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Abstract A durum wheat consensus linkage map was

developed by combining segregation data from six map-

ping populations. All of the crosses were derived from

durum wheat cultivars, except for one accession of T. ssp.

dicoccoides. The consensus map was composed of 1,898

loci arranged into 27 linkage groups covering all 14

chromosomes. The length of the integrated map and the

average marker distance were 3,058.6 and 1.6 cM,

respectively. The order of the loci was generally in

agreement with respect to the individual maps and with

previously published maps. When the consensus map was

aligned to the deletion bin map, 493 markers were assigned

to specific bins. Segregation distortion was found across

many durum wheat chromosomes, with a higher frequency

for the B genome. This high-density consensus map

allowed the scanning of the genome for chromosomal

rearrangements occurring during the wheat evolution.

Translocations and inversions that were already known in

literature were confirmed, and new putative rearrangements

are proposed. The consensus map herein described pro-

vides a more complete coverage of the durum wheat gen-

ome compared with previously developed maps. It also

represents a step forward in durum wheat genomics and an

essential tool for further research and studies on evolution

of the wheat genome.

Introduction

Durum wheat [Triticum turgidum (L.) subsp. turgidum (L.)

convar. durum (Desf.)] is characterized by a large allote-

traploid genome (AABB genome, 2n = 4x = 28, seven

homoeologous groups—13,000 Mbp). Although durum

wheat accounts for about 10 % of the total wheat produc-

tion (World Grain Statistic, http://www.igc.org.uk), it is

particularly important for its end products, which are

mainly pasta, couscous and bulgur. Intense breeding

activities have been carried out over the past century to

improve the durum wheat varieties in terms of grain yield

and quality, disease resistance, and drought tolerance (De

Vita et al. 2007). Plant breeding is a long-term process and

molecular tools can be used to overcome difficulties and to

open the way for more rapid and efficient breeding strat-

egies (Gupta et al. 2008; Tester and Langridge 2010). The

phenotypic variation of many complex traits of agricultural

or evolutionary importance is influenced by quantitative

trait loci (QTL), their interactions, the environment, and

the interactions between the QTL and the environment.

Linkage mapping has been largely adopted in wheat to

identify genomic regions that are involved in the control of
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complex traits (Breseghello and Sorrells 2006; Kuchel

et al. 2007; Gupta et al. 2008), and many genetic maps of

durum wheat have been published (Blanco et al. 1998;

Nachit et al. 2001; Elouafi and Nachit 2004; Zhang et al.

2008; Peleg et al. 2008; Mantovani et al. 2008; Gadaleta

et al. 2009). The early maps were based on restriction

fragment length polymorphism (RFLP) markers (Blanco

et al. 1998), while later the polymerase chain reaction

(PCR)-based markers became dominant for genetic map

construction, e.g. amplified fragment length polymor-

phisms (AFLPs) (Nachit et al. 2001) and simple sequence

repeats (SSRs) (Peleg et al. 2008; Gadaleta et al. 2009).

More recently, single-nucleotide polymorphisms (SNPs)

have been included in durum wheat genetic maps (Zhang

et al. 2008; Trebbi et al. 2011). The availability of SSR

markers for durum wheat (Eujayl et al. 2002) and the

development of high-throughput systems such as diversity

array technology (DArT) (Jaccoud et al. 2001) have over-

come the difficulties of genotyping large panels of geno-

types with many loci. DArT technology in particular

provides a highly multiplexed platform, which allows for

rapid and cost-effective genome-wide genotyping (Wenzl

et al. 2004; Akbari et al. 2006).

The construction of integrated maps provides the

opportunity to increase the marker coverage with respect to

individual maps. Consensus maps have been developed in

many plant species: bread wheat (Somers et al. 2004),

barley (Wenzl et al. 2006), rye (Gustafson et al. 2009),

soybean (Hwang et al. 2009), red clover (Isobe et al. 2009),

and ryegrass (Studer et al. 2010). In Vitis Vinifera L.

(Vezzulli et al. 2008) and durum wheat (Trebbi et al.

2011), integrated maps have allowed new SNP markers to

be mapped (501 and 157, respectively). The importance of

the construction of consensus maps relies on the develop-

ment of genetic tools that provide an essential basis for

further genomic research.

Structural rearrangements revealed by colinearity failures

among homoeologs can be genetically characterized with

linkage maps. In wheat specific chromosome rearrange-

ments have been documented in the A, B, and D genomes,

e.g. the cyclic translocation involving chromosomes 4A, 5A,

and 7B (Blanco et al. 1998). An integrated genetic map with

high marker density can be useful to scan the whole genome

for different kinds of chromosomal rearrangements as

translocations, inversions, and duplications.

The main aim of the present study was to develop a

high-density durum wheat consensus map derived from the

integration of six individual maps, as a reference resource

for durum wheat scientists in molecular breeding programs,

as well as for comparative genomics within grass species.

Along with the consensus map, the assignment to deletion

bin map of many markers is herein reported. Regions with

segregation distortion were identified by combining data

from the single populations. Finally, an extensive analysis

of multi-locus markers has allowed the identification of

numerous chromosomal rearrangements.

Materials and methods

Segregating populations and genetic maps

A total of six mapping populations, developed to serve

specific needs for qualitative and quantitative trait analysis,

were used to integrate nearly 2,000 unique loci into a single

consensus map: ‘Creso’ 9 ‘Pedroso’ [CP, 123 recombi-

nant inbred lines (RILs) F8–F9], ‘Ofanto’ 9 ‘Cappelli’

(OC, 161 RILs F8–F9), ‘Cirillo’ 9 ‘Neodur’ (CN, 178

RILs F8–F9), ‘Ciccio’ 9 ‘Svevo’ (CS, 120 RILs F7–F8),

‘Latino’ 9 ‘Primadur’ (LP, 121 F2–F3 families), and

‘Messapia’ 9 ‘MG4343’ (MM, 65 RILs F7–F8). All of

these genotypes are durum wheat varieties, except

MG4343, which is an accession of Triticum turgidum (L.)

sub-species dicoccoides.

