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Abstract A durum wheat consensus linkage map was
developed by combining segregation data from six map-
ping populations. All of the crosses were derived from
durum wheat cultivars, except for one accession of 7. ssp.
dicoccoides. The consensus map was composed of 1,898
loci arranged into 27 linkage groups covering all 14
chromosomes. The length of the integrated map and the
average marker distance were 3,058.6 and 1.6 cM,
respectively. The order of the loci was generally in
agreement with respect to the individual maps and with
previously published maps. When the consensus map was
aligned to the deletion bin map, 493 markers were assigned
to specific bins. Segregation distortion was found across
many durum wheat chromosomes, with a higher frequency
for the B genome. This high-density consensus map
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allowed the scanning of the genome for chromosomal
rearrangements occurring during the wheat evolution.
Translocations and inversions that were already known in
literature were confirmed, and new putative rearrangements
are proposed. The consensus map herein described pro-
vides a more complete coverage of the durum wheat gen-
ome compared with previously developed maps. It also
represents a step forward in durum wheat genomics and an
essential tool for further research and studies on evolution
of the wheat genome.

Introduction

Durum wheat [Triticum turgidum (L.) subsp. turgidum (L.)
convar. durum (Desf.)] is characterized by a large allote-
traploid genome (AABB genome, 2n = 4x = 28, seven
homoeologous groups—13,000 Mbp). Although durum
wheat accounts for about 10 % of the total wheat produc-
tion (World Grain Statistic, http://www.igc.org.uk), it is
particularly important for its end products, which are
mainly pasta, couscous and bulgur. Intense breeding
activities have been carried out over the past century to
improve the durum wheat varieties in terms of grain yield
and quality, disease resistance, and drought tolerance (De
Vita et al. 2007). Plant breeding is a long-term process and
molecular tools can be used to overcome difficulties and to
open the way for more rapid and efficient breeding strat-
egies (Gupta et al. 2008; Tester and Langridge 2010). The
phenotypic variation of many complex traits of agricultural
or evolutionary importance is influenced by quantitative
trait loci (QTL), their interactions, the environment, and
the interactions between the QTL and the environment.
Linkage mapping has been largely adopted in wheat to
identify genomic regions that are involved in the control of
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complex traits (Breseghello and Sorrells 2006; Kuchel
et al. 2007; Gupta et al. 2008), and many genetic maps of
durum wheat have been published (Blanco et al. 1998;
Nachit et al. 2001; Elouafi and Nachit 2004; Zhang et al.
2008; Peleg et al. 2008; Mantovani et al. 2008; Gadaleta
et al. 2009). The early maps were based on restriction
fragment length polymorphism (RFLP) markers (Blanco
et al. 1998), while later the polymerase chain reaction
(PCR)-based markers became dominant for genetic map
construction, e.g. amplified fragment length polymor-
phisms (AFLPs) (Nachit et al. 2001) and simple sequence
repeats (SSRs) (Peleg et al. 2008; Gadaleta et al. 2009).
More recently, single-nucleotide polymorphisms (SNPs)
have been included in durum wheat genetic maps (Zhang
et al. 2008; Trebbi et al. 2011). The availability of SSR
markers for durum wheat (Eujayl et al. 2002) and the
development of high-throughput systems such as diversity
array technology (DArT) (Jaccoud et al. 2001) have over-
come the difficulties of genotyping large panels of geno-
types with many loci. DArT technology in particular
provides a highly multiplexed platform, which allows for
rapid and cost-effective genome-wide genotyping (Wenzl
et al. 2004; Akbari et al. 2006).

The construction of integrated maps provides the
opportunity to increase the marker coverage with respect to
individual maps. Consensus maps have been developed in
many plant species: bread wheat (Somers et al. 2004),
barley (Wenzl et al. 2006), rye (Gustafson et al. 2009),
soybean (Hwang et al. 2009), red clover (Isobe et al. 2009),
and ryegrass (Studer et al. 2010). In Vitis Vinifera L.
(Vezzulli et al. 2008) and durum wheat (Trebbi et al.
2011), integrated maps have allowed new SNP markers to
be mapped (501 and 157, respectively). The importance of
the construction of consensus maps relies on the develop-
ment of genetic tools that provide an essential basis for
further genomic research.

Structural rearrangements revealed by colinearity failures
among homoeologs can be genetically characterized with
linkage maps. In wheat specific chromosome rearrange-
ments have been documented in the A, B, and D genomes,
e.g. the cyclic translocation involving chromosomes 4A, 5A,
and 7B (Blanco et al. 1998). An integrated genetic map with
high marker density can be useful to scan the whole genome
for different kinds of chromosomal rearrangements as
translocations, inversions, and duplications.

The main aim of the present study was to develop a
high-density durum wheat consensus map derived from the
integration of six individual maps, as a reference resource
for durum wheat scientists in molecular breeding programs,
as well as for comparative genomics within grass species.
Along with the consensus map, the assignment to deletion
bin map of many markers is herein reported. Regions with
segregation distortion were identified by combining data
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from the single populations. Finally, an extensive analysis
of multi-locus markers has allowed the identification of
numerous chromosomal rearrangements.

