
Bicalutamide-induced hypoxia potentiates RUNX2-mediated
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BACKGROUND: We have previously shown that hypoxia selects for more invasive, apoptosis-resistant LNCaP prostate cancer cells,
with upregulation of the osteogenic transcription factor RUNX2 and the anti-apoptotic factor Bcl-2 detected in the hypoxia-selected
cells. Following this observation, we questioned through what biological mechanism this occurs.
METHODS: We examined the effect of hypoxia on RUNX2 expression and the role of RUNX2 in the regulation of Bcl-2 and apoptosis
resistance in prostate cancer.
RESULTS: Hypoxia increased RUNX2 expression in vitro, and bicalutamide-treated LNCaP tumours in mice (previously shown to have
increased tumour hypoxia) exhibited increased RUNX2 expression. In addition, RUNX2-overexpressing LNCaP cells showed
increased cell viability, following bicalutamide and docetaxel treatment, which was inhibited by RUNX2 siRNA; a range of assays
demonstrated that this was due to resistance to apoptosis. RUNX2 expression was associated with increased Bcl-2 levels, and
regulation of Bcl-2 by RUNX2 was confirmed through chromatin immunoprecipitation (ChIP) binding and reporter assays. Moreover,
a Q-PCR array identified other apoptosis-associated genes upregulated in the RUNX2-overexpressing LNCaP cells.
CONCLUSION: This study establishes a contributing mechanism for progression of prostate cancer cells to a more apoptosis-resistant
and thus malignant phenotype, whereby increased expression of RUNX2 modulates the expression of apoptosis-associated factors,
specifically Bcl-2.
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Prostate cancer remains a prevalent disease among males, with
nearly 900 000 cases recorded worldwide in 2008 (Ferlay et al,
2010). Androgen-deprivation therapy (ADT) is commonly used as
a first-line treatment for prostate cancer; however, recent studies
have indicated that ADT can result in profound hypoxia (oxygen
deprivation) in prostate tumours (Alonzi et al, 2011; Ming et al,
2012). This is clinically important because hypoxia is known to be
a significant physiological stress in the tumour microenvironment,
encouraging progression and therapeutic resistance of many
cancers, including prostate cancer (Chaudary and Hill, 2007).
Much evidence has indicated that hypoxia (both chronic and
acute/cyclic) affects various aspects of tumorigenesis frequently
through induction of the hypoxia-inducible factor (HIF) transcrip-
tion factors (Majmundar et al, 2010). These regulatory mechan-
isms have recently been reviewed by others (Cassavaugh and
Lounsbury, 2011). In the present study, we identified mechanistic
links between hypoxia, RUNX2, a key transcription factor related
to aggressive prostate cancer, and apoptosis resistance.

RUNX2 is associated with tumour growth, invasion and
metastasis (Pratap et al, 2006; Zhang et al, 2011). In prostate
cancer, increased expression of RUNX2 was shown to activate
numerous genes associated with tumour growth and invasion
(e.g., VEGF and MMPs), as well as to correlate positively with

Gleason scores in human prostate cancer tissue samples
(Chua et al, 2009; Akech et al, 2010). Recent studies have shown
that RUNX2 physically and functionally interacts with both HIF-
1A and HIF-2A (Tamiya et al, 2008; Kwon et al, 2011), indicating
that hypoxia may be an important regulator of RUNX2. Moreover,
Butterworth et al (2008) found that hypoxia selects for more
invasive, apoptosis-resistant prostate cancer cells, which have
increased RUNX2 and Bcl-2 expression.

Apoptosis evasion is one of the hallmarks of cancer, and
disruption of normal apoptotic regulatory mechanisms in cancer
cells can be a major molecular force driving the progression of the
disease (Hanahan and Weinberg, 2011). Upregulated expression of
Bcl-2 has been found to be a feature of many cancers, including
prostate cancer, and is associated with more aggressive disease and
resistance to chemotherapy (Bonkhoff and Berges, 2010). A role
for RUNX2 in apoptosis was first identified by Bellido et al
(2003), who showed that the anti-apoptotic effect of parathyroid
hormone was mediated by RUNX2. It was also found that RUNX2-
expressing lymphomas have low apoptotic rates even in the
presence of Myc overexpression (Blyth et al, 2006).

