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Abstract
The microtubule (MT)-associated protein tau, which is highly expressed in the axons of neurons,
is an endogenous MT-stabilizing agent that plays an important role in the axonal transport. Loss of
MT-stabilizing tau function, caused by misfolding, hyperphosphorylation and sequestration of tau
into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences.
Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be
utilized to compensate for the loss of tau function and to maintain/restore an effective axonal
transport. These findings indicate that MT-stabilizing compounds hold considerable promise for
the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis
of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context
of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing
compounds.

Microtubule (MT) dynamics, axonal transport and neurodegenerative
tauopathies

Microtubules (MTs), essential constituents of the cytoskeleton in eukaryotic cells, are
involved in a number of important structural and regulatory functions, including the
maintenance of cell shape, intracellular transport machinery, as well as cell-growth and
division. Structurally, MTs are hollow tubes of approximately 24 nm in diameter that result
from the head-to-tail polymerization of α- and β-tubulin heterodimers (Figure 1).1

MTs are highly dynamic structures that alternate between growing and shrinking phases.2

Because of this dynamic nature, MTs can undergo relatively rapid turnover and form a
variety of different arrays within cells. The presence of various tubulin isoforms, post-
translational modifications, and interactions with MT-associated proteins (MAPs) play an
important role in determining the morphology, stability, and, ultimately, the particular
function of the MT lattice in different cell types.

In the axons of neurons, MTs form polarized linear arrays with the plus ends directed toward
the synapses and the minus ends toward the cell body. Such an organization of axonal MTs
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provides both structural support and directionality for the intracellular transport of proteins
and vesicles to and from the cell-body and the synapses (Figure 2). This cytoskeletal
structure, together with molecular motors such as kinesins and dyneins, form the axonal
transport machinery, which is critical to the viability of neurons3 and notably, axonal
transport defects are observed in several neurodegenerative diseases.4 In the case of
tauopathies, which are a group of neurodegenerative diseases that include Alzheimer’s
disease (AD) and related forms of frontotemporal lobar degeneration (FTLD), axonal
transport deficits are thought to arise at least in part from the misfolding and aggregation of
the MT-associated protein (MAP) tau.5 These tau aggregates form intracellular filamentous
inclusions, known as neurofibrillary tangles (NFTs) and neuropil threads, which, together
with the senile plaques comprised of amyloid β (Aβ peptides, constitute the characteristic
lesions that are diagnostic of AD. Furthermore, the presence of tau aggregates in the absence
of deposits of Aβ peptides or other proteinaceous inclusions comprise the defining lesions of
other tauopathies, such as Pick’s disease, progressive supranuclear palsy (PSP) and
corticobasal degeneration, which are the most common forms of FTLD.5

Tau is expressed particularly in the axons of neurons with the primary function to promote
MT-stabilization.6 Under physiological conditions, the vast majority of tau molecules are
bound to MTs. However, in neurons affected by tauopathies, tau becomes progressively
disengaged from the axonal MTs, possibly due to hyperphosphorylation, which is known to
reduce the binding affinity of this protein for the MTs.7, 8 An abnormal detachment of tau
from the MTs is thought to alter the dynamics and organization of the axonal MTs, which in
turn can trigger or exacerbate axonal transport defects.3 Furthermore, once detached from
MTs and hyperphosphorylated, tau becomes considerably more prone to misfolding and
aggregation.9, 10 This misfolded and/or aggregated tau can in turn recruit additional
functional tau proteins into the aggregation cascade, contributing further to the
destabilization of axonal MTs.11 Thus, based on the relationship between tau pathology and
the appearance of MT12 and axonal transport deficits, a possible strategy for the treatment of
AD and related tauopathies is to employ exogenous MT-stabilizing agents that could
compensate for loss of tau maintenance of the appropriate organization and dynamics of the
axonal MTs.13 Such an approach would hold the promise of restoring effective axonal
transport in neurons affected by tauopathy and, as a result, prevent synaptic dysfunctions
and neuron loss.13, 14

