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ABSTRACT The entropy function H = -lpj log pj (pj being
the probability of a system being in state j) and its continuum an-
alogue H = fp(x) log p(x) ds are fundamental in Shannon's theory
ofinformation transfer in communication systems. It is here shown
that the discrete form ofH also appears naturally in single-lane
traffic flow theory. In merchandising, goods flow from a whole-
saler through a retailer to a customer. Certain features ofthe pro-
cess may be deduced from price distribution functions derived
from Sears Roebuck and Company catalogues. It is found that the
dispersion in logarithm of catalogue prices of a given year has re-
mained about constant, independently of the year, for over 75
years. From this it may be inferred that the continuum entropy
function for the variable logarithm of price had inadvertently,
through Sears Roebuck policies, been maximized for that firm
subject to the observed dispersion.

In a system that may exist in statesj = 1, 2, ..., N, with pj rep-
resenting the probability that it is in the jth state, the pj are
normalized and bounded.

N

> pj= and OSpj l.
j=1

[2]

From the possible sets [pj], H is maximized by

pj = 1/N for allj. Then, H = log N.

It is easy to show (2) that any deviation of pj from 1/N reduces
the value ofH from log N. When a single p, = 1, with all others
vanishing' H = 0.
The continuous state entropy function (-Xo < x < mo) is

In his retiring address as President of the National Academy of
Sciences, Philip Handler pleaded ". . . what I would partic-
ularly like to direct to your attention is the pressing need to
develop sophisticated analytic approaches to large sociotech-
nical systems...." Similarly concerned, I have sporadically
explored the possible application of quantitative approaches of
the physical sciences to the characterization of social dynamics
and sociotechnical systems (1-3). In response to his request, I
present this essay on yet one more approach for consideration,
the entropy style pioneered by Ludwig Boltzmann in his in-
vestigations of systems of many molecules.

Carved into Boltzmann's tombstone in the central cemetery
of Vienna is his entropy formula S = klogW; W is the number
of equivalent ways a molecular system may be constructed in
its equilibrium state, and k is Boltzmann's constant. He pos-
tulated a molecular system to be as randomized as possible
within the constraints implied by various conservation laws.
Those associated with children, adults, or organizations witness
a similar pervasive relaxation into a random state as controls
weaken. Hence, as a grand general theory ofsociotechnical sys-
tems emerges, perhaps it too will enjoy an entropy principle.

Shannon's theory of information (4, 5) transmitted in com-
munication channels marked the first appearance of Boltz-
mann's entropy function (see Eq. 1 below) in a sociotechnical
system. This report shows how that function also appears as a
consequence of the interplay between data analysis and model
construction in examples taken from two other sociotechnical
systems, highway transportation and marketing.

THE ENTROPY FUNCTION
Boltzmann measured disorder through the entropy function

N

H -Ipjjlogpj withallpj2 [I]
j=l

H = - p(x) log p(x)dx.
-c

[3]

p(x)dx represents the probability that x lies in the interval (x,x
+ dx). It is well known (6) that when p(x) also satisfies

fx

(x2)-= x p(x)dx =a2,
x0

[4]

the Gauss function maximizes [3] with normalization and [4].

If p(x) = (2iro)-Y"2 exp - ;(x2/), H = log o-(21re)"2. [5]

Let us now examine briefly the manner of appearance of the
entropy function in Shannon's communication theory.

THE ENTROPY FUNCTION IN
COMMUNICATION THEORY

Shannon's famous memoirs (4, 5) expanded and systematized
pioneering work of Hartley and Nyquist on quantification of
information transfer rate in communication devices by exploit-
ing Boltzmann's entropy function. If, after long experience with
message transfer through a communication channel incorpo-
rating a code that employs a set of N symbols identified by
j = 1, 2, .. ., N, it is found that the jth symbol appears with
probability pj, then the maximum information transfer rate
becomes

N

H= -c 2 pj log pa.
j=l

[6]

The constant c depends on the logarithm base and the rate at
which the device emits symbols. Generally, the maximum rate
is not quite achieved, but a code due to Huffman (6) yields a
rate that deviates by no more than one bit from the theoretical
bound. Unfortunately, that code is without redundancy so that
a single coding or noise error may turn the message beyond the
first error into nonsense.