In this study, we found that anti-androgen therapy increases
RUNX2 expression in prostate cancer cells. Both in vitro and
in vivo analyses demonstrate that hypoxia promotes overexpres-
sion of RUNX2 at the transcriptional level and that prostate cancer
cells with increased RUNX2 expression exhibit a survival
advantage by increasing Bcl-2 expression through direct regulation
of its promoter activity. We established that this increased RUNX2
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expression promotes progression to a more apoptosis-resistant
and thus a malignant phenotype. These results have delineated a
contributing mechanism of prostate cancer progression and
strengthen the argument for RUNX2 as a viable therapeutic target.

MATERIALS AND METHODS

Cell culture

Parental LNCaP prostate adenocarcinoma cells (ATCC, Rockville,
MD, USA) and generated sublines were maintained in RPMI-1640
medium supplemented with 10% fetal bovine serum (FBS), 10 mM

HEPES and 5 mM glucose. PC3 prostate carcinoma cells (ATCC)
were maintained in RPMI-1640 medium supplemented with 10%
FBS. Cells were cultured at 37 1C under 5% CO2 in air. For experi-
ments that required hypoxic conditions, the In Vivo2 Hypoxic
workstation (Ruskinn Technologies, Bridgend, UK) was used.

LNCaP xenograft model

All the experiments were conducted in accordance with the Animal
(Scientific Procedures) Act 1986 and the UKCCCR guidelines (2010)
for the welfare of animals in experimental neoplasia (Workman et al,
2010). LNCaP cells (5� 106 in matrigel) were implanted on the rear
dorsum of 8–10-week-old male severe immunocompromised (SCID)
mice. When tumours reached 150–200 mm3, mice were treated by
gavage with vehicle only (0.1% DMSO in corn oil; both Sigma, UK)
or the anti-androgen bicalutamide (2 mg kg� 1 per day; AstraZeneca,
Macclesfield, UK) for 28 days.

Immunohistochemistry

Animals were treated with bicalutamide or vehicle and killed after
0, 7, 14, 21 and 28 days of treatment. Tumours were removed and
fixed in 4% formalin (Sigma) before paraffin embedding and
sectioning at 5 mM. Sections were stained with RUNX2 (M70)
primary antibody (1 : 50; Santa Cruz Biotechnology, Heidelberg,
Germany) as described in Supplementary Methods. Five regions of
interest from three slides per tumour and three individual tumours
were quantified. Regions of interest were the centre of the tumour
section and each of the surrounding areas immediately north,
south, east and west of this. Each slide was scored in a blind
manner by two independent observers and the results averaged.

Gene expression analysis (RT–Q-PCR)

RNA was extracted from cells using the High Pure RNA Isolation
kit (Roche, Welwyn Garden City, UK) and reverse transcribed
using RevertAid reagents (Fermentas, Cambridge, UK). Primer
sequences can be found in Supplementary Methods. Samples
from three independent experiments were analysed in triplicate.
For the RT–Q-PCR array, the RealTime Ready Human Apoptosis
Panel (Roche, UK) was used according to the manufacturer’s
instructions.

Western blotting

A detailed description of western blotting of whole-cell lysates
extracted in RIPA buffer can be found in Supplementary Methods.

RNA stability assay

LNCaP cells were exposed to hypoxia (0.1% O2) for 2 h before
adding actinomycin D (Sigma) to the culture medium to a final
concentration of 5 mg ml� 1. Cells were returned to hypoxia for the
duration of the experiment. RNA was extracted from cells at 0, 2, 4,
6 and 8 h following treatment, cDNA prepared and expression of
RUNX2 mRNA assessed using Q-PCR.