Over the past several decades, several classes of MT-stabilizing natural products have been
discovered (Table 1) with the majority of these having been extensively characterized as
cancer therapeutics due to the essential role of MTs in cell division. In contrast, as shown in
Table 1, a comprehensive evaluation of the different classes of natural products in the
context of neurodegenerative tauopathies has not as yet been achieved. A critical challenge
facing the development of CNS-directed MT-stabilizing therapies to treat tauopathies is
identifying brain-penetrant compounds that would be effective at non-toxic doses. Indeed,
the blood-brain barrier (BBB), which is equipped with relatively impermeable intercellular
tight junctions, as well as with active transporters such as the P-glycoprotein (Pgp),15 is
known to be a remarkable obstacle in the development of any CNS-directed therapy.16 It is
estimated that <2% of all potential drug candidates can permeate across the BBB.17 In
addition, MT-stabilizing drugs, which are routinely used in cancer chemotherapy, are known
to cause a number of debilitating side-effects, which are directly linked to the MT-
stabilizing properties of these compounds, and include neutropenia18 and peripheral
neuropathy.19 Thus, even if brainpenetration issues were solved, long-term treatment of
tauopathy patients with this class of therapeutics might be difficult due to dose-limiting
toxicities. Despite these important challenges, different lines of research have validated the
potential utility of MT-stabilization as a therapeutic approach to treat tauopathies. In vitro,
MT-stabilizing agents have been found to protect cultured neurons against tau-20, 21 and Aβ-
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mediated22–24 neurotoxicity. In vivo, the first demonstration of the therapeutic potential of
this type of compounds was reported in 2005,25 when paclitaxel treatment was found to
restore fast axonal transport (FAT) and increase MT density in L5 axons that project from
spinal motor neurons to lower limb muscles of T44 tau transgenic (Tg) mice affected by
spinal cord tau pathology. Importantly, paclitaxel treatment produced an improvement in the
motor weakness phenotype of these Tg mice due to uptake at neuromuscular junctions and
retrograde transport.25 However, paclitaxel does not cross the BBB and is thus unsuitable as
a therapeutic candidate for human tauopathies where tau pathology is primarily in the brain.
More recently, a series of studies from our laboratories26, 27 and subsequently from Bristol
Myers Squibb28 (BMS) provided further validation of this therapeutic approach using the
brain-penetrant MT-stabilizing agent, epothilone D, to prevent and ameliorate disease in
other lines of Tg mouse models with tau pathology in the brain that resembles that observed
in tauopathy patients. In our studies, administration of low weekly doses of epothilone D by
intraperitoneal (IP) injections into PS19 mice, which have NFT-like inclusions in the
brain,29 produced normalization of MT density, restoration of FAT, reduction in axonal
dystrophy and decrease in neuronal pathology and death, with consequent improvement in
cognitive performance.26, 27 Notably, these effects were seen both in preventative and
interventional studies in which epothilone D was administered to PS19 mice either before or
after the onset of tau pathology. Similar outcomes on neuropathology and cognition were
observed in the BMS studies in which epothilone D was administered to rTg4510 and 3X
tau Tg mice.28

One important observation that was made in both the paclitaxel25 and epothilone D in vivo
studies 26, 28 is that the dose-response curves appeared to be U-shaped, with relatively low
doses of the compounds (e.g., 100 times below the cumulative cancer chemotherapeutic
dose, in the case of epothilone D26–28) being most efficacious. This result indicates that low
doses of MT-stabilizing agents may be both necessary and sufficient to restore the dynamics
of axonal MTs and normalize FAT to physiological levels, and thus produce optimal
therapeutic effects. Over-stabilization of MTs on the other hand may in fact be counter-
productive and could be accompanied by side-effects such as peripheral neuropathy. Thus,
an important outcome of the sustained low dose treatments with MT-stabilizing drugs is that
Tg animals did not show signs of toxicities,26–28 including peripheral neuropathy and
neutropenia.

Collectively, these findings indicate that brain-penetrant MT-stabilizing agents may be
useful for the treatment of AD and related FTLD tauopathies. Pleasingly, BMS has recently
initiated a Phase Ib clinical trial in which epothilone D is being evaluated in AD patients.30

Moreover, since ~80% of Parkinson’s disease (PD) patients develop dementia (PDD) by ~10
years after onset of PD, and AD-like tau pathology is associated with cognitive impairment
in PDD, MT-stabilizing agents could be of therapeutic benefit to PDD patients.31

The highly promising results obtained from the epothilone D studies in our tau Tg animal
models raise the possibility that other MT-stabilizing agents may be identified as alternative
and potentially improved clinical candidates. As summarized in Table 1, although a growing
number of MT-stabilizing natural products continue to be discovered, to date, only few
selected compounds have been characterized as potential candidates for the treatment of
neurodegenerative diseases. In the sections below, we provide an overview of the different
classes of MT-stabilizing agents, including natural products as well as fully synthetic
compounds, with a particular focus on those that might be useful to treat AD and other
tauopathies.
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MT-Stabilizing Natural Products and Analogues Thereof
Taxanes

Paclitaxel (Taxol®, 1, Figure 3), which was isolated in the 1960s from the stem bark of the
western yew, Taxus brevifolia,39 as well as from other species of the Taxus genus, was
found to exhibit potent antitumor properties. The structure of paclitaxel was reported in
1971,40 but the MT-stabilizing properties of this compound remained unknown until 1979,
when the Horwitz laboratory in pioneering studies demonstrated that paclitaxel is able to
promote MT-assembly in vitro.41 Paclitaxel binds to the lumen (i.e., the inside) of the MT at
a binding site found in the β-tubulin subunit,42 although an initial binding of this compound
to the outer wall of the MT has been proposed, which may precede the translocation of this
drug into the lumen of the MT.43, 44 The luminal binding site, which is commonly referred
to as the taxane binding site, is also targeted by the MT-binding repeats of tau,45 and
paclitaxel is found to displace tau from MTs.46 The binding of paclitaxel within the taxane
site in β-tubulin is believed to promote MT-stabilization by inducing conformational
changes of the M-loop of β-tubulin that result in more stable lateral interactions between
adjacent protofilaments.47

