
Clinical processes are characterized by a high degree
of communication and cooperation among physicians,
nurses, and other groups of personnel. An information
system should support these processes by enabling a
seamless information flow between different partici-
pants and different locations. Because of rapidly
changing and newly arising requirements, an appro-
priate information system should be capable of incre-
mentally evolving according to the users’ needs.1 Yet
current healthcare information systems stay far behind
the expectations and rarely fulfil these requirements.2–4

Failures of IT projects in healthcare are not uncom-
mon.2–6 The deeper reasons for these failures are still
subject of interdisciplinary research,5,6 but many core
factors are already well known. Inaccurate under-
standing of the end-users’ needs is a symptom which
is most frequently mentioned.5,7,8 This can be led back

to various reasons, such as insufficient communica-
tion,8,9 and inability of users to express their require-
ments and lack of common ground.3,5,10 Projects also
often fail because of missing or unsuitable manage-
ment models for software engineering.7,8 The wide-
spread waterfall model, for example, is insufficient
for health IT projects because important assumptions
for the applicability of this model are not fulfilled in
the healthcare domain [11] (e.g., systems are required
to evolve over time, and functional requirements are
subject to change). Iterative software engineering7–9 is
more suitable for IT projects in the healthcare domain
because it is aimed at incrementally developing and
improving software products step by step. Iterative
software engineering is also particularly suitable to
be combined with a participatory approach, as pos-
tulated by many authors,12 because it helps to
encourage user feedback.7 This effect is intensified if
prototypes can be generated quickly without invest-
ing too much encoding effort. Thus, the approach is
ideally supported by using a CASE tool for rapid
application development (RAD).13

In healthcare environments, however, rapidly devel-
oping isolated applications is not enough because
new applications are required to be integrated with
the overall healthcare information system. This arti-

571Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

Affiliations of the authors: Institute of Medical Informatics,
Philipps-University, Marburg, Germany (RL, TE, KAK); GWI
Research Council GmbH, Vienna, Austria (HS).

Correspondence and reprints: Richard Lenz, DrIng, Institute of
Medical Informatids, Philipps-University, Marburg, Bunsen-
strasse 3, D-35037, Marburg, Germany; e-mail: <lenzr@mailer.
uni-marburg.de>

Received for publication: 9/17/01; accepted for publication:
6/6/02.

Application of Information Technology ■

A Practical Approach to
Process Support in Health
Information Systems

A b s t r a c t This article describes the design of a generator tool for rapid application develop-
ment. The generator tool is an integral part of a healthcare information system, and newly devel-
oped applications are embedded into the healthcare information system from the very beginning.
The tool-generated applications are based on a document oriented user interaction paradigm. A sig-
nificant feature is the support of intra- and interdepartmental clinical processes by means of pro-
viding document flow between different user groups. For flexible storage of newly developed
applications, a generic EAV-type (Entity-Attribute-Value) database schema is used. Important
aspects of a consequent implementation, like database representation of structured documents, doc-
ument flow, versioning, and synchronization are presented. Applications generated by this
approach are in routine use in more than 200 hospitals in Germany.

■ J Am Med Inform Assoc. 2002;9:571–585. DOI 10.1197/jamia.M1016.

RICHARD LENZ, DRING, THOMAS ELSTNER, DIPL.PHYS, HANNES SIEGELE,
KLAUS A. KUHN, PROFDRMED

cle describes such a CASE tool (generator tool or forms
generator), which is an integral part of a commercially
available hospital information system and which is
particularly designed for generating workflow-
enabled clinical applications that are integrated with
the overall system. This generator tool is based on a
document oriented user interaction paradigm. Users
interact with the system by filling paper-like elec-
tronic documents, which serve as containers for
information distribution (e.g., a discharge report) or a
“laboratory order.” The generator tool allows to rap-
idly develop new document types (templates). We
refer to such a template as an “electronic form.” In
other words, an electronic document is an instance of
an electronic form. Workflow is supported by estab-
lishing a flow of electronic documents between dif-
ferent parties involved in the health care process (e.g.,
physicians in different departments, nurses, medical-
technical assistants, secretaries). The concept and its
implementation are explained in detail in the main
section of the article. In particular, we describe the
underlying generic database schema.

This approach is being used in our university hospi-
tal, where the tool has been continuously improved
during the past two years. Although the current
implementation has certain limitations, the approach
has proven practicable, and we consider the design
ideas based on our experiences helpful for system
architects and for implementers.

Background

Supporting clinical processes with information tech-
nology requires workflow specification (i.e., the identi-
fication of tasks, procedural steps, input and output
information, people and departments involved, and
the management of information flow according to this
specification). Different approaches for process support
in health information systems are currently under dis-
cussion. The most comprehensive approach for process
support is offered by dedicated Workflow
Management Systems (WfMS).14,15 General purpose
WfMSs try to provide a complete environment in
which to define, execute, and monitor business
processes. Existing applications are linked together
into global processes that are controlled by an external
workflow engine. The WfMS approach is conceptually
mature and successful in many application areas. Well-
structured business processes are increasingly sup-
ported by WfMSs. However, the approach does not yet
play a significant role in health information systems.16

One reason might be that existing clinical applications

often come with built-in workflow functionality, which
is not conform to standards for interoperating work-
flow engines as proposed by the Workflow
Management Coalition (WfMC).17 More important,
however, is that integrating autonomous, independ-
ently developed applications in healthcare takes a high
effort, no matter which integration approach is used.
Independently developed applications tend to be tech-
nically and semantically incompatible.18 Thus, getting
up a WfMS in the extremely complex healthcare envi-
ronment is risky (integration efforts are often underes-
timated), costly, and time-consuming.