The genetic map obtained from the MM population

represented the first map to be constructed in tetraploid

wheat (Blanco et al. 1998). This was achieved mainly with

RFLP markers, then the map was enriched with SSRs

(Blanco et al. 2004), and this version was used for the

development of the consensus map. The CP population was

used to study the genetic basis of durable leaf rust resis-

tance of the cultivar Creso (Marone et al. 2009) and then

implemented with additional 75 microsatellite markers

(Marone et al., personal communication). The map derived

from the OC population was developed to find chromo-

somal regions involved in the response to drought stress, as

these two cultivars have different water-use efficiencies

(Rizza et al. 2012). Furthermore, both CP and OC were

used to map genes coding for different lipoxygenase iso-

forms on chromosome 4B (Verlotta et al. 2010). The CN

map allowed the identification of a major and some minor

QTL that explain the resistance against soil-borne cereal

mosaic virus in the Neodur variety (Russo et al. 2011). As

the CN map was implemented after the beginning of the

work on consensus map, the dataset used in the present

study is smaller than the one used by Russo et al. (2011)

(290 vs. 426 markers). The CS map was developed for

genetic and physical mapping of new expressed sequence

tag (EST)-SSRs (Gadaleta et al. 2009), and it was then

enriched with DArT markers to identify loci that are

involved in seed protein content (Blanco et al. 2012).

Finally, the LP population was used to determine the

genetic basis of yellow pigment content and carotenoid

accumulation (Blanco et al. 2011).

The main features of the segregating populations and the

corresponding genetic maps are reported in Table 1,
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whereas Online resource 1 reports the different sources of

markers used for the construction of the maps.

Construction of the consensus map

JoinMap 4.0 software (Van Ooijen and Voorips 2004) was

used to reproduce the six durum wheat genetic maps and to

generate the consensus map. The significance of deviations of

the observed allelic frequencies from the expected ratios (1:1

or 1:2:1) (P \ 0.01) was tested using Chi-squared analysis.

The segregation data of each mapping population were first

analyzed chromosome by chromosome, using a minimum

logarithm of odds (LOD) score of 4 for grouping. The Kos-

ambi mapping function (Kosambi 1943) and the ‘‘fixed

order’’ of marker loci were used to reproduce linkage groups

that correspond to the single maps previously developed.

Subsequently, the linkage groups for each chromosome

derived from the six mapping populations were joined using

the ‘‘combine groups for map integration’’ function within

the JoinMap software. When necessary, markers were

removed from the analysis (i.e. markers with too much

missing data), and the order was recalculated, until a stable

and consistent order was obtained with respect to the single

genetic maps. For some markers on chromosome 7B the

order of consensus loci reproduced by the software was not

consistent with that observed in individual maps. In this case,

a fixed order was imposed based on data consistency in more

than one individual map. The centromeres were positioned

onto the consensus map at the midpoints between the most

proximal markers on the short and long arms, according to

common markers between this map and those of Röder et al.

(1998), Somers et al. (2004) and Gadaleta et al. (2009).

To validate the marker order of the consensus map,

genomic SSR, EST-SSR, and DArT markers were assigned

to specific deletion bins when possible, using the resources

available. The physical positions of genomic SSR and

EST-SSR markers were obtained by Francki et al. (2008)

and Gadaleta et al. (2009), whereas for DArT markers this

was determined by Francki et al. (2008) and by the deletion

bin maps available at http://www.cereals.uk.net. Figure 1

reports the physical map described by Gadaleta et al.

(2009) based on a set of 58 common wheat deletion lines

dividing the A and B genome chromosomes into 94 bins

(Endo and Gill 1996), in which physical mapping data

derived from different sources were integrated.

Once developed, the consensus map was compared with

the six individual maps and with the bread and durum

wheat maps available in the literature (Röder et al. 1998;

Somers et al. 2004; Francki et al. 2008; Gadaleta et al.

2009; Trebbi et al. 2011), in terms of marker order and

genetic marker distance.

Analysis of colinearity between homoeologous

chromosomes and structural rearrangements

Multi-locus markers were considered, and loci revealed by

the same marker were inspected to identify homoeologous

and paralogous loci. Chromosomal rearrangements were

analyzed by studying orthologous loci mapped on non-

homoeologous groups and by evaluating the information

available in the literature on the position of all markers

included in the putative translocated regions.

Results

Overview of the individual linkage maps

The six individual genetic maps differ according to the

types and the numbers of markers, the lengths, and the

Table 1 Summary of the six mapping populations used to construct the consensus map of durum wheat

Parents Population

size

Markers Total

markers

Map

length

(cM)

Marker density

(cM/marker)

Reference

SSR EST-derived

(SSR,STS)

DArT Other

markersa

‘Creso’ 9 ‘Pedroso’ 123 191 44 340 – 575 2,221.3 3.8 Marone et al.

(2009)

‘Ofanto’ 9 ‘Cappelli’ 161 154 23 437 4 618 1,649.4 2.6 Verlotta et al.

(2010)

‘Cirillo’ 9 ‘Neodur’ 178 71 7 212 – 290 1,568.5 5.4 Russo et al.

(2011)

‘Ciccio’ 9 ‘Svevo’ 120 132 110 584 4 830 1,765.8 2.1 Gadaleta et al.

(2009)

‘Latino’ 9 ‘Primadur’ 121 96 22 322 – 440 1,066.2 2.4 Blanco et al.

(2011, 2012)

‘Messapia’ 9 ‘MG4343’ 65 84 – – 356 440 2,913.2 6.6 Blanco et al.

(2004)

a RFLP, TRAP, biochemical and morphological markers
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Fig. 1 The durum wheat consensus linkage map. The deletion bin map

as reported by Gadaleta et al. (2009) was aligned with the consensus

map and the colored lines show the genetic/physical relationships for

each marker. Straight lines connect markers to specific bins, charac-

terized by different colors. Dotted lines connect homoeologous loci that

are reported between the two chromosomes of each pair. Markers with

segregation distortion (P \ 0.01) are marked with an asterisk. Markers

identifying two or more mapped loci have the suffix ‘‘.a’’, ‘‘.b’’, and so

on. The centromeres are indicated by black circles. Dashed lines on

chromosomes indicate break points (color figure online)
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marker densities of the linkage groups; their main features

are summarized in Table 1.