Generation of stable RUNX2-overexpressing cells

LNCaP sublines were generated by either lentiviral gene delivery as
reported previously (Leong et al, 2010) or by stably transfecting
with either empty vector to create LNCaP-V or vector containing
RUNX2 to create LNCaP-R using Lipofectamine 2000 (Invitrogen,
Paisley, UK). Confirmation of RUNX2 expression was carried out
using RT–Q-PCR and western blotting.

XTT assay

Cells were plated at 1� 104 into a 96-well plate and left overnight to
adhere. Docetaxel (in 0.001% DMSO) was added (1, 2, 10, 25, 50 and
100 nM final concentration) and cells were incubated at 37 1C for 48 h.
XTT assay was carried out (Roche, UK) with absorbance measured at
490 nm using a Versamax plate reader (Molecular Devices Inc.,
Sunnyvale, CA, USA).

DNA laddering assay

Cells (2� 106 per dish) were plated in 100 mm culture dishes and
left to adhere overnight before treating with 100 nM docetaxel for 0,
24, 36 or 48 h. Then, 2� 106 cells from each treatment group were
resuspended in PBS and DNA was extracted using the Apoptotic
DNA-ladder kit (Roche, Indianapolis, IN, USA). The band intensities
of the resultant ladders were quantified using GelQuant.NET software
provided by biochemlabsolutions.com.

Caspase 3/7 luminescent assay

Cells (1� 104 per well) were seeded in a 96-well plate and left to
adhere for overnight before treating with 100 nM docetaxel for 48 h.
Following treatment, LNCaP-V and R cells were subjected to
caspase 3/7 activity measurement with Caspase-Glo assay kit
(Promega, Madison, WI, USA). Luminescence was measured using
a GLOMAX luminometer (Promega).

TUNEL assay

The TUNEL assay was performed using the Click-It TUNEL kit
(Invitrogen). Briefly, 5� 105 cells were seeded on individual
microscopy slides and allowed to adhere overnight before
treatment with 100 nM docetaxel for the indicated times. Post
processing, cells were visualised using a Nikon Eclipse E400
(Nikon UK, Surrey, UK) inverted fluorescent microscope. Analysis
of TUNEL-positive cells was carried out on five fields of view on
each of the three slides in three independent experiments.

Caspase 3 cleavage assay

Cells (2� 106 per dish) were plated in 100-mm culture dishes and
left to adhere overnight before treating with 100 nM docetaxel for
times indicated. Subsequently, whole-cell lysates were subjected to
western blotting (above) and probed for cleaved caspase 3 protein.

siRNA

Cells were transfected with RUNX2 or Bcl-2 siRNA (100 nM; both
Santa Cruz Biotechnology) using siRNA Transfection Reagent (Santa
Cruz Biotechnology). Confirmation of knockdown was carried out
using RT–Q-PCR and western blotting. Control siRNA-A (100 nM;
Santa Cruz Biotechnology) was used as a negative control.

Luciferase assay

A luciferase assay to assess Bcl-2 promoter activity was carried out
using a Dual-Glo Luciferase Assay System (Promega, Southampton,
UK). Detailed instructions can be found in Supplementary Methods.
Mutation of the two putative RUNX2-binding sites within the
Bcl-2 promoter was achieved using the Quikchange Site-Directed
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mutagenesis kit (Stragene, La Jolla, CA, USA) according to the
manufacturer’s instructions.

ChIP assay

The ChIP assay was performed on cells using the ChIP-IT Express kit
(Actif Motif, La Hulpe, Belgium). In addition to analysis in LNCaP-V,
LNCaP-R and PC3 cells (positive control), parental LNCaP cells
were exposed to either oxic or hypoxic (0.1% O2 for 2 h) conditions
before cross-linking to confirm RUNX2 occupancy on the Bcl-2
promoter under hypoxic conditions. A more detailed description
of the ChIP assay can be found in Supplementary Methods.