Architectural flexibility in health information sys-
tems could be achieved by component-based systems
with exchangeable plug and play components.
Emerging component technologies, such as CORBA,
DCOM or EJB, are often considered the key to inte-
gration of heterogeneous and autonomous compo-
nents. Consistently combining domain-specific “best
of breed” components into a comprehensive inte-
grated whole seems to be within reach. This, how-
ever, is still not the case. Object middleware stan-
dards such as CORBA provide a framework for the
development of distributed applications, enabling
the programmer to concentrate on application logic
instead of distribution issues such as remote access or
distributed transaction management. Developing
distributed applications on top of such a framework,
however, still requires conformance of different com-
ponents involved with a common application frame-
work. The essence of component technology is to
build well-structured systems out of independently
understandable and reusable building blocks.19 To
make a component reusable by other components, a
precise specification of syntax and semantics of the
components’ interfaces is required. If the interfaces of
independently developed components do not match
semantically, components will not cooperate—even if
they are implemented in the same component tech-
nology. To achieve a truly integrated component-
based system, component developers need to build
their components on the basis of a common context.
This common context, in particular, includes a func-
tional decomposition of the application domain.
Moreover, common ontological and terminological
foundations of the application domain are required
to achieve a common understanding of basic domain
specific concepts. This problem is well known, and
there is already a clear trend toward domain-specific
middleware in healthcare.20–23 Yet standardization
efforts have not yet resulted in a complete application
framework generally accepted and used for health-
care information systems. System evolution by

LENZ, ET AL., Process Support in Health Information Systems572

adding plug-and-play components in a “best-of-
breed” strategy is still difficult.

We report on a generator-tool approach that supports a
different strategy for incremental system evolution. The
generator tool is an integral part of a holistic health
information system, and it is used to rapidly develop
new functionality for this system employing an itera-
tive and participatory software engineering process.
Instead of trying to link independently developed
applications together, the generator tool provides a
means for developing new system components, which
are embedded into the overall system from the very
beginning. As it is still not realistic to provide the com-
plete spectrum of clinical functionality by the use of
such a tool, conventional ways of connecting subsys-
tems are also needed. In our hospital (and in other hos-
pitals using software based on the generator approach),
typical standard HL7 interfaces and an interface engine
are used to connect separate subsystems. The number
of separate subsystems tends to be limited, however. As
an example, our laboratory system is connected via
HL7, whereas the radiology information system has
already been built with the generator tool.

Design Objectives

The objectives of the generator tool approach are to
improve the quality of software components by bring-
ing software development closer to the end-user. The
tool is intended to ease the apposition of new func-
tions into a running health information system and
thereby to shorten development cycles and increase
adaptation to the end-users needs. To achieve these
goals, development of a new form should not be over-
loaded with routine technical programming tasks that
are not directly related to the application logic (e.g.,
mapping of different data formats). With this
approach, software development is no longer a two-
stage process in which some programmer implements
the requirements of the end-user. Instead, an addi-
tional distinction is needed between the system devel-
oper and the application developer:

■ The system developer (system architect) is
responsible for developing and improving the
overall system architecture including the genera-
tor tool and its functionality. With respect to the
implementation of the generator tool, the architect
is not so much interested in the concrete require-
ments of some clinical department but merely in
more general abstract requirements concerning the
design of clinical applications. The system archi-

tect receives feedback primarily from application
developers, not from end-users.

■ The application developer (application designer)
uses the generator tool for developing new appli-
cations employing a participatory and iterative
software engineering process. He or she gets feed-
back from the end-user. The generator tool should
help the developer to rapidly implement proto-
types according to the end-users’ requirements
without investing too much encoding effort (e.g.,
the application designer does not need to worry
about physical database schema design). This role
is closely related to knowledge engineering. The
application developer captures and formalizes
domain knowledge. In the light of the fundamen-
tal works of Musen on Protégé, a central task of the
application developer is extraction of a domain
ontology.24,25 Thus, the term knowledge engineer
may be used from this perspective.

■ The end-user (e.g., physician, nurse) is the person
who works with the resulting applications (tool-
generated applications). To optimize the adapta-
tion of the software to the clinical work practice,
the end-user is intensively involved in the software
engineering process. Prototypes illustrating the
design of forms and of information flow are avail-
able early, and they allow a continuous feed back
from the end user to the application developer.

This article focuses on implementation aspects of such
a generator tool. Thus, we primarily take the view-
point of the system developer, who has been develop-
ing a tool suitable for rapidly implementing distrib-
uted clinical applications that support clinical
processes including cross-departmental workflows.
The generator tool should enable the application
designer to concentrate on the application logic
instead of encoding problems. Most importantly, how-
ever, the generator tool has to support the definition of
applications that are integrated with the overall health
information system via a common database. Thus, the
main objectives for the system designer are as follows:

■ Newly defined data items should be stored within
the same central database, and newly defined appli-
cations should be accessible via a common frame-
work without any a posteriori integration effort.

■ Tool-generated applications should avoid redundant
data entry. Therefore, the tool must enable the appli-
cation designer to refer to existing data elements that
are already stored in the central database to upload
these data into newly designed applications.

573Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

■ The tool should support developing distributed
(interdepartmental or interinstitutional) applica-
tions such as order entry/result reporting. There-
fore, the tool must provide means for workflow
specification—i.e., means to specify how to deliver
the right information (what), at the right time
(when), to the right people (who).

Perspectives of a Document Based
Generator Tool

The concrete approach in this article is based on a
document-oriented user interaction paradigm, which
substantially determines the different perspectives of
end users, application developers and system devel-
oper. For this article we use the terms related to this
paradigm as follows:

■ Electronic documents serve as a structured unit of
information and information flow.

■ Each electronic document is an instance of an elec-
tronic form, which in turn is to be seen as type or
template for corresponding electronic documents.

■ A form contains different fields.

■ An entry is an instance of a field that belongs to a
concrete electronic document.

■ Reference lists contain references pointing to elec-
tronic documents or to other reference lists. They
are the point of ingress to electronic documents
and an important instrument for gaining
overview. A reference is represented by a short
description of the contents of the associated docu-
ment (e.g., discharge letter for patient John Doe
from June 21st, 2001). Different types of reference
lists can be distinguished as follows:

1. Patient-related lists contain references to
patient related documents. Examples are the
patient history, in which all documents for a par-
ticular patient are collected, departmental views
on a subset of the documents that belong to a par-
ticular patient, and reference lists for open
requests for a particular patient.