Materials and methods
Segregating populations and genetic maps

A total of six mapping populations, developed to serve
specific needs for qualitative and quantitative trait analysis,
were used to integrate nearly 2,000 unique loci into a single
consensus map: ‘Creso’ x ‘Pedroso’ [CP, 123 recombi-
nant inbred lines (RILs) Fg-Fy], ‘Ofanto’ x ‘Cappelli’
(OC, 161 RILs Fg-Fy), ‘Cirillo’ x ‘Neodur’ (CN, 178
RILs Fg-Fy), ‘Ciccio’ x ‘Svevo’ (CS, 120 RILs F;-Fg),
‘Latino’ x ‘Primadur’ (LP, 121 F,-F; families), and
‘Messapia’ x ‘MG4343° (MM, 65 RILs F;—Fg). All of
these genotypes are durum wheat varieties, except
MG4343, which is an accession of Triticum turgidum (L.)
sub-species dicoccoides.

The genetic map obtained from the MM population
represented the first map to be constructed in tetraploid
wheat (Blanco et al. 1998). This was achieved mainly with
RFLP markers, then the map was enriched with SSRs
(Blanco et al. 2004), and this version was used for the
development of the consensus map. The CP population was
used to study the genetic basis of durable leaf rust resis-
tance of the cultivar Creso (Marone et al. 2009) and then
implemented with additional 75 microsatellite markers
(Marone et al., personal communication). The map derived
from the OC population was developed to find chromo-
somal regions involved in the response to drought stress, as
these two cultivars have different water-use efficiencies
(Rizza et al. 2012). Furthermore, both CP and OC were
used to map genes coding for different lipoxygenase iso-
forms on chromosome 4B (Verlotta et al. 2010). The CN
map allowed the identification of a major and some minor
QTL that explain the resistance against soil-borne cereal
mosaic virus in the Neodur variety (Russo et al. 2011). As
the CN map was implemented after the beginning of the
work on consensus map, the dataset used in the present
study is smaller than the one used by Russo et al. (2011)
(290 vs. 426 markers). The CS map was developed for
genetic and physical mapping of new expressed sequence
tag (EST)-SSRs (Gadaleta et al. 2009), and it was then
enriched with DArT markers to identify loci that are
involved in seed protein content (Blanco et al. 2012).
Finally, the LP population was used to determine the
genetic basis of yellow pigment content and carotenoid
accumulation (Blanco et al. 2011).

The main features of the segregating populations and the
corresponding genetic maps are reported in Table 1,
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Table 1 Summary of the six mapping populations used to construct the consensus map of durum wheat

Parents Population ~ Markers Total Map Marker density ~ Reference
size - markers length (cM/marker)
SSR  EST-derived DArT Other (cM)
(SSR,STS) markers®

‘Creso’ x ‘Pedroso’ 123 191 44 340 - 575 2,221.3 3.8 Marone et al.
(2009)

‘Ofanto’ x ‘Cappelli’ 161 154 23 437 4 618 1,649.4 2.6 Verlotta et al.
(2010)

‘Cirillo’ x ‘Neodur’ 178 71 7 212 - 290 1,568.5 54 Russo et al.
(2011)

‘Ciccio’ x ‘Svevo’ 120 132 110 584 4 830 1,765.8 2.1 Gadaleta et al.
(2009)

‘Latino’ x ‘Primadur’ 121 96 22 322 - 440 1,066.2 2.4 Blanco et al.
(2011, 2012)

‘Messapia’ x ‘MG4343° 65 84 - - 356 440 2913.2 6.6 Blanco et al.

(2004)

# RFLP, TRAP, biochemical and morphological markers

whereas Online resource 1 reports the different sources of
markers used for the construction of the maps.

Construction of the consensus map

JoinMap 4.0 software (Van Ooijen and Voorips 2004) was
used to reproduce the six durum wheat genetic maps and to
generate the consensus map. The significance of deviations of
the observed allelic frequencies from the expected ratios (1:1
or 1:2:1) (P < 0.01) was tested using Chi-squared analysis.
The segregation data of each mapping population were first
analyzed chromosome by chromosome, using a minimum
logarithm of odds (LOD) score of 4 for grouping. The Kos-
ambi mapping function (Kosambi 1943) and the “fixed
order” of marker loci were used to reproduce linkage groups
that correspond to the single maps previously developed.
Subsequently, the linkage groups for each chromosome
derived from the six mapping populations were joined using
the “combine groups for map integration” function within
the JoinMap software. When necessary, markers were
removed from the analysis (i.e. markers with too much
missing data), and the order was recalculated, until a stable
and consistent order was obtained with respect to the single
genetic maps. For some markers on chromosome 7B the
order of consensus loci reproduced by the software was not
consistent with that observed in individual maps. In this case,
a fixed order was imposed based on data consistency in more
than one individual map. The centromeres were positioned
onto the consensus map at the midpoints between the most
proximal markers on the short and long arms, according to
common markers between this map and those of Roder et al.
(1998), Somers et al. (2004) and Gadaleta et al. (2009).

To validate the marker order of the consensus map,
genomic SSR, EST-SSR, and DArT markers were assigned
to specific deletion bins when possible, using the resources

available. The physical positions of genomic SSR and
EST-SSR markers were obtained by Francki et al. (2008)
and Gadaleta et al. (2009), whereas for DArT markers this
was determined by Francki et al. (2008) and by the deletion
bin maps available at http://www.cereals.uk.net. Figure 1
reports the physical map described by Gadaleta et al.
(2009) based on a set of 58 common wheat deletion lines
dividing the A and B genome chromosomes into 94 bins
(Endo and Gill 1996), in which physical mapping data
derived from different sources were integrated.

Once developed, the consensus map was compared with
the six individual maps and with the bread and durum
wheat maps available in the literature (Roder et al. 1998;
Somers et al. 2004; Francki et al. 2008; Gadaleta et al.
2009; Trebbi et al. 2011), in terms of marker order and
genetic marker distance.

