:AKIN10 at 0.4 μM ABA. Averages from 3 experiments ± SD are shown. 100–150 seeds were used 
in each experiment.
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show that both genotypes are slightly hypersensitive to this 
concentration of ABA compare with WT (Fig. 1C). This 
suggests that both AKIN10 and FUS3 positively regulate 
ABA sensitivity during germination.

In order to dissect the role of ABA in the delayed ger-
mination of FUS3‑ and AKIN10‑overexpressing seeds, 
WT, ML1:FUS3 and 35S:AKIN10 germination rates were 
assayed in media supplemented with 10 μM fluridone, an 
inhibitor of phytoene desaturase which reduces ABA syn-
thesis.17,18 If delayed germination of the transgenic lines is 
due to increased ABA synthesis, then fluridone should res-
cue this delay. Germination rates of WT, ML1:FUS3 and 
35S:AKIN10 seeds were higher in the presence of fluridone 
compared with untreated seeds (Fig. 1A and B), suggesting 
de novo ABA synthesis negatively regulates germination in 
all genotypes. However, ML1:FUS3 and 35S:AKIN10 seeds 
still germinated later than WT on fluridone (Fig. 1A and B), 
and their rates did not increase even at a higher concentra-
tion of fluridone (50 μM; data not shown). This suggests de 
novo ABA synthesis alone cannot explain the delayed ger-
mination phenotype of ML1:FUS3 and 35S:AKIN10 seeds.

ABA and sugar signaling pathways are intricately related 
and share common downstream signaling components.19-21 
Since AKIN10 is known to partake in sugar signaling11,22 
and since FUS3 expression is regulated by sugar,23 we inves-
tigated the role of FUS3 and AKIN10 in sugar signaling 
during germination. WT, ML1:FUS3 and 35S:AKIN10 
germination rates were assayed two days after imbibition 
on 3% glucose or 3% sorbitol as an osmotic control. At 
the concentration tested glucose, but not sorbitol, sig-
nificantly reduced WT seed germination, as previously 
described (Fig. 2A).21,24 35S:AKIN10 germination was 
similar to WT on sorbitol, but showed hypersensitivity on 
glucose (Fig. 2A). Surprisingly, ML1:FUS3 germination 
was reduced by sorbitol, while the effect of glucose var-
ied between the two transgenic lines (Fig. 2A). To better 

understand the effect of exogenous glucose application, seed-
lings growth rates (cotyledon expansion) were assayed 4 d after 
imbibition in the presence of the sugars. In this case, cotyledon 
expansion of both ML1:FUS3 transgenic lines was hypersensitive 
to both sorbitol and glucose, whereas 35S:AKIN10 cotyledon 
expansion was inhibited specifically by glucose (Fig. 2B). These 
results indicate that overexpression of FUS3 during germination 
causes hypersensitivity toward osmotic stress, whereas overex-
pression of AKIN10 leads to hypersensitivity specifically toward 
glucose. We next tested whether the osmotic hypersensitivity of 
ML1:FUS3 and glucose hypersensitivity of 35S:AKIN10 seeds 
during germination are dependent on increased ABA synthesis. 
Germination rates were assayed 2 d after imbibition on 10 μM 
fluridone in the presence and absence of 3% glucose or sorbi-
tol. In both cases, fluridone was able to partially restore the ger-
mination delay imposed by sorbitol and glucose on ML1:FUS3 
and glucose on 35S:AKIN10 (Fig. 3). These results indicate the 
hypersensitivity of ML1:FUS3 seeds to osmotic stress and glu-
cose hypersensitivity of 35S:AKIN10 seeds are both partially 
dependent on de novo ABA synthesis.

Results

We first tested germination rates (radicle protrusion) of two 
independent lines overexpressing AKIN10 (35S:AKIN10) and 
FUS3 (ML1:FUS3) on ABA (see Material and Methods). Both 
35S:AKIN10 and ML1:FUS3 transgenic plants were previously 
shown to delay seed germination on minimal MS medium,8,12 
with ML1:FUS3 showing a greater germination delay than 
35S:AKIN10 (Fig. 1). The delayed germination has been 
attributed to the heightened sensitivity to and level of ABA in 
ML1:FUS3 seeds,4,8 but the cause of delay remains unknown for 
35S:AKIN10 seeds. To test whether altered ABA sensitivity con-
tributes to the 35S:AKIN10 germination delay, wild type (WT), 
ML1:FUS3 and 35S:AKIN10 seeds were germinated on a low 
concentration of ABA (0.2 μM). ABA delayed WT germination, 
though germination rates recovered to approximately 80% in 
5 d (Fig. 1). ML1:FUS3 germination was more sensitive to ABA 
compared with WT, and reached only 20–50% after 5 d of treat-
ment (Fig. 1A). 35S:AKIN10 germination was also hypersensi-
tive to ABA, but recovered to approximately 80% within 5 d of 
treatment (Fig. 1B). Germination rates tested on 0.4 μM ABA 