The individual maps carried between 290 (CN) and 830

(CS) loci that are assembled into a number of linkage

groups, ranging from 19 (LP) to 37 (CS). The marker

density was from 2.1 cM/marker (CS) to 6.6 (MM) cM/

marker. The highest proportion of markers (24 %) was

positioned on chromosome 3B in CS, whereas the lowest

(1.3 %) was mapped on chromosome 5A in CN. Generally,

the homoeologous groups 3, 6, and 7 contained higher

percentages of loci in most of the analyzed populations. On

the contrary, the homoeologous groups 1 and 5 were
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characterized by a lower marker density. The percentages

of mapped markers were higher on the B than the A gen-

ome (A genome: 38–45 % vs. B genome: 55–62 %),

except for MM, where 55 % of the markers were mapped

on the A genome. The lengths of the resulting maps varied

between 1,066 cM (LP) and 2,913 cM (MM). Gaps with

genetic distances greater than 20 cM were found in all of

these linkage maps.

Construction of the consensus map

The durum wheat consensus map is composed of 1,898 loci

(1,185 DArT, 388 genomic SSR, 166 EST-derived loci,

and 159 other markers, e.g. RFLP, TRAP, biochemical and

morphological loci) arranged into 27 linkage groups cov-

ering all 14 chromosomes (Table 2; see Online resource 2).

A total of 650 mapped markers (216 PCR-based and 434

DArT) were common among at least two of the mapping

populations (Table 3), while a total of 1,397 markers were

unique to a specific mapping population. The total length

of the integrated map was 3,058.6 cM. The mean length of

the 27 linkage groups was 218.4 cM, although the chro-

mosome size ranged from 142.7 cM (4B) to 286.5 cM (2A)

(Table 2). The number of markers for each chromosome

ranged from 58 (4B) to 261 (3B), with an average of 136.8.

The average marker distance per chromosome was between

0.9 cM (4A and 3B) and 3.9 cM (5B), with an average

density of one marker per 1.6 cM for the whole genome.

The approximate location of the centromere was iden-

tified (Fig. 1) based on the integration of bread and durum

wheat linkage (Röder et al. 1998; Somers et al. 2004;

Gadaleta et al. 2009) and physical maps (Francki et al.

2008; http://www.cerealsdb.uk.net). Most markers were

relatively evenly distributed along the chromosomes in

terms of their genetic distances, although some regions

were characterized by higher or lower marker densities

Table 2 Density and

distribution of markers in the

consensus map of durum wheat

a RFLP, TRAP, biochemical

and morphological markers

Chromosome Markers Total

markers

Map length

(cM)

Marker density

(cM/marker)
DArT SSR EST-derived

(SSR, STS)

Othera

1A 50 13 15 2 80 174.5 2.2

2A 61 44 12 10 127 286.5 2.3

3A 37 23 11 1 72 219.1 3.0

4A 105 27 8 14 154 147.2 0.9

5A 16 34 10 23 83 200.9 2.4

6A 96 21 19 27 163 201.3 1.2

7A 80 22 9 – 111 283.2 2.5

Genome A 445 184 84 77 790 1,512.7 1.9

1B 84 45 17 27 173 220.4 1.2

2B 112 35 15 2 164 232.7 1.4

3B 229 24 8 – 261 254.1 0.9

4B 22 21 6 9 58 142.7 2.4

5B 48 12 2 – 62 245.3 3.9

6B 119 25 16 16 176 185.4 1.0

7B 126 42 18 28 214 265.5 1.2

Genome B 740 204 82 82 1,108 1,545.9 1.4

Total 1,185 388 166 159 1,898 3,058.6 1.6

Table 3 Common markers

across mapping populations
Common markers

between

Markers Total common markers

between populations
DArT PCR-based

Genome A Genome B Genome A Genome B

Two populations 102 171 77 70 420

Three populations 64 70 16 27 177

Four populations 12 15 12 12 51

Five populations – – 2 – 2

Total 178 256 107 109 650
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(Fig. 1). The largest gap (that is a big genetic distance

between two adjacent markers of the same linkage group)

was 26.4 cM, between wPt-7185 (94.0 cM) and wPt-7201

(120.4 cM) on chromosome 5A of the consensus map.

Additional gaps (more than 20 cM) were present on

chromosomes 2A, 6A, 7A, 4B, and 5B. Some of the gaps of

the individual maps were also present in the consensus

map, whereas others were filled by integrating the infor-

mation derived from different populations. For example,

the 25 cM gap in CN on chromosome 4A (between wPt-

6330 and wPt-1262) is well covered by markers in the

consensus map.

The order of loci of the consensus map was in good

agreement with the corresponding orders of the individual

linkage maps. Some exceptions concerned changes that

occurred within a small interval (\10 cM). Considering the

relative marker distances, the largest discrepancy was

observed between markers Xwmc716 and Xbarc213 on

chromosome 1A, where the genetic distance was 30 cM in

the consensus, while it was only 7 cM in CP.

The position of the loci mapped in this study was

compared with recently published maps of bread and

durum wheat. The ITMI map (Song et al. 2005) and the

consensus map developed by Somers et al. (2004), which

represent two well-saturated bread wheat maps, were

considered for SSRs, while the bread and durum wheat

maps described by Crossa et al. (2007), Peleg et al. (2008),

and Trebbi et al. (2011) were taken into account for

comparisons of both the SSR and DArT marker positions.

The genetic positions of most SSR and DArT loci in the

durum wheat consensus map showed consistency with their

positions in the reference maps with few exceptions. In

some cases, differences in the relative distances between

two markers were found, although these were not consid-

ered as real discrepancies as they involved markers that

identified multiple loci, with paralogous loci mapped on

the same chromosome. As an example, the markers

Xgwm443 and Xgwm666 were positioned on chromosome

5A at a distance of about 120 cM by Somers et al. (2004)

and Song et al. (2005). Three loci were mapped in the

durum wheat consensus map for Xgwm443: the Xgwm443b

locus was located on chromosome 5B, while the

Xgwm443a and Xgwm443c loci were located on chromo-

some 5A. Xgwm443a was 13.2 cM from Xgwm666, but

Xgwm443c was positioned at 130.5 cM according to the

bread wheat consensus map.

The marker order is in agreement with the maps pub-

lished by Somers et al. (2004), Song et al. (2005) and

Trebbi et al. (2011) for ten chromosomes (1B, 2A, 3A, 3B,

4A, 4B, 5A, 5B, 6A, and 7A), while some inconsistencies

were seen for the remaining chromosomes.