2. Task-related reference lists are work lists that
are related to a specific task (e.g., discharge reports
that are to be validated).

3. Meta-level reference lists contain references to
other reference lists. Examples are department
overviews that contain references to patient spe-
cific lists, and user specific lists that contain refer-

ences to different lists which are at the users dis-
posal.

The generator tool is a means to rapidly develop new
document-based applications. The generator tool and
the tool-generated applications are embedded into an
application framework, which is based on a common
central database. The application framework maps
both document data and necessary meta-data to
generic database tables. These generic tables are one
part of the overall database schema of the health
information system, which also contains conven-
tional database tables with explicitly modeled
semantics. Administrative applications (e.g., patient
data management with ADT functionality, financial
accounting) operate on these conventional database
tables. To illustrate the basic idea, the overall system
architecture is shown in Figure 1.

The Perspective of the Application Developer

The development of tool-based applications must be
seen in the broader context of an iterative and partic-
ipatory software engineering process. The applica-
tion designer closely cooperates with the end-users to
capture specific workflow requirements and to adapt
the application to the users’ needs. This is done by
elaborating the required information flow and map-
ping it to workflow enabled forms and reference lists.
The generator tool supports the development of new
forms and new reference lists.

Reference lists are also used to control access rights.
The application developer assigns different Roles to
different user groups. Each role is associated with
access rights to certain reference lists. If a new form is
to be developed, the application designer figures out
who is going to use this form (which user groups are
involved) and which reference lists are needed as
ingress points for these users. If necessary, new refer-
ence lists are to be defined. For each new form, the
application designer defines the associated fields and
their graphical layout. The application designer may
also define a default value or a computation rule for
a field. Access restrictions can be defined for certain
fields (e.g., only a physician is allowed to validate a
discharge letter). To specify document flow, different
states are to be defined for each form. An electronic
document has exactly one state at a time. The appli-
cation designer specifies in which reference lists a
document appears in a certain state. For example, the
reference list “new results for John Doe” presents an
overview of all documents containing results for this
patient (e.g., laboratory results, radiology results,

LENZ, ET AL., Process Support in Health Information Systems574

reports from consultants) that have not yet been seen
by the ordering physician. Moreover, the application
designer defines the triggering events that change the
document status. Each user interaction (e.g., updat-
ing a field) is an event that could be used. However,
typically an explicitly defined button is used as a trig-
gering event for a status change (e.g., a button “vali-
date”). A trigger may also initiate an automatic
upload of information from the central database. In
terms of our initial characterization of workflow
specification, document based applications as
described cover all three workflow aspects:

■ “What” is covered by the definition of forms and
their contents

■ “Who” is covered by assigning access rights to ref-
erence lists as well as individual fields and buttons

■ “When” is covered by defining triggering events
for controlling document flow

To enhance software reuse, it is also possible to include
repeatable fields and sub forms within electronic forms.
The application developer may, for example, define a
sub form for entering a diagnosis and reuse this sub
form in multiple “top-level forms.” Workflow, however,
is only specified for top-level forms.

The Perspective of the End User

Each user enters the system via his personal user
folder, which provides access to the reference lists
for which the user is authorized. By opening
department- and patient-specific reference lists, the
user navigates into a specific context. For example,
Dr. A views the departmental patient history of
Cardiology for patient John Doe. If the user creates
a new document by instantiating a form, this cur-
rent context information is used to automatically
upload context specific information into the docu-
ment (e.g., a newly instantiated discharge letter is

575Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

F i g u r e 1 Overall system architecture. Conventional administrative applications as well as document-based clinical appli-
cations directly operate on a common central database. An application framework provides access to generic database tables
as well as conventional (explicitly modeled) database tables. A generator tool is used to incrementally add new clinical appli-
cations to the system, which are based on a document-oriented user interaction paradigm.

automatically filled with the patients address and
other context determined information). Once a doc-
ument is open, the user typically interacts with the
system by filling this document almost like an ordi-
nary paper form, and by explicitly invoking events
(e.g. clicking on a dedicated button) to send this
document to its destination. Electronic documents
are typically filled step by step at different locations
and by different users. A radiology report, for
example, traverses different steps before it is com-
pleted and validated. Changes of validated docu-
ments are not permitted. If modifications are neces-
sary, a new version of this document can be created
while the old version is kept with an explicit inval-
idation remark.

Technical View on Electronic Forms

Technically, a form is an event-driven program that
collects information from multiple sites (different
locations involved in a distributed health care
process) and stores it persistently in the central data-
base. This program is always executed in a certain
context: When a user opens a discharge letter for John
Doe, the corresponding program is executed, and the
current context information for John Doe and the
document contents are uploaded into the local pro-
gram variables. The program starts an event handler,
which is simply a routine which registers events
(such as user input) and performs predefined actions,
accordingly. Each form has a closing event. If the
event handler registers the closing event, the docu-
ment contents are written back into the central data-
base and the program terminates.

System Description

This section describes implementation aspects of the
generator tool approach. In particular we describe the
underlying generic database schema, which covers
both the description of document-based applications as
well as the data on which these applications operate.

Generic Database Schema for Document-based
Applications

An extensible system, capable of dynamically han-
dling newly defined forms and reference lists, requires
the underlying database to be designed in a way that
allows introducing new concepts without modifica-
tion of the existing database schema. The common
approach is an entity-attribute-value (EAV) database
schema, as described by Nadkarni et al.26 The basic

idea of EAV is to use a single database table for arbi-
trary data items. The EAV table basically contains
three columns—one column to specify the entity, one
to specify the attribute, and one for the value of the
specified attribute. Data items with newly defined
semantics can be entered into the database without the
need for a schema modification. Necessarily, semantic
control on the database schema level is given up.
Instead, semantic annotations are entered into explic-
itly introduced tables for such metadata.