RESULTS

The anti-androgen bicalutamide modulates RUNX2
expression in LNCaP tumours in vivo

Because bicalutamide is commonly used to treat locally advanced
prostate cancer, we examined the effect of a clinically relevant dose

of bicalutamide (2 mg kg� 1 per day) on RUNX2 expression
in LNCaP tumours in vivo. Immunohistological examination of
tumours revealed that RUNX2 expression increased with time in
vehicle-treated animals (Figure 1A); this increase was much more
pronounced in bicalutamide-treated animals. Bicalutamide
treatment resulted in a significant increase (2.6 fold) in RUNX2-
expressing cells after 14 days (Figure 1B, Pp0.01). After 28 days,
the number of tumour cells expressing RUNX2 protein was
3.5-fold higher than in vehicle-treated tumours. These results were
confirmed by RT–Q-PCR analysis of RNA extracted from tumours
(Figure 1C, Pp0.05). To identify the mechanism of increased
RUNX2 expression, we treated LNCaP cells in vitro with an
equivalent dose of bicalutamide and measured the expression of
RUNX2 mRNA; in vitro treatment of LNCaP cells with bicaluta-
mide failed to induce RUNX2 expression (Figure 1D). This result,
coupled with previous results from our laboratory showing
increased tumour hypoxia in bicalutamide-treated LNCaP tumours
(Ming et al, 2012), prompted us to investigate the effect of
hypoxia on Runx2 expression in LNCaP cells. We found that both
acute (0.1% O2 for 2 h) and chronic (0.1% O2 for 24 h) hypoxia

0 7 14 21 28
0

5

10

15

20

25

**

***

***

Treatment time (days)

R
U

N
X

2-
po

si
tiv

e 
ce

lls
 (

%
)

0 7 14 21 28
0

2

4

6

8
Vehicle
BCA

Vehicle
BCA

** *

**

Treatment time (days)

R
U

N
X

2 
m

R
N

A
 fo

ld
ch

an
ge

 (
re

la
tiv

e 
to

 ti
m

e 
0)

24 h 7 days
0.0

0.5

1.0

1.5
Vehicle
BCA

R
U

N
X

2 
m

R
N

A
 fo

ld
 c

ha
ng

e
(r

el
at

iv
e 

to
 ti

m
e 

0)

0 2 4 6 8
0

20

40

60

80

100

Oxia
Hypoxia

***

***
*

*

Time after actinomycin
treatment (h)

R
U

N
X

2 
m

R
N

A
(%

 o
f t

im
e 

0)

RUNX2
B-actin

0

2

4

6

8 Oxia
Acute hypoxia
Chronic hypoxia

R
U

N
X

2 
m

R
N

A
 fo

ld
 c

ha
ng

e
(r

el
at

iv
e 

to
 o

xi
a 

co
nt

ro
l)

Treatment time (days)

0 7 14 21 28

Vehicle

BCA

Figure 1 Bicalutamide (BCA) treatment increases RUNX2 expression in LNCaP tumours in vivo; hypoxia increases RUNX2 expression in LNCaP cells in vitro.
(A) Representative images of RUNX2 staining in LNCaP tumours. Magnification � 400. (B) Percentage of LNCaP cells staining positively for RUNX2. Results shown
are mean±s.e. of five regions of interest for three slides for each of the three independent tumours. (C) RUNX2 mRNA fold change in tumours measured using
RT–Q-PCR. Results shown are mean±s.e. of three independent tumours. (D) RUNX2 mRNA fold change in LNCaP cells treated with BCA in vitro (4.6mM). Results
shown are mean±s.e. of four independent experiments. (E) RUNX2 mRNA expression in oxia and acute (0.1% O2 for 2 h) and chronic (0.1% O2 for 24 h) hypoxia.
Results shown are mean±s.e. of three independent experiments. (F) RUNX2 mRNA expression under oxic or hypoxic (0.1% O2) conditions after exposure to
actinomycin D (5mg ml� 1). Results shown are mean±s.e. of three independent experiments. *Pp0.05, **Pp0.01 and ***Pp0.001 (two-way ANOVA).
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increased RUNX2 mRNA expression (Figure 1E). Exposure to
hypoxia increased the half-life of RUNX2 mRNA from 2 h in
oxia to 4.7 h (Figure 1F), indicating that the hypoxia-induced
increase may be mediated by an increase in the half-life of
RUNX2 mRNA.