A distance of about 40 cM was reported between the

markers Xgwm497 and Xgwm99 by Somers et al. (2004)

and Song et al. (2005) on the long arm of chromosome 1A,

while the two markers were co-segregating on our con-

sensus map. Nevertheless, the positions of these two

markers in two individual maps (CS, 3 cM, and LP, 1 cM)

supported the distances found in the consensus map, which

was also confirmed by the durum wheat map reported by

Elouafi and Nachit (2004), where the two markers were

positioned 6 cM apart.

On the long arm of chromosome 1A, a group of DArT

markers (which contained wPt-6754 and wPt-8644) were

positioned more than 40 cM distal from the marker

Xwmc716 by Trebbi et al. (2011), while in our consensus

map, the marker Xwmc716 was 13 cM distal from the same

group of DArT markers. Even if this region was contrib-

uted only by the CP individual map, the distances in our

consensus map for the markers Xwmc716 and wPt-8644

agree with findings reported by Peleg et al. (2008).

On chromosome 2B, an inconsistency was found for the

region between markers Xwmc149 and wPt-6643, which

were localized in the telomeric region of the long arm by

Trebbi et al. (2011), and in the pericentromeric region in

our map. However, the detailed analysis of genetic marker

distances within this interval in the individual maps vali-

dated the orientation reported here.

Another discrepancy in the order of the loci was

observed between our durum wheat consensus map and

previous reports for chromosome 6B for DArT markers.

The marker wPt-7935 was mapped near the centromere, at

\2 cM from the marker Xgwm193, whereas Trebbi et al.

(2011) mapped the two markers at a distance of 60 cM;

however, the two markers were placed 2 cM apart by Peleg

et al. (2008). Finally, the marker wPt-0530 co-segregated

with Xgwm344 in the map of Trebbi et al. (2011) on the

long arm of chromosome 7B, while a distance of 20 cM

was found between the two markers in our consensus map,

and a similar distance (13 cM) was reported by Crossa

et al. (2007).

Comparison of marker positions between the consensus

and deletion bin maps

Four hundred and ninety-three markers (25.9 %; 256

DArTs, 153 gSSRs, and 83 EST-derived markers) were

assigned to specific bins of the wheat deletion bin map

(Fig. 1). Sixty-six of the 94 bins were covered by at least

one marker, and the number of markers per bin ranged

from 1 to 47, with a mean of 7.5. Except for the short arm

of chromosome 4A, represented by only one molecular

marker, the bin coverage with genetically mapped molec-

ular markers was relatively good. For instance, all of the

bins of chromosome 2B were covered by markers geneti-

cally mapped in the consensus map. These findings allowed

anchoring between the consensus and physical maps of the
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durum wheat genome. A few discrepancies were noted. A

group of nine DArTs (wPt-4533, wPt-4197, wPt-5647,

wPt-0102, wPt-3611, wPt-0277, wPt-7626, wPt-9624, and

wPt-5839) were genetically mapped on a region of chro-

mosome 2AS between markers physically positioned in the

pericentromeric region in the consensus map, while they

were previously located to the short arm of the same

chromosome (http://www.cerealsdb.uk.net). The marker

wPt-3566, which was mapped to the centromeric region of

chromosome 1B by Francki et al. (2008), was instead

positioned on the long arm in the consensus map. On the

same chromosome, based on the physical positions of the

surrounding markers, the marker Xbarc8 was assigned to

the bin 1BS2-1.06, while it was physically mapped to the

bin 1BS10-0.00-0.50 by Gadaleta et al. (2009). In all of

these examples, the map positions in the consensus map for

these markers were in agreement with those reported by

Trebbi et al. (2011).

The physical positions on chromosome 3A of DArTs

wPt-5084, wPt-4859, wPt-1562, and wPt-2659, which were

previously mapped to the bin 3AL5-0.78-1.00 (http://www.

cerealsdb.uk.net), corresponded to the centromeric region

in the consensus map. In this case, the genetic positions of

these markers were supported by very good agreement

between the CP and OC individual maps.

On chromosome 5A of the consensus map, the markers

Xgwm186, Xbarc165, and Xbarc100 were on the long arm

instead of the centromere, as described by Francki et al.

(2008). Nevertheless, two loci were physically mapped by

Sourdille et al. (2004) for the marker Xgwm186, in the

centromeric region and the long arm, while the marker

Xbarc100 was assigned to 5AL in the same study.

The marker Xbarc3, which was previously physically

positioned in the bin 6AS1-0.35-1.00 (Francki et al. 2008),

was genetically mapped in the pericentromeric region on

6AS in the consensus map, as according to Somers et al.

(2004) and Goyal et al. (2005). Similarly, the marker

CA668788b that was previously positioned in the peri-

centromeric region of chromosome 7AS (Gadaleta et al.

2009) was mapped on chromosome 7AL in the consensus

map. This was supported by the genetic position of the

marker, which was highly consistent in two individual

maps (OC and CS).

Finally, Xwmc479 was previously mapped in the bin

7AS1-0.89 (Gadaleta et al. 2009), while in the consensus

map its position is between Xgwm471 and Xgwm60, and it

is physically mapped in the 7AS5-0.59 bin (Francki et al.

2008; Xue et al. 2008). This genetic position is as

according to Somers et al. (2004) and Xue et al. (2008).

Of note, some genetically close markers were instead

located physically in distant bins. For example, Xgwm5 and

Xwmc527b were at a distance of only 2.3 cM on chromo-

some 3A, but they were physically mapped on the bins

3AS4-0.45-1.00 and 3AL3-0.00-0.42, respectively. Similar

data were shown for this region by Somers et al. (2004).

Analogous cases were observed on chromosome 4B for the

markers CA663888 and Xgwm165, at a distance of only

0.3 cM, but mapped physically in the bins 4BS4-0.00-0.37

and 4BL5-0.86-1.00, respectively, and on chromosome 6A,

where the co-mapping markers wPt-0357 and BJ261821

were instead mapped physically on the short and the long

arms, respectively.