Analysis of colinearity between homoeologous
chromosomes and structural rearrangements

Multi-locus markers were considered, and loci revealed by
the same marker were inspected to identify homoeologous
and paralogous loci. Chromosomal rearrangements were
analyzed by studying orthologous loci mapped on non-
homoeologous groups and by evaluating the information
available in the literature on the position of all markers
included in the putative translocated regions.

Results
Overview of the individual linkage maps

The six individual genetic maps differ according to the
types and the numbers of markers, the lengths, and the
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Fig. 1 The durum wheat consensus linkage map. The deletion bin map
as reported by Gadaleta et al. (2009) was aligned with the consensus
map and the colored lines show the genetic/physical relationships for
each marker. Straight lines connect markers to specific bins, charac-
terized by different colors. Dotted lines connect homoeologous loci that
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chromosomes indicate break points (color figure online)
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Fig. 1 continued

marker densities of the linkage groups; their main features
are summarized in Table 1.

The individual maps carried between 290 (CN) and 830
(CS) loci that are assembled into a number of linkage
groups, ranging from 19 (LP) to 37 (CS). The marker
density was from 2.1 cM/marker (CS) to 6.6 (MM) cM/

marker. The highest proportion of markers (24 %) was
positioned on chromosome 3B in CS, whereas the lowest
(1.3 %) was mapped on chromosome 5A in CN. Generally,
the homoeologous groups 3, 6, and 7 contained higher
percentages of loci in most of the analyzed populations. On
the contrary, the homoeologous groups 1 and 5 were
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Table 2 Density and

s . Chromosome  Markers Total Map length ~ Marker density
distribution of markers in the
- markers (cM) (cM/marker)
consensus map of durum wheat DArT  SSR  EST-derived  Other®
(SSR, STS)

1A 50 13 15 2 80 174.5 22

2A 61 44 12 10 127 286.5 2.3

3A 37 23 11 1 72 219.1 3.0

4A 105 27 8 14 154 147.2 0.9

S5A 16 34 10 23 83 200.9 24

6A 96 21 19 27 163 201.3 1.2

TA 80 22 9 - 111 283.2 2.5

Genome A 445 184 84 77 790 1,512.7 1.9

1B 84 45 17 27 173 220.4 1.2

2B 112 35 15 2 164 232.7 1.4

3B 229 24 8 - 261 254.1 0.9

4B 22 21 6 9 58 142.7 24

5B 48 12 2 - 62 2453 39

6B 119 25 16 16 176 185.4 1.0

7B 126 42 18 28 214 265.5 1.2

. . Genome B 740 204 82 82 1,108 1,545.9 1.4
% RFLP, TRAP, biochemical
and morphological markers Total 1,185 388 166 159 1,898 3,058.6 1.6
Table 3 Common mla rtlfers Common markers Markers Total common markers
across mapping populations between between populations
DArT PCR-based
Genome A Genome B Genome A Genome B

Two populations 102 171 77 70 420

Three populations 64 70 16 27 177

Four populations 12 15 12 12 51

Five populations - - 2 - 2

Total 178 256 107 109 650

characterized by a lower marker density. The percentages
of mapped markers were higher on the B than the A gen-
ome (A genome: 38-45 % vs. B genome: 55-62 %),
except for MM, where 55 % of the markers were mapped
on the A genome. The lengths of the resulting maps varied
between 1,066 cM (LP) and 2,913 ctM (MM). Gaps with
genetic distances greater than 20 cM were found in all of
these linkage maps.

Construction of the consensus map

The durum wheat consensus map is composed of 1,898 loci
(1,185 DArT, 388 genomic SSR, 166 EST-derived loci,
and 159 other markers, e.g. RFLP, TRAP, biochemical and
morphological loci) arranged into 27 linkage groups cov-
ering all 14 chromosomes (Table 2; see Online resource 2).
A total of 650 mapped markers (216 PCR-based and 434
DArT) were common among at least two of the mapping

populations (Table 3), while a total of 1,397 markers were
unique to a specific mapping population. The total length
of the integrated map was 3,058.6 cM. The mean length of
the 27 linkage groups was 218.4 cM, although the chro-
mosome size ranged from 142.7 cM (4B) to 286.5 cM (2A)
(Table 2). The number of markers for each chromosome
ranged from 58 (4B) to 261 (3B), with an average of 136.8.
The average marker distance per chromosome was between
0.9 cM (4A and 3B) and 3.9 cM (5B), with an average
density of one marker per 1.6 cM for the whole genome.
The approximate location of the centromere was iden-
tified (Fig. 1) based on the integration of bread and durum
wheat linkage (Roder et al. 1998; Somers et al. 2004;
Gadaleta et al. 2009) and physical maps (Francki et al.
2008; http://www.cerealsdb.uk.net). Most markers were
relatively evenly distributed along the chromosomes in
terms of their genetic distances, although some regions
were characterized by higher or lower marker densities
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(Fig. 1). The largest gap (that is a big genetic distance
between two adjacent markers of the same linkage group)
was 26.4 cM, between wPt-7185 (94.0 cM) and wPt-7201
(120.4 cM) on chromosome 5A of the consensus map.
Additional gaps (more than 20 cM) were present on
chromosomes 2A, 6A, 7A, 4B, and 5B. Some of the gaps of
the individual maps were also present in the consensus
map, whereas others were filled by integrating the infor-
mation derived from different populations. For example,
the 25 cM gap in CN on chromosome 4A (between wPt-
6330 and wPt-1262) is well covered by markers in the
consensus map.