Collectively, the in vitro and in vivo data presented suggest that
the microenvironmental stress of hypoxia causes increased RUNX2
expression.

RUNX2 influences cell survival

Subsequently, we investigated whether RUNX2 may have a role in
prostate cancer cell survival. Following failure of ADT, prostate
cancer is treated with the chemotherapy agent docetaxel; thus,
docetaxel was chosen as a clinically relevant apoptosis-inducing
drug to use in subsequent experiments. We created LNCaP cell
lines that expressed three times more RUNX2 protein than a
vector-only control (Figure 2A; LNCaP-R and LNCaP-V, respec-
tively). LNCaP-R cells were more resistant to docetaxel treatment
than LNCaP-V cells in an XTT assay (Figure 2A). To confirm that
increased cell viability following exposure to docetaxel was due to
increased RUNX2, LNCaP-R cells were transfected with scrambled
or RUNX2 siRNA, and cell viability was measured following
docetaxel treatment (Figure 2B). Following 78% knockdown of
RUNX2 protein expression, RUNX2 siRNA treatment of LNCaP-R
cells resulted in a significant reduction in cell viability, with
survival levels similar to that of the vector-only control cells

(Figures 2B and A, respectively). This result suggested that ectopic
expression of RUNX2 caused the increased cell viability. Because
we showed that bicalutamide treatment increased expression of
RUNX2 in vivo (Figures 1A–C), we assessed cell viability following
a clinically relevant dose of bicalutamide (Figure 2C). Forty-eight
hours after bicalutamide treatment, LNCaP-R cells were signifi-
cantly more viable than LNCaP-V cells; this effect was abrogated
by RUNX2 siRNA treatment. As we know that LNCaP tumours
treated with bicalutamide exhibit profound hypoxia (Ming et al,
2012), we assessed cell survival following a significant hypoxic
insult (72 h at 0.1% O2). LNCaP-V cells did not survive the hypoxic
conditions; however, although the growth rate of LNCaP-R cells
was affected by hypoxia, they recovered and continued to grow
(Figure 2D). To support the role of RUNX2 in mediating resistance
to chemotherapy, we treated PC3 cells (known to have high
endogenous RUNX2 expression; (Akech et al, 2010) with RUNX2
siRNA and found that cells treated with RUNX2 siRNA were
significantly more sensitive to docetaxel than ordinary PC3 cells at
25, 50 and 100 nM (Figure 2E, Pp0.05). Moreover, we used hypoxia
pre-treatment (0.1% O2 for 2 h) to induce RUNX2 expression in
LNCaP cells, and then measured the sensitivity of these cells to
docetaxel with or without siRNA treatment. Pre-treatment with
hypoxia resulted in cells being more resistant to docetaxel
(Figure 2F); this effect was abolished following treatment with
RUNX2 siRNA. In summary, endogenous and forced expression
(either through ectopic or environmental modulation) of RUNX2
renders LNCaP cells resistant to docetaxel treatment.
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Figure 2 Increased RUNX2 expression results in resistance to docetaxel in vitro. (A) LNCaP-V or LNCaP-R cells were exposed to docetaxel for 48 h
before XTT assay. Results shown are mean±s.e. for three independent experiments. Inset is representative western blot showing RUNX2 protein
expression in stable cell lines. (B) LNCaP-R cells were treated with either scrambled siRNA or RUNX2 siRNA, and response to docetaxel was measured
using an XTT assay after 48 h. Results shown are mean±s.e. of three independent experiments. Inset is representative western blot showing RUNX2
expression in 1 – LNCaP-R cells, 2 – LNCaP-R cells treated with scrambled siRNA and 3 – LNCaP-R cells treated with RUNX2 siRNA. (C) LNCaP cells
were treated with scrambled or RUNX2 siRNA and viability following bicalutamide measured after 24 and 48 h using an XTT assay. Results shown are
mean±s.e. of three independent experiments. (D) LNCaP-V or LNCaP-R cells were counted using a trypan blue exclusion assay following chronic hypoxia
(0.1% O2 for 72 h). Results shown are mean±s.e. of three independent experiments. (E) PC3 cells were treated with scrambled siRNA or RUNX2 siRNA,
and response to docetaxel was measured using an XTT assay. Results shown are mean±s.e. of three independent experiments. (F) LNCaP cells were
transfected with scrambled siRNA or RUNX2 siRNA before hypoxia exposure (0.1% O2) for 2 h prior to treatment with docetaxel. Cell viability was
measured after 48 h using an XTT assay. *Pp0.05, **Pp0.01 and ***Pp0.001 (two-way ANOVA).
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RUNX2-mediated resistance to chemotherapy is a result of
resistance to apoptosis