In our case, a modified and extended EAV schema is
required which also contains generic tables for the
description of dynamically defined document based
applications. We need both type level tables for
description of tool based applications (e.g., forms and
fields) and instance level tables for storing electronic
documents and their contents. Type level tables are
filled by the application developer via the generator
tool. Instance level tables are filled at runtime by the
end-user via the use of tool generated applications.
The schema fragment shown in Figure 2 contains
tables for forms, fields, documents, and entries. The
tables Form and Field both describe the structural type
of electronic documents (e.g., the form “discharge
report” may contain fields for patient data, physician
address, date, and comments). The table Document
represents form instances. A document has particular
entries (instances of fields). The table Entry is the
equivalent of the classic EAV table that actually con-
tains the user data to be stored. Instead of columns for
entities and attributes, however, the table contains
columns for documents and fields, respectively.

This construct allows association of entries with doc-
uments and fields, but it is too weak to identify
semantically interrelated fields in different forms. For
this purpose an additional layer of metadata tables
for semantic annotation of fields has been intro-
duced. Following Chen’s E/R notation, we have
named the corresponding tables Entity, Relationship,
and Attribute. The comparable meta-data tables in
Nadkarni´s EAV/CR schema are named Classes,
Class_Hierarchy, and Attributes, following an object-
oriented notation.26

The concept supports reuse of subforms in multiple
top-level forms. Subforms can be recursively
included in other forms by allowing fields of the type
“subform-reference.” If a form is modified, it is essen-
tial to keep the old version of the form in order to still
be able to interpret older documents. Additional
tables Form_Version and Layout are used to support
form versioning. They describe which field is used in

LENZ, ET AL., Process Support in Health Information Systems576

which form version and with which layout (e.g.,
position, size, color). As a validated electronic docu-
ment must not be modified, versioning is also needed
on the instance level: An Entry is always associated
with a document version (table Document_Version).

Generic database tables based on the EAV approach
are used to be able to dynamically add new forms
and fields to the system and thereby to extend the
system’s functionality. Advantages and disadvan-
tages of the EAV-approach are well known,26 and it
makes sense to use conventional database tables with
explicitly modeled attributes for major (static) parts
of the schema, especially for patient administration
data including the ADT-data. This conventional part
of the database schema particularly contains data-
base tables needed to describe the clinical context
information in which electronic documents are to be

embedded (e.g. an electronic document is generated
in a certain department and belongs to a patient and
a case). The context of a document is expressed by
directly referencing these tables: The table Document
actually contains foreign keys referencing conven-
tional database tables such as Patient, Case, Episode,
and Department.

Means to Support Data Integration

One of the main characteristics of the generator tool
approach is the ability of the tool to enable the appli-
cation designer to include references to existing data
items into newly defined forms. These may either be
data items stored in conventional database tables
(e.g., ICD diagnoses) or even data items from the
EAV table that belong to some other electronic docu-
ment. This is an essential feature of the generator tool

577Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

F i g u r e 2 Fragment of an
EAV schema for storing
forms and electronic docu-
ments. Primary key (PK) and
foreign key (FK) attributes
are labeled. Mandatory
attributes are indicated by
bold font. The tables Form,
Form_Version, Layout and
Field are used to describe doc-
ument types. The tables
Document, Document_Version
and Entry are used to store
document instances. The
table Entry is the actual EAV
table, which is used to store
all kinds of data items
regardless of their semantics.
Semantic annotations are
stored in the tables Entity,
Attribute, and Relationship.
Electronic documents (table
Document) are embedded into
a clinical context by foreign
keys to conventional data-
base tables Patient, Case,
Episode and Department.

that enables the application designer to develop truly
integrated applications from the very beginning.
Subsequently, we refer to a field which is derived
from some other data item as a computed field. First,
we concentrate on computed fields referring to data
stored in conventional database tables. A possible
solution would be to allow the application designer
to specify SQL-statements that compute the desired
information for an electronic document. Direct SQL-
access to the conventional database tables, however,
is not a good idea because the definition of a form
would depend fully on the structure of these tables,
and old forms might become unusable with a new
software release. Therefore, to be prepared for
schema evolution, it is better to encapsulate conven-
tional database tables into objects, which are used by
the application designer to refer to the associated
information. If the definition of a conventional data-
base table is modified in this case, it is necessary to
update only the encapsulating object appropriately to
adapt computations for all documents accessing this
table. Another positive effect of this method is that
the application developer is not confronted with the
whole complexity of the database schema. Instead,
the developer can choose from a predefined set of
objects which make sense in the current context.

After considering computed fields derived from con-
ventional database tables, we should look at the sec-
ond case: A computed field may also be derived from
another field in some other form. A typical case is
that an entry from a completed and validated docu-
ment is to be displayed in a newly created document.
For example, findings from different examinations
are to be uploaded in a discharge report. The genera-
tor tool offers a variety of options to upload contents
from other documents: The application designer can
either directly identify the document he refers to by
computing its document ID (e.g., explicitly specify-
ing an SQL query, which delivers the document ID),
or chose from a set of predefined context dependent
options (e.g., “last document of this case,” “last labo-
ratory report for this patient”).

Different strategies of storing and updating entries
for computed fields are to be distinguished. One
option is not to store the entries redundantly in the
EAV table (table Entry). We refer to such a field as vir-
tual field, and a corresponding entry is called virtual
entry. A virtual entry is automatically computed and
uploaded into local program variables when the doc-
ument is created or opened, and it is written back to
the source database table when the document is
closed. There is no further synchronization with the

source database tables, unless the application devel-
oper explicitly specifies trigger actions for repeating
the upload or for writing back to the database. As the
contents of validated documents must not be
changed, virtual entries automatically imply the need
for versioning of conventional database tables. An
update of a data item in its source database table
must not lead to an update in old and validated doc-
uments referring to this data item. If the conventional
database tables are not versioned, the application
developer must ensure that virtual data entries are
substituted by redundant entries in the Entry table as
soon as the document is validated. An alternative
with less redundancy is to delay explicit storage until
the referenced data are modified.