The order of loci of the consensus map was in good
agreement with the corresponding orders of the individual
linkage maps. Some exceptions concerned changes that
occurred within a small interval (<10 cM). Considering the
relative marker distances, the largest discrepancy was
observed between markers Xwmc716 and Xbarc213 on
chromosome 1A, where the genetic distance was 30 cM in
the consensus, while it was only 7 ¢cM in CP.

The position of the loci mapped in this study was
compared with recently published maps of bread and
durum wheat. The ITMI map (Song et al. 2005) and the
consensus map developed by Somers et al. (2004), which
represent two well-saturated bread wheat maps, were
considered for SSRs, while the bread and durum wheat
maps described by Crossa et al. (2007), Peleg et al. (2008),
and Trebbi et al. (2011) were taken into account for
comparisons of both the SSR and DArT marker positions.
The genetic positions of most SSR and DATrT loci in the
durum wheat consensus map showed consistency with their
positions in the reference maps with few exceptions. In
some cases, differences in the relative distances between
two markers were found, although these were not consid-
ered as real discrepancies as they involved markers that
identified multiple loci, with paralogous loci mapped on
the same chromosome. As an example, the markers
Xgwm443 and Xgwm666 were positioned on chromosome
5A at a distance of about 120 cM by Somers et al. (2004)
and Song et al. (2005). Three loci were mapped in the
durum wheat consensus map for Xgwm443: the Xgwm443b
locus was located on chromosome 5B, while the
Xgwmd43a and Xgwm443c loci were located on chromo-
some 5A. Xgwm443a was 13.2 cM from Xgwm666, but
Xgwmd43c was positioned at 130.5 cM according to the
bread wheat consensus map.

The marker order is in agreement with the maps pub-
lished by Somers et al. (2004), Song et al. (2005) and
Trebbi et al. (2011) for ten chromosomes (1B, 2A, 3A, 3B,
4A, 4B, 5A, 5B, 6A, and 7A), while some inconsistencies
were seen for the remaining chromosomes.

A distance of about 40 cM was reported between the
markers Xgwm497 and Xgwm99 by Somers et al. (2004)

@ Springer

and Song et al. (2005) on the long arm of chromosome 1A,
while the two markers were co-segregating on our con-
sensus map. Nevertheless, the positions of these two
markers in two individual maps (CS, 3 cM, and LP, 1 cM)
supported the distances found in the consensus map, which
was also confirmed by the durum wheat map reported by
Elouafi and Nachit (2004), where the two markers were
positioned 6 cM apart.

On the long arm of chromosome 1A, a group of DArT
markers (which contained wPt-6754 and wPt-8644) were
positioned more than 40 cM distal from the marker
Xwmc716 by Trebbi et al. (2011), while in our consensus
map, the marker Xwmc716 was 13 cM distal from the same
group of DArT markers. Even if this region was contrib-
uted only by the CP individual map, the distances in our
consensus map for the markers Xwmc716 and wPt-8644
agree with findings reported by Peleg et al. (2008).

On chromosome 2B, an inconsistency was found for the
region between markers Xwmcl49 and wPt-6643, which
were localized in the telomeric region of the long arm by
Trebbi et al. (2011), and in the pericentromeric region in
our map. However, the detailed analysis of genetic marker
distances within this interval in the individual maps vali-
dated the orientation reported here.

Another discrepancy in the order of the loci was
observed between our durum wheat consensus map and
previous reports for chromosome 6B for DArT markers.
The marker wPt-7935 was mapped near the centromere, at
<2 cM from the marker XgwmlI93, whereas Trebbi et al.
(2011) mapped the two markers at a distance of 60 cM;
however, the two markers were placed 2 cM apart by Peleg
et al. (2008). Finally, the marker wPt-0530 co-segregated
with Xgwm344 in the map of Trebbi et al. (2011) on the
long arm of chromosome 7B, while a distance of 20 cM
was found between the two markers in our consensus map,
and a similar distance (13 cM) was reported by Crossa
et al. (2007).

Comparison of marker positions between the consensus
and deletion bin maps

Four hundred and ninety-three markers (25.9 %; 256
DArTs, 153 gSSRs, and 83 EST-derived markers) were
assigned to specific bins of the wheat deletion bin map
(Fig. 1). Sixty-six of the 94 bins were covered by at least
one marker, and the number of markers per bin ranged
from 1 to 47, with a mean of 7.5. Except for the short arm
of chromosome 4A, represented by only one molecular
marker, the bin coverage with genetically mapped molec-
ular markers was relatively good. For instance, all of the
bins of chromosome 2B were covered by markers geneti-
cally mapped in the consensus map. These findings allowed
anchoring between the consensus and physical maps of the
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durum wheat genome. A few discrepancies were noted. A
group of nine DArTs (wPt-4533, wPt-4197, wPt-5647,
wPt-0102, wPt-3611, wPt-0277, wPt-7626, wPt-9624, and
wPt-5839) were genetically mapped on a region of chro-
mosome 2AS between markers physically positioned in the
pericentromeric region in the consensus map, while they
were previously located to the short arm of the same
chromosome (http://www.cerealsdb.uk.net). The marker
wPt-3566, which was mapped to the centromeric region of
chromosome 1B by Francki et al. (2008), was instead
positioned on the long arm in the consensus map. On the
same chromosome, based on the physical positions of the
surrounding markers, the marker Xbarc8 was assigned to
the bin 1BS2-1.06, while it was physically mapped to the
bin 1BS10-0.00-0.50 by Gadaleta et al. (2009). In all of
these examples, the map positions in the consensus map for
these markers were in agreement with those reported by
Trebbi et al. (2011).