We next evaluated if increased survival of RUNX2-overexpressing
cells was mediated through alteration of their apoptotic potential.
Using a DNA laddering assay, intensity of the DNA banding in the
LNCaP-R cells was significantly less than that of the vector-only-
expressing cells after 48 h of docetaxel treatment, indicative
of reduced apoptosis in the cells (Figure 3A). With the caspase
3/7 assay, significantly more apoptosis was found to occur in the
LNCaP-V cells compared with -R cells, with a 2.75- and 1.85-fold
change, respectively, in the docetaxel-treated over vehicle-only-
treated controls (Pp0.05) (Figure 3B). Similarly, the TUNEL assay
revealed a trend of less apoptosis in the LNCaP-R cells compared
with the LNCaP-V cells at all points of treatment investigated, and
a significant difference was found at three of the four time points
tested (16 h (Pp0.05); 20 h (Pp0.01); and 48 h (Pp0.05))
(Figure 3C). Furthermore, 54% and 33% less apoptosis was found
to occur in the LNCaP-R cells than the LNCaP-V cells after 48 and
72 h of treatment, respectively, when assayed using a caspase
3 cleavage assay (Figure 3D). Taken together, these results
demonstrate that increased expression of RUNX2 in LNCaP cells
leads to increased resistance to apoptosis.

RUNX2-associated resistance to apoptosis is mediated
through Bcl-2

To address a requirement for RUNX2 in contributing to a high
level of cell survival, we examined the expression of Bcl-2 in our
RUNX2-overexpressing LNCaP cells. Levels of Bcl-2 were 2.4-fold

higher in LNCaP-R cells (Pp0.01), whereas levels of Bax were
unaffected (Figure 4A). Examination of the Bcl-2 promoter
identified two putative RUNX2-binding sites within 1 Kb of the
transcription start site (Figure 4B). To investigate whether RUNX2
directly regulates Bcl-2 by interacting with and transactivating the
Bcl-2 promoter region, luciferase transcriptional activation and
ChIP assays were performed. There was a 1.9-fold increase in Bcl-2
promoter activity in LNCaP-R compared with LNCaP-V cells
(Pp0.05); this was abrogated following mutation of the RUNX2-
binding sites (Figure 4C). As presented in Figure 4D, RUNX2
pull-down was enriched for Bcl-2 promoter fragments compared
with IgG-negative controls at both sites. PC3 cells were used as a
positive control and showed enhanced binding of RUNX2 with the
Bcl-2 promoter. Exposure to hypoxic conditions also increased
RUNX2 binding at the Bcl-2 promoter. Moreover, siRNA depletion
of RUNX2 in the LNCaP-R cells decreased Bcl-2 mRNA expression
by almost 70% (Figure 4E). In addition, we briefly examined the
effect of hypoxia on Runx2-mediated Bcl-2 expression, and found
that hypoxia (0.1% O2 for 2 h) increased both Runx2 and Bcl-2
mRNA levels; this effect was partially abrogated by treatment with
RUNX2 siRNA (Figure 4F). Overall, these results suggest that the
increased resistance to apoptosis evidenced in the RUNX2-
overexpressing cells is mechanistically linked to RUNX2 upregula-
tion of the anti-apoptotic molecule Bcl-2.