Abbreviation: SR, Sears Roebuck and Company.
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The information transmission rate may also be estimated from
the continuum entropy function [3] when the message is prop-
agated as a continuous wave form. Let the transmitter have the
bandwidth W. Then the message wave form may be Fourier
analyzed as a linear combination ofWharmonics. Ifan ensemble
ofcontinuous messages is coded so that the Fourier coefficients
all have a Gauss distribution with a common dispersion, then
the information transmission rate is proportional to [3]. This
follows from assertion 5 concerning the Gauss distribution.

Noisy circuits carry less information. If P is the signal power
and N is that of interfering Gaussian noise, then, as Shannon
(5) showed, the information transfer rate is proportional to H
= Wlog[1 + (P/N)] = WP/N. The asymptotic form is valid
when N >> P, conforming to engineers' rule of thumb that
broad bandwidth circuits carry information at a higher rate and
that a simple way to overcome noise is to enhance the signal.

This identification of information transfer rates with the en-
tropy function makes one speculate whether the transport of
people or goods along transport routes might also enjoy such
a relationship. At high vehicle densities that tax road systems,
a system is effectively a collection of single lanes with little in-
terlane exchange. On this basis, let us survey the flow of in-
teracting carriers on a long single-lane road. We start with a
general discussion ofsystems ofinteracting individuals and then
specialize to the process of interest.
The Entropy Function in a Sociotechnical System Driven

by Personal Interactions. Personal interactions progress through
a succession of stimuli and responses. The level of group pro-
ductivity in the performance ofan assigned task is a compromise
between an orderly execution ofresponsibilities and a pervasive
disorder caused by factors such as misunderstanding, miscal-
culation, accident, grievance, and the human frailty of relaxing
into a state of negligence.
A feature of stimulus-response interactions that may lead to

instabilities and decline in productivity is the existence of time
lags between stimulus application and response execution. Typ-
ical lags have three components: perception time, decision-
making time, and time for response execution; their sum is the
total process time lag. Generally, the response may be char-
acterized by a parameter (say A), or several parameters that
measure the strength of the response force to the stimulus.
A continuously applied stimulus of fluctuating magnitude

and sign that excites a very strong response after a long time
lag may induce violent instabilities. In that case the stimulus
may have changed sign by the time the strong response occurs
so that the response aggravates rather than smooths fluctua-
tions. It has been observed in electrical and mechanical systems
that stability is best maintained by making small corrections
immediately as fluctuations occur. Management by negligence
followed by strong shock responses violates that style.
A stimulus-response process may be exhibited as a "graph"

of points, representing individuals, connected by lines, rep-
resenting their interaction. Fig. 1A represents a typical four-tier
organization in which crossing of lines is forbidden, direction
comes from above, and queries originating below are channeled
upward with no authority bypassing. Fig. 1B characterizes a line
of individuals who interact only with their neighbors. This very
simple graph is appropriate for a platoon of cars on a single-lane
highway. In the simplest systems of interacting individuals,
each has but one mode of response. More modes exist in more
complicated systems.

Our example of a single lane of traffic as an interactive so-
ciotechnical system fortunately corresponds to the simple graph
of Fig. 1B and requires the interacting individuals to have but
a single form of response, to accelerate or to decelerate. This
system was investigated (7-11) by exploiting experimental data

(a)

n+l n n-i (b)

FIG. 1. Two classes of stimulus-response interaction. ClassB cor-
responds to vehicular traffic in the single-lane no-passing mode.

derived from instrumented cars driven on the General Motors
test track, on city streets, and in tunnels.
An equation found to describe, with remarkable accuracy, the

behavior of a second car (represented by n + 1) following a
leader (represented by n) is

dvn+[(t+ A)/dt = ko Vnlt) Vn+l(t)] [7]

in which vQ(t) is the velocity ofcar n at time t, xj(t) is the location
of the front end of that car at time t, and A is the time lag be-
tween the stimulus provided by the lead car and the response
by the follower. In our basic car-following experiments the sec-
ond car was instrumented to record continuously in time the
numerator and the denominator of the term in the brackets (as
well as the ratio) and the acceleration of the second car. A and
AO were selected to make the left side ofthe equation best agree
with the right. Refs. 7-11 contain certain theoretical justifica-
tions of Eq. 7. For our purpose, it is sufficient to consider Eq.
7 to be an accurate empirical formula. The time lag A, which
varies from person to person, is about 1.5 sec.