The physical positions on chromosome 3A of DArTs
wPt-5084, wPt-4859, wPt-1562, and wPt-2659, which were
previously mapped to the bin 3AL5-0.78-1.00 (http://www.
cerealsdb.uk.net), corresponded to the centromeric region
in the consensus map. In this case, the genetic positions of
these markers were supported by very good agreement
between the CP and OC individual maps.

On chromosome 5SA of the consensus map, the markers
Xgwml86, Xbarcl65, and Xbarc100 were on the long arm
instead of the centromere, as described by Francki et al.
(2008). Nevertheless, two loci were physically mapped by
Sourdille et al. (2004) for the marker XgwmlI86, in the
centromeric region and the long arm, while the marker
Xbarcl00 was assigned to SAL in the same study.

The marker Xbarc3, which was previously physically
positioned in the bin 6AS1-0.35-1.00 (Francki et al. 2008),
was genetically mapped in the pericentromeric region on
6AS in the consensus map, as according to Somers et al.
(2004) and Goyal et al. (2005). Similarly, the marker
CA668788b that was previously positioned in the peri-
centromeric region of chromosome 7AS (Gadaleta et al.
2009) was mapped on chromosome 7AL in the consensus
map. This was supported by the genetic position of the
marker, which was highly consistent in two individual
maps (OC and CS).

Finally, Xwmc479 was previously mapped in the bin
7AS1-0.89 (Gadaleta et al. 2009), while in the consensus
map its position is between Xgwm471 and Xgwm60, and it
is physically mapped in the 7AS5-0.59 bin (Francki et al.
2008; Xue et al. 2008). This genetic position is as
according to Somers et al. (2004) and Xue et al. (2008).

Of note, some genetically close markers were instead
located physically in distant bins. For example, Xgwm5 and
Xwmc527b were at a distance of only 2.3 ¢cM on chromo-
some 3A, but they were physically mapped on the bins

3AS4-0.45-1.00 and 3AL3-0.00-0.42, respectively. Similar
data were shown for this region by Somers et al. (2004).
Analogous cases were observed on chromosome 4B for the
markers CA663888 and Xgwml65, at a distance of only
0.3 cM, but mapped physically in the bins 4BS4-0.00-0.37
and 4BL5-0.86-1.00, respectively, and on chromosome 6A,
where the co-mapping markers wPt-0357 and BJ261821
were instead mapped physically on the short and the long
arms, respectively.

Segregation distortion

The percentage of skewed markers (P < 0.01) was differ-
ent across the populations, varying from 0.6 to 11.8 % for
CS and OC, respectively. Both co-dominant (SSR, STS,
RFLP) and dominant (DArT) markers were subjected to
deviation from the expected Mendelian 1:1 and 1:2:1
ratios. The distribution of the markers with segregation
distortion was not uniform across chromosomes. Chromo-
somes 7B (OC) and 6B (LP) had 26 and 20 skewed
markers, respectively, positioned in regions spanning less
than 40 cM, and these were the chromosomes with the
highest proportion of skewed markers. Chromosome 1A
was the least affected by segregation distortion in all of the
individual maps. Moreover, clusters of markers with
skewed segregation were identified in all of the individual
maps (data not reported).

A total of 149 markers (7.8 %) showed distorted seg-
regation (P < 0.01) on the consensus map (Fig. 1). A
similar ratio of skewed markers was found for DArT and
SSR markers (7.3 and 7.9 %, respectively). Markers with
segregation distortion were spread across all of the durum
wheat chromosomes. Nevertheless, a statistically signifi-
cant difference (P = 0.0032) was seen between the A and
B genomes for the number of skewed markers: 120
markers on B and 29 on A (Fig. 1). The percentages with
respect to the total number of markers positioned on each
genome were 10.7 and 3.7 %, respectively. Considering all
of the pairs of homoeologous chromosomes, the number of
skewed markers was higher for those belonging to the B
genome. The difference between homoeologs was low for
groups 3 and 5, but generally high for the other pairs, e.g.
on chromosome 1 there were two skewed markers (0.2 %)
on 1A, compared with 30 skewed markers (17 %) on 1B.

Also in the consensus map skewed markers defined
particular chromosome regions with distorted segregation,
which therefore putatively contain loci involved in this
phenomenon. In some cases, the skewed markers were
spread over large chromosome regions, as seen for chro-
mosomes 1A, 2A, 3A, 3B, and 7B. Single skewed regions
were identified on chromosomes 4BS (pericentromeric
region), 2BL and 5BL (telomeric region), while two
regions were identified on chromosomes 1B (close to the
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centromere and close to the telomere of the long arm), and
6B (on the short arm and in the pericentromeric region).
Finally, chromosome 7B showed a high number of skewed
markers that were clustered in three regions all along the
chromosome.

The clusters of skewed markers derived specifically from
a single population, except for one region on chromosome
1B (from 44.3 to 100.1 cM), found to carry skewed markers
in both MM and CP (see Online resource 3).

Analysis of colinearity between homoeologous
chromosomes and structural rearrangements

Multi-locus markers were mapped in the present study,
which we define as markers based on the same primer pair
or clone that identified more than one locus.