RUNX2 modulates expression of a number of
apoptosis-associated genes

To further delineate the mechanism of RUNX2-mediated resis-
tance to apoptosis, we treated LNCaP-R cells with scrambled or
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docetaxel treatment. Below, densitometric quantification values±s.e. for three independent experiments. *Pp0.05 and **Pp0.01 (Student’s t-test).
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Bcl-2 siRNA. These cells were then exposed to various doses
of docetaxel for 48 h. Although Bcl-2 siRNA resulted in a 75%
reduction of Bcl-2 protein (Figure 5A), survival of cells was not
fully decreased to that observed in vector-only cells (Figure 5B).
These results suggested that molecules other than Bcl-2 were
involved in RUNX2-mediated resistance to apoptosis. Conse-
quently, we extracted RNA from LNCaP-R and -V cells and
analysed expression using an apoptosis-specific RT–Q-PCR array.
Of the 88 tested genes, 16 pro- and anti-apoptotic genes were
significantly differentially expressed in the RUNX2-overexpressing
cells, and these effects were reversed in the RUNX2 siRNA-treated
LNCaP-R cells (Figure 5C). Analysis, based on published functions
of each gene, indicates that increased expression of RUNX2
favours a more pro-survival molecular phenotype.

DISCUSSION

The anti-androgen bicalutamide is a commonly used treatment for
locally advanced prostate cancer (Anderson, 2003). A key finding
in this study is the increase of RUNX2 expression during clinically
relevant scheduling of bicalutamide. This induction is likely due
to bicalutamide-induced hypoxia, as previous studies from our
laboratory demonstrated that bicalutamide treatment of LNCaP
tumours in vivo resulted in profound and persistent hypoxia

(Ming et al, 2012) and that RUNX2 expression was upregulated in
hypoxia-selected LNCaP cells (Butterworth et al, 2008). In vitro
analyses revealed that hypoxia increased RUNX2 expression in
LNCaP cells, whereas bicalutamide treatment had no effect
(Figures 1D and E). These findings have important clinical
relevance as it is widely known that hypoxia drives the malignant
progression of many cancer types, including prostate cancer
(Maxwell et al, 2001).