Consider a platoon of identical cars, each interacting only
with its predecessor according to Eq. 7 where the index n iden-
tifies the nth car in the platoon; n = 1, 2, . .. with 1 being leader
of the platoon. One can further allow A and A0 to depend upon
n to derive results similar to those discussed below, but with
extra fluctuation terms.

High-density traffic stability is studied by approximating

X.(t) - x.+1(t) =d, [8]

where d is a constant, the average space available per car. Ifwe
set A = Add, then the resulting equation (8, 9) is:

dvn+l(t + A)/dt = A[Vn(t) - Vn+l(t)], n = 1, 2,. [9]
When a platoon leader executes an irregular pattern of accel-
eration and deceleration, the other cars respond. In stable
traffic, fluctuations propagating down the platoon become
damped; in an unstable situation, they become amplified so that
a rear-end collision results or traffic stops to prevent an acci-
dent. The irregular pattern of the lead car may be Fourier ana-
lyzed and the propagation of each Fourier component investi-
gated (7, 8). It can be shown that stabilization of all frequency
components in platoon motion requires that

AO A/d= AA< 1/2. [10]

Strong responses in a platoon with a long time lag induce insta-
bilities upon the violation of this inequality. An increase in the
spacing d is a stabilizing influence.

Values of A and A have been measured for numerous drivers
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(7, 9). The average of the observed product of A and A of those
drivers is very close to 1/2, implying that even freely flowing
traffic is on the verge of instability.

Having witnessed for years a diversity of activities generated
by interacting individuals, I conjecture that, were we able to
construct equations analogous to [7], derive stability conditions
similar to [10], and make the appropriate measurements of in-
teraction parameters, we would find that we ride close to the
crest of instability in numerous group activities.

Integration ofthe stimulus-response Eq. 7 yields an equation
of state for traffic, a relationship between vehicular flow rate
and density in single-lane traffic. First we integrate Eq. 7 be-
tween times t1 and t2 to obtain, for all n,

vn+1(t2 + A) -A0 log[xn(t2)-XnJU
= Vn+1(t1 + A) - A0 log[xn(tl) -xn+l(tl)] [11]

so that vn+l(t + A) - Ao log dn+1(t) = constant [12]

with dn+l(t) xn(t) -Xn+1(t) [13]

being the space available per car at the location between the
nth and (n + 1)th cars at time t. The constancy of [12] is a con-

sequence of the left-hand side of [11] being a function of only
t2 and the right-hand side, only of t1.
The traffic density at the location of car n, pn(t), is the recip-

rocal ofthe space available per car: pn = lI/dn = number ofcars
per unit length.

In a freely moving stable stream of traffic, vn(t + A) with
A = 1.5 sec is practically the same as Vn(t) and [12] becomes

vN(t) = -A0 log Pn(t)/P,. [14]

The local traffic flow rate (dropping the explicit dependence
upon time) is then

qn PnVn =-Aapc(Pn/Ad) log(p/pd). [15]

Notice that 0 < pjp,,
5 1 and that the dimensions of our vari-

ables might be cars per hr for q, cars per mile for p, and miles/
hr for v. By averaging over N cars in a line of traffic, the mean
flow rate becomes

q = AOPC(__ Z Elog P)n [16]

(N n=o PC PC)[6
The term in parentheses has the form ofthe Boltzmann entropy
function [1] without the normalization condition [2] if one sets

Pn pjpc Hence our model yields a traffic flow rate propor-
tional to the Boltzmann entropy function in a form analagous
to that found in Shannon's information transfer rate formula [6].