A total of 214 loci were produced by 94 multi-locus
markers, and out of these, 82 (56 SSRs, 20 DArTs and 6
RFLPs) were mapped on homoeologous chromosomes,
whereas 132 (105 SSRs, 18 DArTs, 6 RFLPs, and 3 TRAPS)
were assigned to intra-chromosome or non-homoeologous
inter-chromosome positions (see Online resource 4). The
colinearity between chromosomes within homoeologous
groups was well conserved, as shown in Fig. 1, except for
some markers. Six markers (4 EST-SSRs and 2 SSRs) that
mapped to homoeologous sites were identified for homo-
eologous group 1. The same order and genetic positions
characterized all of the loci, with the exception of Xgwm403,
which showed a locus on the short arm of chromosome 1A
and another one on the long arm of chromosome 1B.

Fourteen homoeologous loci (10 SSRs and 4 DArTs)
were identified for group 2. Their order was highly con-
sistent, although three markers (Xbcd348, Xwmc382, and
Xgwm71) were mapped on the pericentromeric region of
the short arm of chromosome 2A and on the telomeric
region of the short arm of chromosome 2B. Furthermore,
two DArT markers (wPt-7765 and tPt-6105) were located
on the telomere of chromosome 2AL and on the centro-
meric area of chromosome 2BL.

A comparable number of homoeologous loci was found
for group 3 (8 SSRs and 4 DArTs). There was consistent
order and genetic positions of the markers along the
chromosomes, except for the loci tPt-7209, wPt-5943, and
Xgwm751, which mapped near to the centromere on
chromosome 3AL and on the long arm of chromosome 3B.
Only two homoeologous loci were mapped on both groups
4 and 5. While for group 5 the genetic position of the loci
Xgwm443 on chromosomes 5SAS and 5BS showed perfect
correspondence, Xwmc617 was mapped in the pericentro-
meric region on chromosome 4AL and on the short arm of
chromosome 4B. The same results were reported by Roder
et al. (1998) for the marker Xgwml65, positioned on
chromosomes 4AS and 4AL.
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Fig. 2 Genetic mapping of putative translocations in durum wheat.p
For each translocation the chromosome pair is reported with the
molecular markers that identified non-homoeologous loci (bold
characters). Markers positioned on one chromosome in the durum
consensus map are in normal characters, for which additional loci on
the other chromosome are reported in literature

Nine markers (5 SSRs, 3 RFLPs, and 1 DArT) detected
homoeologous loci on both chromosomes of group 6. The
correspondence in terms of genetic position and marker
order was good, except for Xpsr312, the loci of which were
positioned around the centromere on chromosome 6AL and
on the short arm of chromosome 6B, Xgwml32, which
mapped on the long arm of chromosome 6A and on the
short arm of chromosome 6B, and Xwmc398, for which two
loci on chromosomes 6AS and 6BL were found. Finally, 22
homoeologous loci (12 SSRs and 10 DArTs) were identi-
fied on chromosomes 7A and 7B, showing colinearity
between the chromosomes.

Different chromosomal rearrangements have occurred
during wheat evolution, such as duplications, inversions,
and translocations. The construction of the consensus map
reported in the present study with high number of markers
and marker density allowed the wheat genome to be
scanned for identification of such rearrangements. Groups
of multi-locus markers that had loci mapped on non-ho-
moeologous positions were considered to be involved in
putative translocations. Then the markers included in these
regions were evaluated in terms of their genetic positions
reported in the literature (Fig. 2).

The markers wPt-7491 and Xgwmd834 identified loci on
chromosome 7AS and on the long arm of chromosome 4A,
instead of chromosome 7B, as shown in Fig. 2a. Further-
more, Xbarc70, which mapped in the same region of chro-
mosome 7AS, showed an additional locus on chromosome
4AL in OC (data not shown). Three additional markers (wPt-
3648, wPt-3135, and Xgwm471), for which a single locus on
chromosome 7AS was identified in the consensus map, were
previously located on chromosome 4A (Song et al. 2005;
Francki et al. 2008; Jing et al. 2009). Taken together, these
data suggest that a translocation event took place between
homoelogous groups 4 and 7. In addition, two markers
(Xgwm274 and Xwmc232) located on the putative translo-
cated region of chromosome 4AL were previously mapped
on chromosome 7B in bread wheat (Somers et al. 2004,
Semagn et al. 2006; Xue et al. 2008), which suggests that a
segment of chromosome 7B moved to chromosome 4A.

The terminal portion of the long arm of chromosome SA
carries the locus Xgwmo6b, which corresponds to the locus
Xgwmo6a on the long arm of chromosome 4B (Fig. 2b). The
marker Xdupw43 was positioned in the same region of
chromosome 5A, while it was previously mapped on chro-
mosome 4B in hexaploid wheat by Semagn et al. (2006).
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DArT marker wPt-8920 revealed two loci located on the
long arm of chromosome 5B and on the short arm of
chromosome 7B (Fig. 2¢). In the same 7B region, there are
two SSRs (Xgwm537 and Xwmc405) that were previously
mapped on chromosome 5B in the durum X ssp. dic-
occoides map Omrabi/600545//Omrabi (Xgwm537) (Elou-
afi and Nachit 2004) and in bread and durum wheat maps
(Xwmc405) (Somers et al. 2004; Mantovani et al. 2008).

A putative translocation that occurred between chromo-
somes 3B and 7B is also shown in the present study (Fig. 2d).
Three loci that correspond to the EST-SSR marker BJ213673
were mapped on the long arm of chromosome 7B and on the
short arm of chromosomes 3A and 6B. Nevertheless, the
same region of chromosome 7B carries three markers
(Xgwml 12, Xwmc540, and Xcfd6) that have already been
shown to map on the corresponding region of chromosome
3B by Roder et al. (1998) and Somers et al. (2004), which
suggests the occurrence of a T3B-7B translocation event.