We have shown that increased RUNX2 expression, whether
ectopic or endogenous, provides LNCaP prostate cancer cells with
a survival advantage when exposed to docetaxel, bicalutamide or
hypoxia. This finding is also clinically relevant because docetaxel
is one of the drugs used to treat men who have relapsed after
ADT (Mottet et al, 2011). It will be important to understand the
consequence of increased RUNX2 expression with respect to a
broad spectrum of chemotherapy agents that act through a diverse
series of mechanisms with multiple cellular targets. Nevertheless,
here we demonstrated that the survival advantage of cells with
elevated RUNX2 expression following exposure to docetaxel was
because of reduced apoptotic potential mediated at least in part by
Bcl-2. We characterised the relationship between RUNX2 and
Bcl-2, and established that increased RUNX2 was associated with
increased Bcl-2 at both the mRNA and protein level, whereas levels
of Bax mRNA and protein were unaffected. We also demonstrated
that RUNX2 binds to and transactivates the Bcl-2 promoter,
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providing a mechanism for how RUNX2 affects the apoptotic
potential of the cells. Interestingly, in our previous studies with
bicalutamide-treated LNCaP tumours (Ming et al, 2012), expres-
sion of Bcl-2 mRNA followed a similar pattern to that observed for
RUNX2 mRNA in the current study, confirming a relationship
between the two. In support of these findings, ectopic expression
of RUNX2 in mammary epithelial cells induced expression of Bcl-2
and had a role in the progression of cells to a tumorigenic
phenotype (Pratap et al, 2009). Other studies have also shown a
correlation between RUNX2 expression and tumour cell survival
or tumorigenesis, depending on the cellular context (Zaidi et al,
2007; Chua et al, 2009). Increased Bcl-2 expression is a key
hallmark in the malignant progression of prostate cancer, with
increased Bcl-2 expression indicative of advanced tumour stage,
high Gleason score and a predictor for early disease recurrence
after surgery (Revelos et al, 2005). Conversely, recent studies in
osteosarcoma cells have shown that although RUNX2 did not affect
Bcl-2 expression, RUNX2 did potentiate the expression of Bax, a

pro-apoptotic molecule (Eliseev et al, 2008; Goloudina et al, 2012).
This divergence suggests that how RUNX2-modulated apoptosis
may be cell-type specific, and more research needs to be carried
out to confirm the effects of blocking RUNX2 expression in
various tumours.

Previous studies have demonstrated a relationship between
hypoxia and induction of Bcl-2 (Wang et al, 2002); in the current
study, we briefly assessed levels of RUNX2 and Bcl-2 mRNA
following hypoxia and RUNX2 siRNA. We found that hypoxia-
induced Bcl-2 expression may be partially due to RUNX2
overexpression; although a RUNX2-independent pathway does
exist. Further studies are needed to fully understand the intricacies
of this complex relationship.

Studies carried out using Bcl-2 siRNA in an XTT assay revealed
that Bcl-2 alone cannot account for the difference in RUNX2-
mediated sensitivity to apoptosis. An apoptosis-specific RT–Q-
PCR array identified a number of pro-and anti-apoptotic genes,
which are differentially expressed in RUNX2-overexpressing cells
compared with controls. Putative RUNX2-binding sites were
present in the promoter region of seven of the genes differentially
expressed in our RUNX2-overexpressing cells (Bcl-2, cIAP2,
Stat5a, Casp14, TRAIL, Casp5 and PUMA), suggesting that RUNX2
may be involved in directly regulating the expression of
other apoptosis-associated genes; however, further studies will be
necessary to demonstrate such regulation. Although both pro- and
anti-apoptotic factors were found to be increased in RUNX2-
overexpressing cells, a more apoptosis-resistant phenotype was
favoured in this case. It is feasible to suggest that two processes
may occur within a population of cancer cells with increased
RUNX2 expression; a small number of cells may die due to the pro-
apoptotic signals they receive; however, many more may become
apoptosis resistant, resulting in the pro-survival phenotype
observed in the RUNX2-overexpressing LNCaP cells. Nonetheless,
it is clear that the role of RUNX2 in apoptosis is complex and likely
to be context specific, and thus warrants further investigation.

In summary, this study strongly suggests that RUNX2 has a
major role in treatment-induced malignant progression of prostate
cancer. Data presented indicate that hypoxia, a microenviron-
mental consequence of ADT, serves to increase RUNX2 expression
in tumour cells. Importantly, this study provides mechanistic
insight into how RUNX2 interacts with Bcl-2, affecting the ability
of cells to undergo normal apoptotic processes in response to a
commonly used chemotherapy agent. Greater understanding of the
intricacies and modifications of molecules aberrantly regulated in
prostate cancer is vital if progress in improving treatment and,
ultimately, prevention of the disease is to be achieved. With this in
mind, data provided in the current study highlight RUNX2 as a
promising therapeutic target with the potential to help control the
malignant progression of prostate cancer.
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