Let us now compare the expected flow rate in a line of traffic
of uniform density (all pn being equal) with one that includes
fluctuations in pn about a mean value p. For this purpose we

define Apn as the local fluctuation through

pn-p + Apn with Apn =0. [17]

Then, from Eqs. 16 and 17,

q = pAO log(pjp) PAO E 1+ P )log( 1 +Ap)
P P1

PON A.2
= pAO log(pjp) pA0 I [18b]

in the regime (ApJp)2 small. This flow rate formula shows cer-

tain features common to Shannon's information theory. For a

given set ofparameters AO, P,,, andpC, the throughput is maximal

when all drivers are synchronized with Pi = P2 = ... = p. Then
all Ap. vanish, leaving only the positive term in [18]. The close
packing density pc increases as car lengths decrease, thus in-
creasing the flow rate. This is the analogue of shortening symbol
lengths in communication channels. Finally, by increasing the
response sensitivity, A0, the throughput is increased. This is
done, however, at the expense of violating the stability condi-
tion [10]. If AO is increased to the instability level, traffic stops
with throughput vanishing. This is analogous to the employ-
ment of the Huffinan code in a system with noise, for then non-
sense appears in the decoding process. A more prudent re-
sponse to a trend toward instability would compensate for the
increase in AO. Finally, because it is unlikely for each driver to
respond in the same manner to an onset of instability, the var-
ious (Ap,)2 would increase, increasing the negative fluctuation
terms in [18].

In summary we note that, through years of driving experi-
ence, the public has inadvertently fallen into a pattern that re-
lates traffic flow rate directly to the entropy function. In
smoothly flowing traffic the-negative noise terms in 418] are
quite small as is evident from the excellent fit of the equation
of state q = pAo log(p/p,) to observational data (11, 12).

ENTROPY IN THE CATALOGUES OF
SEARS ROEBUCK AND COMPANY

A communication system is composed of a message input ele-
ment, a channel for message propagation, and a message output
element. A highway transportation system has an input provi-
sion for a traveler and a road providing the channel for travel
to an exit point. We have seen that the flow-through rate in each
ofthese systems may be related to an entropy function. Another
important sociotechnical system is the merchandising system.
Goods flow into the warehouse or distribution center of the
retailing firm, remain temporarily as an inventory, and finally
are carried out by or delivered to the customer. Hence, a com-
pany's profit depends upon the flow-through rate of goods and
the prices associated with the goods. This similarity between
merchandising and the previous two examples suggests that the
entropy function may appear in an analysis of that process.
A further consideration of this idea requires merchandising

data. By good fortune, the firm of Sears Roebuck and Company
(SR) has given us a rich legacy of information on this -subject in
its annual catalogues, which form a magnificent data base of
Americana of the past 80 years. The prices listed in the cata-
logues were generally right for their times and the items listed
reflect the public taste of the time. At first, through its mail-
order operation, the firm made available to the farm family
products normally found in cities of medium to large size; then
it tried to compete with city merchants for the urban trade. The
catalogues may be regarded as a merchandise model of a me-
dium-sized city, listing available goods at reasonable prices.

The preparation of the catalogues was a major concern of SR.
Basically, each page was audited to produce its share of the
profit. For example (14), in 1930 the goals set ranged from $5000
to $20,000 per page, depending upon the responsible mer-
chandising department. Since the profit that year (13) was
$14,300,000 and the catalogues ran 1000-1500 pages, the profit
per page averaged about $10,000. Expensive goods, beautifully
illustrated, often attracted attention to pages containing cheaper
bargain items. Many pages reserved a small space for the ten-
tative introduction of new products. If the public responded
favorably, the allocation increased the next year. As annual sales
of an item declined, its space allocation decreased: sometimes
it -even disappeared completely from the catalogue. Various
department heads, anxious for raises and promotions, were very

Economic Sciences: Montroll
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competitive in the production of pages that listed items that
were hoped to outsell those of their colleagues.

Although the SR catalogues have been woven into the lives
ofmillions, Herman and I (15) may have been the first to regard
the lists of prices as a statistician's delight, to be exploited as
a microcosm ofthe merchandising world. Motivated by reasons
expressed in ref. 15, we found the distribution function of
prices by year listed in many of the catalogues. Because prices
range from a few cents to hundreds of dollars, we "expanded"
the scale oflow-cost items and "contracted" that ofhigher priced
ones by recording the data as the logarithm of the price (to the
base 2), log2P. Of course, we were aware (as many before us
dating back to D. Bernoulli) that log P is psychologically a more
important variable than the price itselfbecause one is especially
sensitive to relative price changes, (AP)/P = A log P.