If a computed entry is explicitly stored in the Entry
table, it is up to the application developer to decide
how to synchronize this entry with the source data
from which it is derived. If the computation is used
only to set a default value for this field, further
updates or synchronization with the source database
tables are not necessary (we refer to this case as an
unsynchronized computed field). If the field, however, is
semantically redundant with the source database
table, the application designer must take steps to pre-
vent diverging instances of redundant data. The gen-
erator tool has to support this goal by providing
means to specify an appropriate replication protocol.
In its current version, the generator tool only pro-
vides asynchronous mechanisms for update propa-
gation between redundant entries. For computed
fields referring to conventional database tables, the
application programmer typically chooses a primary
copy approach, in which the data item in the conven-
tional database tables is the primary copy (master)
and all redundant entries in the EAV table are the sec-
ondary copies (slaves). This approach avoids diverg-
ing instances of the same data since updates are
always performed on the master copy. Bernstein et
al.27 provide a more detailed discussion of the under-
lying synchronization issues.

As shown in Figure 2, the table Field may contain sev-
eral flags to describe the storage and update charac-
teristics of a particular field:

■ Field_Computed: is true if corresponding entries are
computed from conventional database tables.

■ Field_Virtual: is true if corresponding entries are
computed but not redundantly stored in the table
Entry.

■ Field_Modifiable: is true if the user is allowed to
explicitly update the field.

LENZ, ET AL., Process Support in Health Information Systems578

■ Field_Synchronized: is true if the field is computed
and modifiable and updates on the field are to be
synchronized with the original conventional data-
base tables.

Another important attribute to characterize a field is
Field_Visible, which is true if the value of the corre-
sponding data entry is actually displayed on the elec-
tronic document. Invisible fields are typically defined
for additional document-related status information
that is not interesting for the user of the document
but that is used by the application designer for inter-
nal document control.

The attributes described in this section and in Figure
2 clarify the concept, but they are not sufficient for a
concrete implementation of a generator tool:
Additional tables and attributes are required; e.g., for
specifying whether a field is updated continuously
(immediate asynchronous propagation) or not.
Furthermore, to describe delayed updates, specifica-
tion and storage of triggering events are needed, but
not covered by the schema fragment in this article.

Handling Dynamic Aspects of Electronic
Documents

To support document flow, the generator tool must
provide means to specify when a document appears
in which reference list. For each form, a status vari-
able has to be defined and initialized, trigger events
for state changes have to be specified, and reference
list assignments have to be made according to the
current status. In the current implementation of the
generator tool, all this is done explicitly by the appli-
cation developer:

■ The developer explicitly defines an invisible field
interpreted as the document status.

■ The developer specifies trigger events that initiate
modifications of the status field.

■ For each relevant reference list, the developer
defines how references for this form and this list
are represented. The developer also defines a con-
dition indicating when a document of this type
appears in this reference list. A typical condition
would check whether the status field has a certain
value (e.g., $status == “validated”); arbitrary con-
ditions are possible, however.

As a consequence of this method, document defini-
tion and workflow definition are closely intertwined
and implementation of document flow is cumber-
some. The application designer must explicitly inter-

pret the individually defined status variable and
define trigger actions for state changes and reference
list assignment. Once processes are implemented and
hidden in the definition of forms, they are difficult to
understand and to modify.

Current developments are directed towards a more
comfortable way of specifying document flow. For
this purpose, specification of document flow and
specification of form contents are separated.
Workflow specification via the generator tool can be
eased by the use of graphical elements (e.g., by using
simple directed graphs that are annotated with attrib-
utes for workflow definition). A graph contains
nodes and directed edges. A directed edge connects a
source node and a destination node. Nodes represent
workflow states and are associated with reference list
types. A directed edge indicates a possible state tran-
sition. “Empty forms” that already include triggering
events and reference list assignments can then be
automatically generated from such a graphical
description of workflow. Within these empty forms
the application designer can already refer to work-
flow states in order to use them for document inter-
nal control (e.g., depending on the state, the applica-
tion designer might want to decide whether a certain
field is modifiable or not). Besides ease of program-
ming and advanced maintainability, another advan-
tage of this approach is that the workflow specifica-
tion is automatically documented.

The relational database schema described so far cov-
ers the contents of forms and documents only (the
“what” in the workflow specification). Additional
tables are required to store reference lists, references,
and document states. These extensions are described
in Figure 3. The characteristics of a reference list
are described by a reference list type (table
Reference_List_Type). Concrete reference lists are
instances of a reference list type and are stored in the
table Reference_List. Like electronic documents, refer-
ence lists can be related to a concrete clinical context.
A reference list type “patient history,” for example,
has concrete instances for each patient.

With the database schema in Figure 3 we present the
current developments toward a more stringent inter-
pretation of the document-based approach. Defini-
tion of document flow is supported explicitly, and it
is separated from the definition of form contents.
Each form (table Form_Version) is assigned to a num-
ber of workflow states (table Doc_State). The table
Document receives an additional foreign key on the
table Doc_State, indicating the current state of the

579Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

LENZ, ET AL., Process Support in Health Information Systems580

F i g u r e 3 Extended EAV schema for storing workflow-enabled forms and electronic documents. Tables for storing refer-
ence list types and reference list instances have been added. The context of a reference list instance (Table Reference_List) is
expressed by foreign keys to conventional database tables Patient, Case, Episode, and Department. Document states (Table
Doc_State) are used as core element to describe the dynamic behavior of documents, i.e. state transitions (Table
Doc_State_Transitions), dynamic reference list assignment (Table List_Assignment), and dynamic changes of field attributes
(Table Field_Control).

document. The document flow for a certain form is
described by defining the potential successor states
for each document state (table Doc_State_Transitions).
When a document is used at runtime, trigger buttons
are displayed for each successor of the current state
of this document. For each document state, it is nec-
essary to define in which reference lists a correspon-
ding document is to be displayed (table
List_Assignment). The table List_Assignment refers to a
document state and a reference list type (e.g., patient
history); the concrete reference list instance for a con-
crete document is determined by the context of that
particular document (e.g., if the document belongs to
patient John Doe, it will appear in the patient history
for John Doe). Task-related work list types typically
have only one instance. Reference types are used to
specify how a document is referenced within a par-
ticular reference list (table Doc_Ref_Type); for exam-
ple, a validated discharge report may be referenced
by displaying the document type, the patients name
and the date of validation. A concrete reference is an
instance of this type (e.g., “discharge letter for patient
John Doe from June 21, 2001”). A list assignment con-
tains an additional foreign key to the Table
Doc_Ref_Type to determine which reference type is to
be used for a document in a certain state and in a cer-
tain reference list. The table Doc_Reference is used for
concrete document references (e.g., document A
appears in reference list B using the document refer-
ence type C). Meta-level reference lists contain list
references instead of document references. The type
of such a list reference is described in the table
List_Ref_Type. Concrete list references are then
described in the table List_Reference (e.g., list A
appears in list B using reference type C).