Segregation distortion

The percentage of skewed markers (P \ 0.01) was differ-

ent across the populations, varying from 0.6 to 11.8 % for

CS and OC, respectively. Both co-dominant (SSR, STS,

RFLP) and dominant (DArT) markers were subjected to

deviation from the expected Mendelian 1:1 and 1:2:1

ratios. The distribution of the markers with segregation

distortion was not uniform across chromosomes. Chromo-

somes 7B (OC) and 6B (LP) had 26 and 20 skewed

markers, respectively, positioned in regions spanning less

than 40 cM, and these were the chromosomes with the

highest proportion of skewed markers. Chromosome 1A

was the least affected by segregation distortion in all of the

individual maps. Moreover, clusters of markers with

skewed segregation were identified in all of the individual

maps (data not reported).

A total of 149 markers (7.8 %) showed distorted seg-

regation (P \ 0.01) on the consensus map (Fig. 1). A

similar ratio of skewed markers was found for DArT and

SSR markers (7.3 and 7.9 %, respectively). Markers with

segregation distortion were spread across all of the durum

wheat chromosomes. Nevertheless, a statistically signifi-

cant difference (P = 0.0032) was seen between the A and

B genomes for the number of skewed markers: 120

markers on B and 29 on A (Fig. 1). The percentages with

respect to the total number of markers positioned on each

genome were 10.7 and 3.7 %, respectively. Considering all

of the pairs of homoeologous chromosomes, the number of

skewed markers was higher for those belonging to the B

genome. The difference between homoeologs was low for

groups 3 and 5, but generally high for the other pairs, e.g.

on chromosome 1 there were two skewed markers (0.2 %)

on 1A, compared with 30 skewed markers (17 %) on 1B.

Also in the consensus map skewed markers defined

particular chromosome regions with distorted segregation,

which therefore putatively contain loci involved in this

phenomenon. In some cases, the skewed markers were

spread over large chromosome regions, as seen for chro-

mosomes 1A, 2A, 3A, 3B, and 7B. Single skewed regions

were identified on chromosomes 4BS (pericentromeric

region), 2BL and 5BL (telomeric region), while two

regions were identified on chromosomes 1B (close to the
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centromere and close to the telomere of the long arm), and

6B (on the short arm and in the pericentromeric region).

Finally, chromosome 7B showed a high number of skewed

markers that were clustered in three regions all along the

chromosome.

The clusters of skewed markers derived specifically from

a single population, except for one region on chromosome

1B (from 44.3 to 100.1 cM), found to carry skewed markers

in both MM and CP (see Online resource 3).

Analysis of colinearity between homoeologous

chromosomes and structural rearrangements

Multi-locus markers were mapped in the present study,

which we define as markers based on the same primer pair

or clone that identified more than one locus.

A total of 214 loci were produced by 94 multi-locus

markers, and out of these, 82 (56 SSRs, 20 DArTs and 6

RFLPs) were mapped on homoeologous chromosomes,

whereas 132 (105 SSRs, 18 DArTs, 6 RFLPs, and 3 TRAPs)

were assigned to intra-chromosome or non-homoeologous

inter-chromosome positions (see Online resource 4). The

colinearity between chromosomes within homoeologous

groups was well conserved, as shown in Fig. 1, except for

some markers. Six markers (4 EST-SSRs and 2 SSRs) that

mapped to homoeologous sites were identified for homo-

eologous group 1. The same order and genetic positions

characterized all of the loci, with the exception of Xgwm403,

which showed a locus on the short arm of chromosome 1A

and another one on the long arm of chromosome 1B.

Fourteen homoeologous loci (10 SSRs and 4 DArTs)

were identified for group 2. Their order was highly con-

sistent, although three markers (Xbcd348, Xwmc382, and

Xgwm71) were mapped on the pericentromeric region of

the short arm of chromosome 2A and on the telomeric

region of the short arm of chromosome 2B. Furthermore,

two DArT markers (wPt-7765 and tPt-6105) were located

on the telomere of chromosome 2AL and on the centro-

meric area of chromosome 2BL.

A comparable number of homoeologous loci was found

for group 3 (8 SSRs and 4 DArTs). There was consistent

order and genetic positions of the markers along the

chromosomes, except for the loci tPt-7209, wPt-5943, and

Xgwm751, which mapped near to the centromere on

chromosome 3AL and on the long arm of chromosome 3B.

Only two homoeologous loci were mapped on both groups

4 and 5. While for group 5 the genetic position of the loci

Xgwm443 on chromosomes 5AS and 5BS showed perfect

correspondence, Xwmc617 was mapped in the pericentro-

meric region on chromosome 4AL and on the short arm of

chromosome 4B. The same results were reported by Röder

et al. (1998) for the marker Xgwm165, positioned on

chromosomes 4AS and 4AL.

Nine markers (5 SSRs, 3 RFLPs, and 1 DArT) detected

homoeologous loci on both chromosomes of group 6. The

correspondence in terms of genetic position and marker

order was good, except for Xpsr312, the loci of which were

positioned around the centromere on chromosome 6AL and

on the short arm of chromosome 6B, Xgwm132, which

mapped on the long arm of chromosome 6A and on the

short arm of chromosome 6B, and Xwmc398, for which two

loci on chromosomes 6AS and 6BL were found. Finally, 22

homoeologous loci (12 SSRs and 10 DArTs) were identi-

fied on chromosomes 7A and 7B, showing colinearity

between the chromosomes.

Different chromosomal rearrangements have occurred

during wheat evolution, such as duplications, inversions,

and translocations. The construction of the consensus map

reported in the present study with high number of markers

and marker density allowed the wheat genome to be

scanned for identification of such rearrangements. Groups

of multi-locus markers that had loci mapped on non-ho-

moeologous positions were considered to be involved in

putative translocations. Then the markers included in these

regions were evaluated in terms of their genetic positions

reported in the literature (Fig. 2).

The markers wPt-7491 and Xgwm834 identified loci on

chromosome 7AS and on the long arm of chromosome 4A,

instead of chromosome 7B, as shown in Fig. 2a. Further-

more, Xbarc70, which mapped in the same region of chro-

mosome 7AS, showed an additional locus on chromosome

4AL in OC (data not shown). Three additional markers (wPt-

3648, wPt-3135, and Xgwm471), for which a single locus on

chromosome 7AS was identified in the consensus map, were

previously located on chromosome 4A (Song et al. 2005;

Francki et al. 2008; Jing et al. 2009). Taken together, these

data suggest that a translocation event took place between

homoelogous groups 4 and 7. In addition, two markers

(Xgwm274 and Xwmc232) located on the putative translo-

cated region of chromosome 4AL were previously mapped

on chromosome 7B in bread wheat (Somers et al. 2004;

Semagn et al. 2006; Xue et al. 2008), which suggests that a

segment of chromosome 7B moved to chromosome 4A.