Examination of the price distribution from many catalogues
indicates that in a given catalogue the distribution of log2Pi (Pi
being the price of the ith item) is very close to the normal dis-
tribution [5]. Three examples are shown in Fig. 2. We also in-
vestigated the mean log2P and the dispersion of log2Pi. If N is
the number of prices sampled we define

' N

log P (log2P >-E log2P
t=l

1N{g2 -1 > (log2Pi - (log2P))2
Ni= 1

I I I I I I I
0.20 - 1916

0.16

0.12 F

0.08

0.04
- -4 I I 2 4 6
-6 -4 -2 0 2 4 6

w 0.20

.3 0.16

a 0.12
0

t 0.08

o0.04

[19]

[20]

The findings for these quantities for 18 years appear in Table
1.
The variation in (log2P) over the years reflects changes in cost

of living through the 20th century. Catalogue prices changed
in two manners: (i) by the change in price of an invariant item
such as a clothespin, a 1910 specimen being indistinguishable
from one of 1940, and (ii) by the change in the nature ofthe item
listed to reflect an evolving technology and a varying public
taste. The 1910 bicycle was quite different from a 1970 model.
The 1910 buggy whip had disappeared from the catalogue and
the CB transmitter was known only to science fiction writers
in 1925. Many interesting deductions follow from changes in
(log2P) (15), but it is upon the third column, Og p, of Table 1
that I wish to direct attention.

As one superficially scans successive catalogues, one is im-
pressed with the tremendous variety of articles available and
the steady change from year to year. We have been as much
impressed by the existence of an almost invariant statistical
quantity-an "economic constant of the motion"-for the mar-
keting operation. It is remarkable that for more than 75 years
the dispersion ologP (defined by Eq. 20) has hardly changed.
The average value of o7iogp is 2.26 with ((cr - &)2)1/2 = 0.17.
Table 1 shows the largest observed deviation of olo p from 2.26
to be 1.91, in the 1932-1933 winter catalogue, at the depth of
the Great Depression. That catalogue contained a statement to
the effect that, because of the high cost ofcatalogue production
and somewhat reduced demand for high-priced furniture, the
furniture listing is meager. A separate furniture catalogue was
available upon request. The combination ofthe regular 1932-1933
catalogue with the furniture catalogue would lead to a oriogp
value closer to 2.26.

Having observed the constantcy of o, we can construct a sim-
ple mathematical model to "explain" it. Let us suppose that, in
a given year, all prices are inflated (or deflated) by the same
factor, a. Then the transition experienced by the price of the
nth catalogue item in that year would be Pi -- a Pi so that the
transition of log2Pi would be log2Pi', log2Pi + log2a and the
difference [log2Pi - (log2P)] would remain invariant because

I I I I I I
- I 1924-25

,,I I I I I 1-
-6 -4 -2 0 2 4 6 8

-2 0 2 4 6 8 10

Distribution of prices, log2 P

FIG. 2. Histogram of distribution of prices in SR catalogues for
years 1916, 1924-1925, and 1974-1975. The fraction of items in each
price range in each catalogue is plotted as a function of log2P, P being
the price. (From ref. 17, by permission.)

the a-dependent contributions of each term cancel. On this
basis, alogP defined by Eq. 20 also remains invariant under the
constant-inflation-factor postulate.
The inflation model may be made more realistic by assuming

that the ith item has its own inflation factor ai expressed as an
average inflation factor plus a small correction Aa; ai = a +
Aai with (Aai) = 0. Then, to first order in (Aaia), log Pi in one
year is transformed in the next to

logaPi, log Pi + log a + (Aaja).
Hence, to first order,

N log Pi N log Pi + loga and

2 N
o12logP o21ogp + > (log2Pi - log2P)(Aa/a)

N=1

+!N
N f, &aa. [21]

In a year with a mean inflation rate of 10%, a = 1.1. A rea-
sonable range for Aa, might be -0.1 (Aaj < 0.1, yielding the
range -0.09 < Aa,/a < 0.09 so that typically (AaJa)2 - 0.01.
When the inflation rate is independent of the price of the item
the cross term offirst order in Aaja in [21] vanishes. However,
when the inflation rate for low-priced items is generally higher
than that for higher-priced ones (a common situation), the mid-
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Table 1. Standard deviation of log2P from mean (log&P) for
various years in the period 1900-1976
Year* log2P) alwp Year (log2!) alwp
1900 0.150 2.43 1939-40 0.627 2.62
1902 0.212 2.34 1946-47 0.532 2.15
1908 -0.228 2.29 1948-49 1.336 2.37
1916 -0.068 2.38 1951-52 1.785 2.34
1924-25 0.422 2.32 1962 2.403 2.24
1929-30 0.998 2.26 1972-73 3.030 2.27
1932-33 0.691 1.91 1973-74 3.322 2.05
1934-35 0.673 2.22 1974-75 3.870 2.12
1935-36 0.537 2.39 1975-76 4.060 2.03