Now that document states are explicitly stored in the
database, they can be used to control dynamic field
attributes: For example, a field may be modifiable until
the document is validated and not modifiable from
then on. The table Field_Control is used to store the def-
inition of this state dependent dynamic behavior.

Practical Aspects of Implementation

The relational database tables presented in this article
are intended to explain the concept of a document-
based generator tool. As already mentioned, they do
not represent a complete database schema, which is
needed for a concrete implementation. Additional
tables for event handling are needed, additional
attributes for layout and field positioning and the like
are needed, and the conventional database tables are

indicated only by rudimentary table fragments.
Moreover, in order to achieve an acceptable perform-
ance further considerations are necessary. For exam-
ple, interpreting forms solely from their description
in relational database tables will result in unaccept-
able response times. Therefore, it is necessary to pro-
vide measures to increase performance, e.g. redun-
dant storage of pre-generated forms as blobs.

Status Report

From the vendor’s perspective, the generator tool is
the fundamental strategy by which all new clinical
applications are developed. The tool can be used in
different scenarios. The application developer can
either be a member of the hospital’s IT staff or one of
the vendor’s specialists. A further perspective might
be to hand the tool to the end-user to let him or her
design his or her own forms; a modified (simplified)
version of the tool is being discussed for this purpose.
While tool-generated applications are in use in more
than 200 hospitals in Germany, only a few hospitals
are developing their own tool-based applications.
Instead, the vendor company employs both a
(smaller) group of system developers and a (larger)
group of application designers.

In our university hospital, the tool has been in use
since December 1999. Major components of the hos-
pital information system, such as clinical applica-
tions for wards and ambulatory care settings as
well as ancillary systems (radiology, pathology,
endoscopy and others), are based on the generator
tool approach. Several of the generator-based dis-
tributed applications have been implemented by
our hospital IT-staff.28 Generator-based applica-
tions are currently being used at all wards through-
out the hospital (approximately 180 clinical work-
stations at 90 wards). Additional generator-based
applications are used at approximately 100 work-
stations (radiology, 40; nuclear medicine, 20;
pathology, 25; dermatohistology, 5; endoscopy, 5;
sonography, 4). Applications for several ambula-
tory care settings are being introduced. All ICD-
diagnoses are captured via synchronized electronic
forms and are directly written into conventional
database tables. Documentation of procedures is
also increasingly covered by electronic forms.
Approximately 11,500 examination reports per
month are produced by means of electronic docu-
ments (e.g., in August 2001: radiology, 8,162;
pathology, 1,793; nuclear medicine, 993; dermato-
histology, 230; endoscopy, 322). Currently, 10 of 30

581Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

departments use generator-based discharge reports
(approximately 1,800 reports per month). Order
entry for radiology has been implemented via
workflow enabled forms, which include electronic
scheduling. The introduction time was about 4
months for all wards (90) of the hospital. The cen-
tral EAV table currently (Dec 2001) contains more
than 42 million entries and is growing at an increas-
ing rate of currently 2.2 million entries per month.
From our experiences, neither the tool-generated
code nor the EAV storage technique affected the sys-
tem performance negatively. There were negative
performance effects, but these resulted from the
holistic system with dependencies on administrative
modules (and long running administrative statistics
programs); they were not caused by the generator
approach.

The current implementation of the generator tool has
limitations. As already mentioned, specification of
document flow is not yet represented in the database.
Instead, the application designer is forced to use
invisible fields as status variables. This approach is
unsatisfying because definition of document contents
and workflow are intertwined and there is no possi-
bility to easily obtain any workflow-related informa-
tion from an existing generator-based application.
Because definition and interpretation of status vari-
ables are up to the application developer, dynamic
behavior of fields is also hidden in the program code.
The generator tool is currently being re-implemented
to separate workflow specification from the specifica-
tion of document contents. This re-implementation
also considers more general workflow issues, such as
dependencies among different forms. Another goal of
the re-implementation is to enhance reuse of soft-
ware-components (e.g., subforms). To reach these
goals, the application developer should be able to
refer to standardized sub form interfaces within the
workflow specification (e.g., an electronic document
should allow external access to its states in order to
enable a workflow engine to modify these states).

The second major drawback of the current implemen-
tation is that semantic annotation of fields is not suffi-
ciently elaborated yet; semantic meta-information
tables are missing. Usually electronic documents are
accessed as a whole via reference lists (e.g., patient his-
tory, ward specific view, departmental view), which is
sufficient to support routine clinical work practice.
Thus, semantic annotation of document contents has
not been absolutely essential for the success of the gen-
erator. Reasons for introducing semantic annotations
are well known, however,29,30 and the product is actu-

ally being developed into this direction. Although the
table Field may have an attribute for an informal
description of a field, a more stringent method is
needed to be able to identify identical or related con-
tents in different forms and for expressing semantic
equivalence. The method of choice is an additional
layer of metadata tables (see Figure 2) in the database
schema which is used to describe the semantics of
forms and fields.26 These tables contain descriptions of
entities (medical concepts) and relationships between
these entities (see Figure 2). The semantics of a newly
defined field can be expressed by relating this field to
the associated medical concept.