Figure 2. Overexpression of FUS3 or AKIN10 leads to different responses to 
sugar during seed germination and seedling growth. (A) Germination (radicle 
protrusion) of WT, ML1:FUS3 and 35S:AKIN10 seeds 2 d after imbibition on MS 
± 3% sorbitol (sor) or 3% glucose (glc). (B) Seedling growth (cotyledon expan-
sion) of WT, ML1:FUS3 and 35S:AKIN10 seeds 4 d after imbibition on MS ± 3% 
sor or 3% glc. Averages from 3 experiments ± SD are shown. 100–150 seeds 
were used in each experiment.
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Discussion

Collectively, the data shown here demonstrate a positive role 
of AKIN10 and FUS3 in ABA responses during germination, 
as well as distinct roles in sugar and osmotic stress responses 
during seed germination and seedling growth. Indeed, FUS3 
plays an inhibitory role under osmotic stress, while the inhibi-
tory role of AKIN10 is specific for glucose. These data com-
plement previous findings showing that plants overexpressing 
AKIN10 display defects in post-embryonic development and 
root elongation on exogenous ABA and glucose.12,14 Notably, 
the germination of seeds overexpressing AKIN10 was previously 
shown to be unaffected by 3 μM ABA.14 This is likely due to 
the high concentration of ABA used by Jossier et al.,14 and that 
we recorded germination rates over multiple time points after 
imbibition.

Although fluridone was able to elevate the germination 
kinetics in seeds of both genotypes on MS media, it was not suf-
ficient to fully recover the delayed germination of ML1:FUS3 
and 35S:AKIN10 seeds to the WT level. This suggests de novo 
ABA synthesis is only partially responsible for ML1:FUS3 and 
35S:AKIN10 delayed germination. It is possible that overex-
pression of FUS3 or AKIN10 already increases ABA level during 
embryogenesis, thus increasing seed dormancy. This is likely 
the case for FUS3, considering that a short activation of FUS3 
indeed increases ABA level in ML1:FUS3‑GR seedlings, while 
loss-of-function fus3‑3 embryos contain less ABA.4,5 The ger-
mination delay of 35S:AKIN10 seeds was more closely, but not 
completely, rescued by fluridone. Although no differences in 
ABA level were previously found between WT and AKIN10-
overexpressing seedlings,14 this does not exclude the possibility 
of higher ABA accumulation in 35S:AKIN10 embryos compared 
with WT. In addition, ABA accumulation prior to germina-
tion may also explain why fluridone was unable to fully restore 
ML1:FUS3 and 35S:AKIN10 reduced germination in the pres-
ence of glucose. Alternatively, ABA-independent pathways may 
be activated by FUS3 and AKIN10 during germination.

In conclusion, the data presented here indicate both FUS3 
and AKIN10 act as positive regulators of ABA signaling during 
germination, although showing different sensitivity to the hor-
mone, but they play different roles in sugar and osmotic stress 
signaling. AKIN10 is involved in glucose-specific pathway(s), 
while FUS3 modulates osmotic stress responses. Both sugar and 
osmotic responses regulated by AKIN10 and FUS3 are partly 
dependent on de novo ABA synthesis, likely through distinct 
pathways. It remains to determine if phosphorylation of FUS3 
by AKIN10 is required to modulate seed sensitivity to ABA.

Material and Methods

Arabidopsis seeds of WT (Col-0), FUS3-overespressing 
(ML1:FUS3‑GFP;4,9) and AKIN10-overexpressing 
(35S:AKIN10‑HA;10) lines were vernalized and germinated as 

previously described.9 ABA, fluridone, sorbitol and glucose were 
supplemented in the media at the concentrations specified in each 
experiment. Germination was considered positive when the radi-
cle had emerged from the seed, while seedling growth was scored 
positive when the cotyledons were expanded. The ML1:FUS3 
construct was previously shown to rescue the fus3‑3 embryonic 
phenotypes, including desiccation intolerance of the seeds, and 
to ectopically express FUS3 post-embryonically.4,9 In contrast, 
35S:FUS3 does not rescue the fus3‑3 mutant and causes co-sup-
pression when transformed in a WT background (data not shown). 
Therefore, the 35S promoter could not be used to overexpress 
FUS3. Conversely, 35S:AKIN10 has been shown to overexpress 
AKIN10 post-embryonically.10 Since ML1 and AKIN10 expression 
levels are very similar throughout development, as measured in sev-
eral microarrays (eNorthern; http://bar.utoronto.ca), we did not 
attempt to overexpress AKIN10 using the ML1 promoter.
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Figure 3. Osmotic stress hypersensitivity of ML1:FUS3 seeds and glucose 
hypersensitivity of 35S:AKIN10 seeds are both partially dependent on de 
novo ABA synthesis. Germination (radicle protrusion) of 35S:AKIN10 and 
ML1:FUS3 seeds 2 d after imbibition on MS, 10 μM fluridone (FLU), 3% 
sorbitol (sor) ± 10 μM FLU, and 3% glucose (glc) ± 10 μM FLU. Averages 
from 3 experiments ± SD are shown. 100–150 seeds were used in each 
experiment.
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