The terminal portion of the long arm of chromosome 5A

carries the locus Xgwm6b, which corresponds to the locus

Xgwm6a on the long arm of chromosome 4B (Fig. 2b). The

marker Xdupw43 was positioned in the same region of

chromosome 5A, while it was previously mapped on chro-

mosome 4B in hexaploid wheat by Semagn et al. (2006).

Fig. 2 Genetic mapping of putative translocations in durum wheat.

For each translocation the chromosome pair is reported with the

molecular markers that identified non-homoeologous loci (bold
characters). Markers positioned on one chromosome in the durum

consensus map are in normal characters, for which additional loci on

the other chromosome are reported in literature
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DArT marker wPt-8920 revealed two loci located on the

long arm of chromosome 5B and on the short arm of

chromosome 7B (Fig. 2c). In the same 7B region, there are

two SSRs (Xgwm537 and Xwmc405) that were previously

mapped on chromosome 5B in the durum 9 ssp. dic-

occoides map Omrabi/600545//Omrabi (Xgwm537) (Elou-

afi and Nachit 2004) and in bread and durum wheat maps

(Xwmc405) (Somers et al. 2004; Mantovani et al. 2008).

A putative translocation that occurred between chromo-

somes 3B and 7B is also shown in the present study (Fig. 2d).

Three loci that correspond to the EST-SSR marker BJ213673

were mapped on the long arm of chromosome 7B and on the

short arm of chromosomes 3A and 6B. Nevertheless, the

same region of chromosome 7B carries three markers

(Xgwm112, Xwmc540, and Xcfd6) that have already been

shown to map on the corresponding region of chromosome

3B by Röder et al. (1998) and Somers et al. (2004), which

suggests the occurrence of a T3B-7B translocation event.

Based on the same criteria adopted for previously

described rearrangements, three more regions were iden-

tified that were characterized by a non-homoeologous

relationship, even if two of them were based on only one

marker. The segment of the short arm of chromosome 5B

that contains the marker Xwmc149 corresponds to the distal

region on the long arm of chromosome 2B (Fig. 2e). The

loci Xgwm191 and Xwmc363 were also mapped in this

region; they were previously positioned on chromosome

5B in hexaploid wheat (Röder et al. 1998; Somers et al.

2004; Song et al. 2005), which suggests that this chromo-

some region was affected by a translocation.

The regions on chromosomes 1A and 6A reported in

Fig. 2f, were collinear for the markers wPt-9474, wPt-2632,

and wPt-8773. The possibility that a rearrangement involved

these chromosome segments is further supported by the

marker Swes953, which is located near the locus wPt-9474b

on the long arm of chromosome 6A, and was previously

mapped in wheat on chromosome 1B (Li et al. 2007).

Finally, two paralogous loci for the marker Xgwm786 were

mapped on chromosomes 5A and 6A (Fig. 2g). The short

segment of chromosome 5A also includes Xwmc150, for which

Somers et al. (2004) identified two loci on chromosomes 5A

and 6A, in agreement with our results. A translocation T6B-5A

can be hypothesized, as this region on chromosome 5A carries

the locus Xbarc180, which was previously mapped on chro-

mosome 6B in bread wheat (Song et al. 2005).

Discussion

Features of the durum wheat consensus map

The consensus map developed in the present study presents

a much higher average density than that observed across

the six individual maps. Values ranging from 11.8 cM/

marker (Nachit et al. 2001) to 5.7 cM/marker (Mantovani

et al. 2008) have been reported for published durum wheat

individual linkage maps. Two consensus maps were pre-

viously developed for bread wheat by Somers et al. (2004)

and Crossa et al. (2007). They mapped 1,235 and 1,644

markers, respectively, on the A, B, and D genomes. With

respect to these maps, the durum consensus map herein

described represents a large improvement. Due to the

presence of regions which lack the statistical support for

linking linkage groups belonging to the same chromosome,

it was not possible to connect all the groups in a number

corresponding to 14 chromosomes. The same feature

characterized the map published by Trebbi et al. (2011). It

is a durum wheat integrated map that they developed by

merging two individual datasets. Even if the lengths of the

two consensus maps were very similar, the consensus

developed in the present study still has a greater number of

markers (1,898 vs. 1,479), with better marker density (1.6

vs. 2.0 cM/marker). This is probably due to the integration

of six individual maps that were derived from genotypes

more genetically distant (11 durum wheat cultivars and one

ssp. dicoccoides).

The high number of common markers, as well as the

small differences in the recombination frequencies of the

common markers across the different populations, can

allow to position markers on a highly reliable reference

map also in those regions that were poorly covered in the

individual maps. Nevertheless, some regions with insuffi-

cient marker coverage ([20 cM) are still present in the

consensus, which indicates a lack of polymorphism

between specific parental pairs, due to recent co-ancestry,

as suggested by pedigree data (data not shown). Alterna-

tively, this can be due to the domestication bottle neck or a

locally altered genetic versus physical distance ratio.

Segregation distortion

In the present study, a similar proportion of skewed

markers was found for DArT and SSR markers, according

to Akbari et al. (2006), Peleg et al. (2008) and Mantovani

et al. (2008). The major occurrence of skewed markers on

the B genome as compared with the A genome is a com-

mon feature for durum wheat linkage maps (Peleg et al.

2008; Mantovani et al. 2008). An opposite behavior was

seen for the bread wheat map reported by Semagn et al.

(2006), in which the chromosomes of the A genome always

had many more skewed markers than the B counterpart,

except for group 6.