Based on the same criteria adopted for previously
described rearrangements, three more regions were iden-
tified that were characterized by a non-homoeologous
relationship, even if two of them were based on only one
marker. The segment of the short arm of chromosome 5B
that contains the marker XwmcI49 corresponds to the distal
region on the long arm of chromosome 2B (Fig. 2e). The
loci Xgwml191 and Xwmc363 were also mapped in this
region; they were previously positioned on chromosome
5B in hexaploid wheat (Roder et al. 1998; Somers et al.
2004; Song et al. 2005), which suggests that this chromo-
some region was affected by a translocation.

The regions on chromosomes 1A and 6A reported in
Fig. 2f, were collinear for the markers wPt-9474, wPt-2632,
and wPr-8773. The possibility that a rearrangement involved
these chromosome segments is further supported by the
marker Swes953, which is located near the locus wPt-9474b
on the long arm of chromosome 6A, and was previously
mapped in wheat on chromosome 1B (Li et al. 2007).

Finally, two paralogous loci for the marker Xgwm786 were
mapped on chromosomes 5A and 6A (Fig. 2g). The short
segment of chromosome 5A also includes Xwmc150, for which
Somers et al. (2004) identified two loci on chromosomes 5A
and 6A, in agreement with our results. A translocation T6B-5A
can be hypothesized, as this region on chromosome 5A carries
the locus Xbarc180, which was previously mapped on chro-
mosome 6B in bread wheat (Song et al. 2005).

Discussion
Features of the durum wheat consensus map

The consensus map developed in the present study presents
a much higher average density than that observed across
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the six individual maps. Values ranging from 11.8 cM/
marker (Nachit et al. 2001) to 5.7 cM/marker (Mantovani
et al. 2008) have been reported for published durum wheat
individual linkage maps. Two consensus maps were pre-
viously developed for bread wheat by Somers et al. (2004)
and Crossa et al. (2007). They mapped 1,235 and 1,644
markers, respectively, on the A, B, and D genomes. With
respect to these maps, the durum consensus map herein
described represents a large improvement. Due to the
presence of regions which lack the statistical support for
linking linkage groups belonging to the same chromosome,
it was not possible to connect all the groups in a number
corresponding to 14 chromosomes. The same feature
characterized the map published by Trebbi et al. (2011). It
is a durum wheat integrated map that they developed by
merging two individual datasets. Even if the lengths of the
two consensus maps were very similar, the consensus
developed in the present study still has a greater number of
markers (1,898 vs. 1,479), with better marker density (1.6
vs. 2.0 cM/marker). This is probably due to the integration
of six individual maps that were derived from genotypes
more genetically distant (11 durum wheat cultivars and one
ssp. dicoccoides).

The high number of common markers, as well as the
small differences in the recombination frequencies of the
common markers across the different populations, can
allow to position markers on a highly reliable reference
map also in those regions that were poorly covered in the
individual maps. Nevertheless, some regions with insuffi-
cient marker coverage (>20 cM) are still present in the
consensus, which indicates a lack of polymorphism
between specific parental pairs, due to recent co-ancestry,
as suggested by pedigree data (data not shown). Alterna-
tively, this can be due to the domestication bottle neck or a
locally altered genetic versus physical distance ratio.

Segregation distortion

In the present study, a similar proportion of skewed
markers was found for DArT and SSR markers, according
to Akbari et al. (2006), Peleg et al. (2008) and Mantovani
et al. (2008). The major occurrence of skewed markers on
the B genome as compared with the A genome is a com-
mon feature for durum wheat linkage maps (Peleg et al.
2008; Mantovani et al. 2008). An opposite behavior was
seen for the bread wheat map reported by Semagn et al.
(2006), in which the chromosomes of the A genome always
had many more skewed markers than the B counterpart,
except for group 6.

As markers with distorted segregation were clustered
into specific regions, and as the same regions were iden-
tified in different backgrounds, this indicates that this
phenomenon is linked to genetic factors and is unlikely to
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be due to genotyping or scoring errors. Distorted segrega-
tion can be explained by reduced fitness of gametes and
zygotes that is determined by loci with lethal or sub-lethal
effects linked to molecular markers (Foolad et al. 1995;
Blanco et al. 1998). In our study based on RIL populations,
the gametophytic selection probably has a limited role in
segregation distortion, compared with other studies based
on double haploid populations (Cadalen et al. 1997). Fur-
thermore, chromosomal rearrangements can also explain
segregation distortion (Faure et al. 1993). Indeed, the
region on chromosome 7BS putatively involved in the
translocation described in the present study contained
skewed markers (Fig. 1). Nearly half of the regions that
included skewed markers in this consensus map were
located around centromeres, which are regions that gen-
erally show reduced recombination (Faris et al. 2000),
according to most of the aforementioned studies. Knowing
the positions of the skewed regions is very important in
plant breeding, as they can affect the association marker-
QTL and the obtaining of the desired recombinants.