a= 2.26; ((oa-)2)1/2 = 0.17.
* An entry identified by a single year corresponds to a "spring-summer"
catalogue; an entry identified by a number such as "1924-25" cor-
responds to a "winter" catalogue.

die term in [21] becomes negative and cancels the positive last
term. Without that influence, o- grows each year.
The constancy of o2 combined with the discussion at the end

of the section Entropy Function implies that the normal dis-
tribution of log Pi maximizes the entropy function associated
with that variable. Hence, in their marketing wisdom, Sears,
Rosenwald, their staff, and their successors, createdcatalogues
with goods priced so that year after year the price distribution
maximized the entropy function associated with log Pi.
The entropy function itself, defined by [3] for a log normal

distribution function, has the form
cm

H =-f [log P/P]2 p(logP/P)d logP/P

where p(x) is the normal distribution function defined by [5].
log P/P is similar to the utility function of classical economics,
originally used by Bernoulli in his analysis ofthe St. Petersburg
gambling paradox. Then H is the weighted average ofthe square
of the function resembling the utility function.
Many other quantitative conclusions may be drawn from SR

catalogues. One of interest to academics was especially noted
by Cohn (14). In 1905, guitars enjoyed as great a popularity as
they again did in the 1960s. Among the many styles available
that year was the college name group. Cohn wrote ". . . one
wonders whether the head of Sears' music department, when
he priced and named his guitars, was not at the same time pass-
ing judgment upon the merits of the universities according to
some secret or unconscious criteria of his own. Note the
valuations:

The Stanford ... $4.25
The Cambridge. . $8.95
The Cornell ... $11.35

The Princeton .. $13.75
The Yale ...... $16.95
The Harvard . . $21.45

The traditional catalogue competitor of SR was Montgomery
Ward & Co. It would be interesting to compare the price dis-
tributions in their catalogues with those of SR and to examine
the annual variations in dispersion in log Pi. Circa 1910, several
ofthe great department stores, including Macy's, Wanamaker's,
and Filene's, entered the catalogue marketing field in compe-
tition with SR but returned to their traditional marketing style
after only a few years. It has been observed (13) that, for given
classes of merchandise, SR stocked models that were cheaper
and others more expensive (a broader distribution) than those
listed in catalogues of the more traditional department stores.

COMMENT
Log-normal distributions have been recorded for annual per-
sonal incomes in the United States in the range 5th to 97th per-
centile (16) and for common stock prices listed on The New York
Stock Exchange (17). There is evidence that income distribu-
tions have dispersions that-vary but slightly over the years.

In conclusion, I refer to some champions ofthe entropy style.
Motivated by Shannon's work, Jaynes (18) coupled information
theory with statistical mechanics. His ideas have been elabo-
rated to the degree that a school identified as The Maximum
Entropy Formalism School has emerged. Their work is well
represented in the proceedings of a conference (19). Also, an
interest has developed in applying these entropy/information
ideas to economics and other social sciences. The book by Geor-
gescu-Roegen (20) is prominent in this direction, as are the pa-
pers by Wilson (21).
The style here deviates somewhat from that of most of the

cited authors. Rather than postulating an entropy principle, I
started with data whose analysis led to entropy-like expressions.

By this paper I recognize Philip Handler, on the occasion of his re-
tirement from the presidency of the National Academy of Sciences, for
perceiving the need to explore more deeply the nature of our socio-
technical systems. I thank Prof. R. Herman for many discussions on
traffic models and Sears Roebuck catalogues at the time the data that
forms the basis for this paper were collected, and Prof. H. Riess for
several interesting discussions on entropy models. This research was
partially supported by the Advanced Research Projects Agency, De-
partmentof Defense, under contract with the Materials Research Coun-
cil of the University of Michigan.
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