The next step should be to use the contents of the meta-
data tables for consistent semantic tagging of XML doc-
uments, which can be generated if data are to be
extracted and transferred to other systems. This step,
however, requires semantic annotation of all fields.
Moreover, if such an XML document is to be interpreted
by some external system, it would be advantageous to
use standardized XML tags. Ideally, the metadata tables
are to be filled with more or less standardized medical
concepts (standard ontologies), so that the metadata
tables finally provide a means for referencing a medical
entities dictionary or repository.29,30 Both semantic
annotation of electronic documents as well as explicit
workflow support are currently under development.

Discussion

We have presented a generator tool for rapid proto-
typing of document oriented and workflow-enabled
applications. Both the tool and the tool-generated
applications are integral parts of a health information
system. The approach allows dynamic evolution of
the information system by incrementally adding new
applications to the running system. The document-
based generator tool approach has several advan-
tages and drawbacks. Advantages of the approach
can be briefly summarized as follows:

■ Clinical documentation is supported in an intu-
itive way by emulation of paper-like forms.

■ These forms are routinely used by different parties
involved in the care process, resulting in an effec-
tive support of distributed clinical processes (e.g.,
radiology order entry and result reporting from
the wards could be realized in a surprisingly short
time).

■ EAV storage of forms data results in flexibility and
extensibility without the need for schema modifica-
tions. New attributes, data types, and concepts can

LENZ, ET AL., Process Support in Health Information Systems582

be included dynamically into a running system.
Moreover, EAV tables are space-efficient since unas-
signed fields do not allocate any memory at all.26

■ The document- and reference list-based approach
in combination with EAV has the advantage that
new task related work lists can be dynamically
included into a running system, which enables
dynamic extensibility of functionality.

■ Database integration of tool based applications
avoids additional efforts for interfacing compared
with independently designed applications.

■ The generator tool approach speeds up applica-
tion development because the application devel-
oper is not required to encode forms in a pro-
gramming language. Templates (e.g., a predefined
discharge report) can be reused and adapted to
specific departmental needs.

■ The generator tool used in our hospital has shown
that the approach is workable.

Drawbacks of the approach are:

■ Typical disadvantages resulting from the EAV
technique also affect the document oriented
extended EAV approach. For example, database
mechanisms for integrity control cannot be used in
the usual way. A significant amount of program
code has to be generated by the generator tool to
maintain integrity, which is normally ensured by
the database system.

■ Querying data from documents stored in EAV
tables is more complicated than querying conven-
tional database tables.

■ Specification and synchronization of computed
fields and redundantly stored data are essentially
up to the application developer. He decides when
to upload computed fields from conventional
database tables into electronic documents. Thus,
the application developer must carefully consider
what he or she is doing in order to avoid unde-
sired effects. Writing computed entries back into
conventional databases tables, for example, bares
the risk of potential inconsistencies because the
conventional tables might have been updated
since they were uploaded into the document,
which would result in a lost update.

■ Using the generator tool for rapid development of
clinical applications involves the risk of inhomo-
geneous forms. Style guides are needed to avoid
this. Moreover, to avoid unsynchronized semanti-

cally redundant forms, the tool should only be
used in a controlled manner (i.e., different applica-
tion developers working on semantically related
forms should cooperate).

Future implementations of the approach might be
more flexible by using XML to store electronic doc-
uments and appropriate DTDs (document-type
definitions) to describe the contents of a docu-
ment. This, however, is only a question of how to
implement the generator tool and which format is
used to make the data persistent. The idea of
developing distributed applications by defining
work lists and workflow-enabled documents
remains unaffected by this decision. For the long-
term archiving of electronic documents, additional
mechanisms are needed to achieve authenticity
and security in terms of availability, confidential-
ity, and integrity. An electronic signature and
means for redundant storage in a software-inde-
pendent format (e.g., pdf) are currently being
introduced in our implementation.

The generator tool described is essentially a tool for
computer-aided software engineering. Software engi-
neering and knowledge engineering are inherently
related. A common goal is to make domain models
and ontologies more explicit and thus improve the
maintainability and flexibility of computer pro-
grams.25 Musen’s work on Protégé has been funda-
mental under this scientific perspective: Protégé is a
set of tools and a methodology for building knowl-
edge-based systems that support the clear separation
of different system-building tasks such as explicit
modeling of domain ontologies and entry of content
knowledge.24,25 Although the approach in this article
can also be seen as a contribution toward more tai-
lorable and maintainable systems, the domain knowl-
edge flowing into generator-based applications is not
clearly separated yet. The semantic annotation of doc-
ument contents and the representation of a domain
ontology are only rudimentarily supported, and
information flow is still hidden in the declaration of
status variables. The current developments described
in the status report are indeed aimed at better consid-
ering these knowledge engineering aspects.

Component technology is gaining importance as
standards for technical and semantic interoperability
are evolving and increasingly adopted by healthcare
IT vendors. Some examples have shown that efforts
in integrating heterogeneous system components can
be successful if one can manage to map appropriately
the constituents of the system to real world

583Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

processes.31 However, healthcare information sys-
tems are still far away from plug-and-play reuse of
autonomously developed generic components.
Bridging incompatibilities between coarse grained
and functionally redundant subsystems is still state
of the art.

Projects such as RICHE and its successors, from
NUCLEUS to SynEx have aimed at the development
of domain specific open systems architectures.21–23

They have significantly promoted standardization
efforts, but have not yet led to a commonly accepted
framework and widely available commercial prod-
ucts. The concept of Act Management developed in
the RICHE project21 is an interesting approach to han-
dling patient-related workflow issues in health infor-
mation systems. Actually, the status of a medical
action or act is related to the status of electronic doc-
uments, which are used to support medical acts. Our
current efforts to separate workflow definition from
document definition are going into the direction of
intelligent act management.

Setting up a health information system today
requires a strategy for system evolution that is aimed
at the convergence and integration of the systems
components. The approach presented in this paper is
intended to support the development of new and
integrated components, and it is clearly based on a
database centric system architecture, which is its
strength and limitation at the same time.
Implementing a comprehensive hospital information
system with a single central database is not a realistic
scenario. For various reasons, heterogeneous
autonomous subsystems still have to be integrated
into the overall system.32 Currently these subsystems
are to be integrated in the conventional way by using
standard interfaces such as HL7 or DICOM and an
interface engine; imported data are typically con-
verted into an appropriate format and stored in the
central database. From there, these data may be
uploaded into electronic documents.