Analysis of colinearity between homoeologous
chromosomes and structural rearrangements

Several of the 21 chromosomes of hexaploid wheat contain
translocations of considerable sizes (Gale 1990), and the
evolutionary evidence for translocations that have involved
chromosome arms 4AL, SAL, and 7BS has been firmly
established (Chao et al. 1989; Naranjo 1990; Liu et al.
1992; Chen and Gustafson 1994, 1997; Blanco et al. 1998;
Devos et al. 1995; Mickelson-Young et al. 1995; Nelson
et al. 1995; Quarrie et al. 2005). This important cyclic
translocation (4AL-5AL-7BS), evident also in our con-
sensus map, has become an evolutionary signature of
polyploidy wheat, which has conferred an adaptive
advantage during the course of evolution (Devos et al.
1995). Possibly at the diploid level, chromosomes 4AL and
SAL exchanged terminal segments. Then, in tetraploid
wheat, the distal portion of the chromosome 5A segment on
chromosome 4AL was exchanged with a terminal segment
from chromosome 7BS. Similar rearrangements have been
documented in other grass genomes, such as rye, which has
a translocation that corresponds to T4A—5A in wheat (King
et al. 1994).

Furthermore, a pericentric inversion within chromosome
4A has also been reported in the literature (Miftahudin
et al. 2004). Our results confirm this inversion (marker
Xwmc617—Fig. 1) and suggest other inversions for the
homoeologous groups 1 and 2 (markers Xgwm403 on group
1 and Xwmc51 on group 2—Fig. 1).

Moreover, the markers Xwmc51 and Xgwm?71 show an
additional locus on the same chromosome 2A, which
suggests that a duplication of the region that comprises

these markers has occurred during the evolution of the
wheat genome. The presence of two distinct loci for the
marker Xgwm71 was confirmed by Roder et al. (1998) and
Somers et al. (2004).

The other translocation, identified with the consensus
map, on the long arm of chromosome 7B (Fig. 2d) could
correspond to the translocation T3B:7B described for
T. dicoccoides by Badaeva et al. (2007). As the rear-
rangements reported by these authors were cytogenetically
identified, the translocation identified in the present study
represents the description of a translocation T3B-7B with
the molecular markers genetically mapped.

Three putative translocations are herein suggested that
have never been described before, for chromosomes 2B—
5A, 1B-6A, 5A-6B (Fig. 2). Out of seven translocation
events proposed in the present study, five are inter-geno-
mic, which suggests that recombination between homo-
eologous chromosomes might be common in polyploids
following interspecific wheat hybridization (Wendel and
Wessier 2000). Transposable elements might represent one
of the mechanisms that form the basis of intergenomic
rearrangements. Indeed, the union of two genomes into a
single nucleus can be perceived as the introduction of
‘foreign DNA’ and can induce the activation of transpos-
able elements during polyploidization, as has been shown
in cotton and wheat (Wendel and Wessier 2000; Chantret
et al. 2005). Interestingly, the markers wPt-5964 and wPt-
7214 that are positioned within and near to a region on
chromosome 7A that is involved in a translocation, corre-
spond to sequences that code for retrotransposons (data not
shown).

It is reasonable to expect that the ongoing wheat
sequencing projects (http://www.wheatgenome.org) will
reveal the evolution of the chromosome structure and the
distributions and physical locations of additional break-
points and rearrangements within all of the chromosomes
of both hexaploid and tetraploid wheat, as revealed by a
recent analysis of the gene content in chromosome 5A
(Vitulo et al. 2011).

The consensus map as a tool for advanced genetic
studies in durum wheat

Consensus maps can be used to perform meta-QTL anal-
ysis (Haberle et al. 2009; Loffler et al. 2009), to combine
genetic marker data and QTL characteristics (location,
confidence interval, effects, and traits used for QTL
detection) on a single map, as obtained from independent
QTL mapping. This kind of study allows the optimal set of
distinct consensus QTL (meta-QTL) to finally be esti-
mated. Danan et al. (2011) clustered 144 QTL into 24
meta-QTL using a consensus map of potato that comprised
2,141 markers.
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A limitation of QTL studies performed on individual
biparental populations is often seen in the low number of
molecular markers present in the region in which the QTL
is identified. The projection onto high-density integrated
maps of information derived from single population studies
allows the QTL region to be enriched with many more
molecular markers with respect to single populations. This
thus represents an important advantage for fine QTL
analysis, map-based gene cloning, transfer of QTL among
different genetic backgrounds, and comparative studies
between different genomes.

Linkage disequilibrium-based QTL analyses have been
carried out for many agronomic traits related to grain yield
and disease resistance in both common wheat (Crossa et al.
2007; Neumann et al. 2010) and durum wheat (Maccaferri
et al. 2010). High-coverage integrated maps can have a
positive effect on association mapping studies (Neumann
et al. 2010; Trebbi et al. 2011). If unmapped markers have
been used to genotype plants for association mapping, they
can be tentatively ordered using the information provided
by consensus maps. With more than 1,100 mapped DArT
markers, the consensus map developed in the present study
represents a valuable tool for association mapping of QTL
on populations characterized with this high-throughput and
cost-effective genotyping system.

The consensus map herein presented contains mapping
data regarding 167 PCR-based molecular markers and 182
DArT markers for which the clone sequence is available
(http://www.triticarte.com.au) and for which a match was
found in the public databases using BLASTN and BLASTX
searches (AM Mastrangelo, personal communication).
Overall, a total of 349 markers related to expressed sequences
were mapped in the present study, thus adding a functional
value to the consensus map. The presence on a genetic map
of markers derived from expressed sequences helps to asso-
ciate candidate genes with identified QTL. Expressed-
sequence-based molecular markers are also essential for
colinearity studies among genomes, thus taking advantage of
the available sequenced plant genome information, for faster
fine mapping of QTL in species like wheat, for which the
sequenced genome has not been released yet.
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