As markers with distorted segregation were clustered

into specific regions, and as the same regions were iden-

tified in different backgrounds, this indicates that this

phenomenon is linked to genetic factors and is unlikely to
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be due to genotyping or scoring errors. Distorted segrega-

tion can be explained by reduced fitness of gametes and

zygotes that is determined by loci with lethal or sub-lethal

effects linked to molecular markers (Foolad et al. 1995;

Blanco et al. 1998). In our study based on RIL populations,

the gametophytic selection probably has a limited role in

segregation distortion, compared with other studies based

on double haploid populations (Cadalen et al. 1997). Fur-

thermore, chromosomal rearrangements can also explain

segregation distortion (Faure et al. 1993). Indeed, the

region on chromosome 7BS putatively involved in the

translocation described in the present study contained

skewed markers (Fig. 1). Nearly half of the regions that

included skewed markers in this consensus map were

located around centromeres, which are regions that gen-

erally show reduced recombination (Faris et al. 2000),

according to most of the aforementioned studies. Knowing

the positions of the skewed regions is very important in

plant breeding, as they can affect the association marker-

QTL and the obtaining of the desired recombinants.

Analysis of colinearity between homoeologous

chromosomes and structural rearrangements

Several of the 21 chromosomes of hexaploid wheat contain

translocations of considerable sizes (Gale 1990), and the

evolutionary evidence for translocations that have involved

chromosome arms 4AL, 5AL, and 7BS has been firmly

established (Chao et al. 1989; Naranjo 1990; Liu et al.

1992; Chen and Gustafson 1994, 1997; Blanco et al. 1998;

Devos et al. 1995; Mickelson-Young et al. 1995; Nelson

et al. 1995; Quarrie et al. 2005). This important cyclic

translocation (4AL–5AL–7BS), evident also in our con-

sensus map, has become an evolutionary signature of

polyploidy wheat, which has conferred an adaptive

advantage during the course of evolution (Devos et al.

1995). Possibly at the diploid level, chromosomes 4AL and

5AL exchanged terminal segments. Then, in tetraploid

wheat, the distal portion of the chromosome 5A segment on

chromosome 4AL was exchanged with a terminal segment

from chromosome 7BS. Similar rearrangements have been

documented in other grass genomes, such as rye, which has

a translocation that corresponds to T4A–5A in wheat (King

et al. 1994).

Furthermore, a pericentric inversion within chromosome

4A has also been reported in the literature (Miftahudin

et al. 2004). Our results confirm this inversion (marker

Xwmc617—Fig. 1) and suggest other inversions for the

homoeologous groups 1 and 2 (markers Xgwm403 on group

1 and Xwmc51 on group 2—Fig. 1).

Moreover, the markers Xwmc51 and Xgwm71 show an

additional locus on the same chromosome 2A, which

suggests that a duplication of the region that comprises

these markers has occurred during the evolution of the

wheat genome. The presence of two distinct loci for the

marker Xgwm71 was confirmed by Röder et al. (1998) and

Somers et al. (2004).

The other translocation, identified with the consensus

map, on the long arm of chromosome 7B (Fig. 2d) could

correspond to the translocation T3B:7B described for

T. dicoccoides by Badaeva et al. (2007). As the rear-

rangements reported by these authors were cytogenetically

identified, the translocation identified in the present study

represents the description of a translocation T3B–7B with

the molecular markers genetically mapped.

Three putative translocations are herein suggested that

have never been described before, for chromosomes 2B–

5A, 1B–6A, 5A–6B (Fig. 2). Out of seven translocation

events proposed in the present study, five are inter-geno-

mic, which suggests that recombination between homo-

eologous chromosomes might be common in polyploids

following interspecific wheat hybridization (Wendel and

Wessier 2000). Transposable elements might represent one

of the mechanisms that form the basis of intergenomic

rearrangements. Indeed, the union of two genomes into a

single nucleus can be perceived as the introduction of

‘foreign DNA’ and can induce the activation of transpos-

able elements during polyploidization, as has been shown

in cotton and wheat (Wendel and Wessier 2000; Chantret

et al. 2005). Interestingly, the markers wPt-5964 and wPt-

7214 that are positioned within and near to a region on

chromosome 7A that is involved in a translocation, corre-

spond to sequences that code for retrotransposons (data not

shown).

It is reasonable to expect that the ongoing wheat

sequencing projects (http://www.wheatgenome.org) will

reveal the evolution of the chromosome structure and the

distributions and physical locations of additional break-

points and rearrangements within all of the chromosomes

of both hexaploid and tetraploid wheat, as revealed by a

recent analysis of the gene content in chromosome 5A

(Vitulo et al. 2011).

The consensus map as a tool for advanced genetic

studies in durum wheat

Consensus maps can be used to perform meta-QTL anal-

ysis (Haberle et al. 2009; Löffler et al. 2009), to combine

genetic marker data and QTL characteristics (location,

confidence interval, effects, and traits used for QTL

detection) on a single map, as obtained from independent

QTL mapping. This kind of study allows the optimal set of

distinct consensus QTL (meta-QTL) to finally be esti-

mated. Danan et al. (2011) clustered 144 QTL into 24

meta-QTL using a consensus map of potato that comprised

2,141 markers.
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A limitation of QTL studies performed on individual

biparental populations is often seen in the low number of

molecular markers present in the region in which the QTL

is identified. The projection onto high-density integrated

maps of information derived from single population studies

allows the QTL region to be enriched with many more

molecular markers with respect to single populations. This

thus represents an important advantage for fine QTL

analysis, map-based gene cloning, transfer of QTL among

different genetic backgrounds, and comparative studies

between different genomes.

Linkage disequilibrium-based QTL analyses have been

carried out for many agronomic traits related to grain yield

and disease resistance in both common wheat (Crossa et al.

2007; Neumann et al. 2010) and durum wheat (Maccaferri

et al. 2010). High-coverage integrated maps can have a

positive effect on association mapping studies (Neumann

et al. 2010; Trebbi et al. 2011). If unmapped markers have

been used to genotype plants for association mapping, they

can be tentatively ordered using the information provided

by consensus maps. With more than 1,100 mapped DArT

markers, the consensus map developed in the present study

represents a valuable tool for association mapping of QTL

on populations characterized with this high-throughput and

cost-effective genotyping system.

The consensus map herein presented contains mapping

data regarding 167 PCR-based molecular markers and 182

DArT markers for which the clone sequence is available

(http://www.triticarte.com.au) and for which a match was

found in the public databases using BLASTN and BLASTX

searches (AM Mastrangelo, personal communication).