Some important issues, such as data retrieval, syn-
chronization and versioning of conventional data-
base tables, are still somewhat difficult to handle
within the current implementation of the generator
tool. However, as plug-and-play components and an
associated component market are not yet available,
this approach appears to be a workable step towards
an incrementally evolving and yet truly integrated
healthcare information system.

References ■

1. Kuhn KA, Lenz R, Blaser R. Building a hospital information
system: Design considerations based on the results from a
Europe-wide vendor selection process. Proc AMIA Symp.
1999; 834–8.

2. Dorenfest S. The decade of the ‘90s. Poor use of IT investment
contributes to the growing healthcare crisis. Healthc Inform.
2000;17(8):64–7.

3. Kuhn KA, Giuse DA. From hospital information systems to
health information systems: Problems, challenges, perspec-
tives. Methods Inf Med. 2001; 40: 275–87.

4. Institute of Medicine. Crossing the Quality Chasm: A New
Health System for the 21st Century. Washington, DC, National
Academy Press, 2001.

5. Sauer C. Deciding the future for IS failures: Not the choice you
might think. In Currie W, Galliers R (eds). Rethinking
Management Information Systems. Oxford University Press,
1999, pp 279–309.

6. Anderson JG, Aydin CE. Evaluating the impact of health care
information systems. Int J Technol Assess Health Care 1997;
13(2):380–93.

7. Kruchten P. The Rational Unified Process—An Introduction.
2nd ed. Boston, Addison Wesley, 2000.

8. Verstegen G. Projektmanagement mit dem Rational Unified
Process. Heidelberg, Springer, 2000 [in German].

9. Beck K. Extreme Programming—Das Manifest. München,
Addison Wesley, 2000 [in German].

10. Coiera E. When conversation is better than computation. J Am
Med Inform Assoc. 2000;7(3):277–86.

11. Brender J. Methodology for constructive assessment of IT-
based systems in an organisational. Int J Med Inf. 1999;
56(1-3):67–86.

12. Timpka T, Sjoberg C, Hallberg N, et al. Participatory design of
computer-supported organizational learning in health care:
methods and experiences. Proc Annu Symp Comput Appl
Med Care. 1995;800–4.

13. University of California, Davis. Rapid Application
Development. Available at URL: <http://sysdev.ucdavis.
edu/WEBADM/ document/rad_toc.htm>. Accessed Decem-
ber 20, 2001.

14. Georgakopoulous D, Hornick M, Sheth A. An overview of
workflow management. Distrib Parallel Dat. 1995;3:119–53.

15. Alonso G, Mohan C. WFMS: the next generation of distributed
processing tools. In: Jajodia S, Kerschberg L (eds): Advanced
Transaction Models and Architectures. Boston, Kluwer
Academic Publishers, 1997.

16. Dadam P, Reichert M, Kuhn K. Clinical workflows—The killer
application for process-oriented information systems?
Proceedings of the Fourth International Conference on
Business Information Systems, Posen, April 2000, pp 36–59.

17. Members of the Workflow Management Coalition. WfMC
Pub-lished Standards Documents. Available at URL: <http://
www. wfmc.org/standards/docs.htm>. Accessed August 22,
2001.

18. Lenz R, Kuhn KA. Intranet meets hospital information sys-
tems—the solution to the integration problem? Methods Inf
Med. 2001; 40: 99–105.

19. Szyperski C. Component software. Harlow, England, Addison
Wesley, 1998.

20. Spahni S, Scherrer JR, Sauquet D, Sottile PA. Towards spe-
cialised middleware for healthcare information systems. Int J
Med Inf. 1999;53:193–201.

LENZ, ET AL., Process Support in Health Information Systems584

21. Frandji B, Schot J, Joubert M, et al. The RICHE Reference
Architecture. Med Inform (Lond). 1994;19(1):1–11.

22. Kilsdonk AC, Frandji B, van der Werff A. The NUCLEUS inte-
grated electronic patient dossier breakthrough and concepts of
an open solution. Int J Biomed Comput. 1996;42(1–2):79–89.

23. Xu Y, D’Alessio L, Jaulent MC, et al. Integrating medical appli-
cations in an open architecture through generic and reusable
components. Medinfo. 2001;10(Pt 1):63–7.

24. Musen MA. Domain ontologies in software engineering: use
of Protege with the EON architecture. Methods Inf Med. 1998;
37(4–5):540–50.

25. Musen MA. Medical informatics: Searching for underlying
components. Methods Inf Med. 2002;41(1):12–9.

26. Nadkarni PM, Marenco L, Chen R, et al. Organization of het-
erogeneous scientific data using the EAV/CR representation. J
Am Med Inform Assoc. 1999;6(6):478–93.

27. Bernstein PA, Hadzilacos V, Goodman N. Concurrency
Control and Recovery in Database Systems. Reading, MA,

Addison-Wesley, 1987.
28. Lenz R, Elstner T, Blaser R, Kuhn KA. Experiences with a

holistic health information system. Proc AMIA Symp. 2001:
952.

29. Cimino JJ. From data to knowledge through concept-oriented
terminologies: Experience with the Medical Entities
Dictionary. J Am Med Inform Assoc. 2000;7(3):288–97.

30. Zeng Q, Cimino JJ. A knowledge-based, concept-oriented view
generation system for clinical data. J Biomed Inform 2001;
34(2):112–28.

31. Geissbühler A, Lovis C, Lamb A, Spahni S. Experience with an
XML/HTTP-based federative approach to develop a hospital-
side clinical information system. In Patel V, Rogers R, Haux R
(eds): Medinfo 2001. Proceedings of the 10th World Congress
on Medical Informatics. Amsterdam, IOS Press, 2001: 735–9.

32. McDonald CJ. The barriers to electronic medical record sys-
tems and how to overcome them. J Am Med Inform Assoc.
1997;4(3):213–21.

585Journal of the American Medical Informatics Association Volume 9 Number 6 Nov / Dec 2002