Overall, a total of 349 markers related to expressed sequences

were mapped in the present study, thus adding a functional

value to the consensus map. The presence on a genetic map

of markers derived from expressed sequences helps to asso-

ciate candidate genes with identified QTL. Expressed-

sequence-based molecular markers are also essential for

colinearity studies among genomes, thus taking advantage of

the available sequenced plant genome information, for faster

fine mapping of QTL in species like wheat, for which the

sequenced genome has not been released yet.
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Simeone R, Digesù AM, De Vita P, Mastrangelo AM, Cattivelli

L (2011) Quantitative trait loci for yellow pigment concentration

and individual carotenoid compounds in durum wheat. J Cereal

Sci 54:255–264

Breseghello F, Sorrells ME (2006) Association analysis as a strategy

for improvement of quantitative traits in plants. Crop Sci 46:

1323–1330

Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal

molecular marker map in Triticum aestivum L. Em. Thell. and

comparison with a map from a wide cross. Theor Appl Genet

94:367–377

Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois

I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L,

Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M,

Leroy P, Chalhoub B (2005) Molecular basis of evolutionary

events that shaped the Hardness locus in diploid and polyploidy

wheat species (Triticum and Aegilops). Plant Cell 17:1043–1055

Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD

(1989) RFLP-based genetic maps of wheat homoeologous group

7 chromosomes. Theor Appl Genet 78:495–504

Chen J, Gustafson JP (1994) Physical mapping of genetically mapped

molecular markers in homoeologous group 7 chromosomes of

wheat by in situ hybridization. J Jiangsu Agric Coll 15:1–9

Chen J, Gustafson JP (1997) Chromosomal rearrangement of wheat

(T. aestivum) chromosome 4A by in situ hybridization. Chin J

Genet 24:39–47

Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA,

Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J,

Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of

historical bread wheat germplasm using additive genetic covari-

ance of relatives and population structure. Genetics 177:

1889–1913

Danan S, Veyrieras J-B, Lefebvre V (2011) Construction of a potato

consensus map and QTL meta-analysis offer new insights into

the genetic architecture of late blight resistance and plant

maturity traits. BMC Plant Biol 11:16

De Vita P, Matteu L, Mastrangelo AM, Di Fonzo N, Cattivelli L

(2007) Effetti del miglioramento genetico sul frumento duro

1636 Theor Appl Genet (2012) 125:1619–1638

123

http://www.triticarte.com.au


prodotto in Italia nel XX secolo. Ital J Agron/Riv Agron

4:451–461

Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995)

Structural evolution of wheat chromosomes 4A, 5A and 7B and

its impact on recombination. Theor Appl Genet 91:282–288

Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum 9

Triticum dicoccoides backcross population based on SSRs and

AFLP markers, and QTL analysis for milling traits. Theor Appl

Genet 108:401–413

Endo TR, Gill BS (1996) The deletion stocks of common wheat.

J Hered 87:295–307

Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation

of EST-derived microsatellite markers for genotyping the A and

B genomes of wheat. Theor Appl Genet 104:399–407

Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich

recombination hot spot region in wheat. Genetics 154:823–835

Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gonzales de Leon D

(1993) A molecular marker-based linkage map of diploid

bananas (Musa acuminata). Theor Appl Genet 87:517–526

Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map

of Prunus based on an interspecific cross between peach and

almond. Theor Appl Genet 91:262–269

Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW,

Barclay I, Wilson RE, McLean R (2008) Comparison of genetic

and cytogenetic maps of hexaploid wheat (Triticum aestivum L.)

using SSR and DArT markers. Mol Genet Genomics 281:181–191

Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone

R, Signorile A, Blanco A (2009) Genetic and physical mapping

of new EST-derived SSRs on the A and B genome chromosomes

of wheat. Theor Appl Genet 118:1015–1025

Gale MD (1990) Comparative mapping in Triticeae genomes. In:

McGuire PE, Corke H, Qualset CO (eds) Genome mapping of

wheat and related species. Proceedings of the 1st public

workshop international triticeae map initiative. University of

California, West Sacramento, California, pp 17–19

Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan HS, Gupta

PK (2005) Physical molecular maps of wheat chromosomes.

Funct Integr Genomics 5:260–263

Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics:

present status and future prospects. Intern J Plant Genom. ID

896451

Gustafson JP, Ma XF, Korzun V, Snape JW (2009) A consensus map

of rye integrating mapping data from five mapping populations.

Theor Appl Genet 118:793–800

Haberle J, Holzapfel J, Schweizer G, Hartl L (2009) A major QTL for

resistance against Fusarium head blight in European winter

wheat. Theor Appl Genet 119:325–332

Hwang TY, Sayama T, Takahashi M, Takada Y, Nakamoto Y,

Funatsuki H, Hisano H, Sasamoto S, Sato S, Tabata S, Kono I,

Hoshi M, Hanawa M, Yano C, Xia Z, Harada K, Kitamura K,

Ishimoto M (2009) High-density integrated linkage map based

on SSR markers in soybean. DNA Res 16:213–225

Isobe S, Kolliker R, Hisano H, Sasamoto S, Wada T, Klimenko I,

Okumura K, Tabata S (2009) Construction of a consensus

linkage map for red clover (Trifolium pratense L.). BMC Plant

Biol 9:57

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a

solid state technology for sequence information independent

genotyping. Nucleic Acids Res 29:e25

Jing HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian

A, Hammond-Kosack KE (2009) DArT markers: diversity

analyses, genomes comparison, mapping and integration with

SSR markers in Triticum monococcum. BMC Genomics 10:458

King JP, Purdie KA, Liu CJ, Reader SM, Orford SE, Pittaway TS,

Miller TE (1994) Detection of interchromosomal translocations

within the Triticeae by RFLP analysis. Genome 37:882–887

Kosambi DD (1943) The estimation of map distances from recom-

bination values. Ann Eugen 12:172–175

Kuchel H, Williams KJ, Langridge P, Eagles KA, Jefferies SP (2007)

Genetic dissection of grain yield in bread wheat. I. QTL analysis.

Theor Appl Genet 115:1029–1041

Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei

T, Xu Y, Jiang F, Wang H, Li L (2007) A intervarietal genetic

map and QTL analysis for yield traits in wheat. Mol Breed

20:167–178

Liu CJ, Devos KM, Chinoy CN, Atkinson MD, Gale MD (1992) Non-

homoeologous translocations between group 4, 5 and 7 chro-

mosomes in wheat and rye. Theor Appl Genet 83:305–312
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