Because of the potent anti-mitotic properties, paclitaxel has been widely used for the
treatment of cancer.48 Much of the interest surrounding the MT-stabilizing class of
therapeutics is arguably due to the success of paclitaxel and the closely related analogue,
docetaxel (Taxotere®, 2, Figure 3) in cancer chemotherapy.49 Although paclitaxel could be
obtained only in limited quantities from the bark of Taxus brevifolia, the issue of supply was
elegantly solved by semi-synthesis from more readily available 10- deacetylbaccatin III (3,
Figure 3).50, 51 Among the various reported tactics to obtain paclitaxel from 3 (reviewed by
Kingston et al.52), the Ojima-Holton β-lactam strategy for the coupling of the
phenylisoserine side-chain proved most effective.53–56 In addition to these semi-synthetic
approaches, biotechnological methods of taxane production proved very effective.57

Paclitaxel was the first MT-stabilizing agent to be investigated in an animal model of
neurodegenerative tauopathies, the T44 tau Tg mouse, which exhibits tau pathology in
spinal motor neurons that project outside the BBB to innervate striated muscles where there
is no BBB equivalent.25 However, the lack of brain penetration of paclitaxel precluded
further investigations of this compound in mouse models of tauopathies that, unlike T44 tau
Tg mice, more closely resemble human tauopathies with tau pathology in the brain.36 The
limited ability of paclitaxel and docetaxel to diffuse across the BBB is believed to be caused
at least in part by the Pgp efflux pump,58, 59 which is highly expressed in the BBB.60 Thus,
taxane analogues capable of overcoming Pgp-mediated transport may result in improved
brain penetration. Several examples of compounds of this type have been reported, which
include: (a) weak Pgp-substrates, such as cabazitaxel32 (6, Figure 3), an FDA approved
semisynthetic taxane that can saturate the active transporter;61 (b) taxoids that are also Pgp-
inhibitors,62–64 such as SB-T-1213,65 SB-T-121466 and IDN-510967 (4, 5, and 6
respectively, Figure 3); and (c) taxoids that are devoid of Pgp-interactions, such as
TX-6734, 68 (8, Figure 3). Among these Pgp-insensitive taxanes, 6 was found to exhibit
greater brain-penetration than paclitaxel.33 Furthermore, pharmacokinetic (PK) studies with
7 revealed that drug exposure in the brain could be significantly enhanced by administering
the compound via rapid infusions that resulted in plasma drug levels that are above the
threshold needed to saturate Pgp.61 Other examples of taxanes capable of circumventing
Pgp-mediated efflux are orally active BMS- 27518369, 70 (9, Figure 3) and milataxel,71, 72

also known as MAC-321 (10, Figure 3).

In addition to these semisynthetic taxanes, promising results have been reported with brain
targeted delivery approaches. An example of this strategy is the paclitaxel-peptide

Ballatore et al. Page 4

J Med Chem. Author manuscript; available in PMC 2013 November 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



conjugate, GRN100535 (11, Figure 3), a Pgp-insensitive prodrug that exploits the low
density lipoprotein receptor-related protein 1 (LRP-1),73 which is highly expressed in the
BBB, to deliver paclitaxel into the brain via receptor-mediated uptake. Compound 11 was
recently reported to be active in patients with advanced solid tumors with brain
metastases.74

The epothilones
Epothilone A and B (12 and 13, respectively, Figure 4), originally discovered by Hofle and
Reichenbach as antifungal agents produced by the soil bacterium Sorangium cellulolus,75

were later found by scientists at Merck to promote MT-assembly.76 The same studies
revealed that the epothilones compete with paclitaxel for the taxane binding site on β-
tubulin, suggesting that this class of compounds may act on MTs in a taxol-like manner.76

This observation led to the hypothesis that epothilones, taxanes, as well as other classes of
MT-stabilizing natural products, may share a similar pharmacophore.77 NMR78 and
computational studies79 supported this common pharmacophore model, however, an
evaluation by electron crystallography of the complex of epothilone A with tubulin
polymerized in zinc-stabilized sheets demonstrated that epothilone A and paclitaxel interact
in substantially different ways within the same binding pocket in β-tubulin.80 Such
differences in the binding modes provide a possible explanation as to why the epothilones,
but not paclitaxel, retain generally high levels of anti-mitotic activity in cell-lines that are
resistant to taxanes due to point mutations in the β-tubulin subunit.81 An additional
distinctive feature of many of the epothilones is that these compounds, unlike paclitaxel and
docetaxel, are active against cell lines with multi-drug resistance (MDR) caused by the
overexpression of Pgp.

In addition to epothilone A and B, several other naturally occurring congeners have been
isolated as minor components of fermentation of myxobacteria (14–19, Figure 4 A).82

Among these, epothilone D (17, Figure 4 A) exhibited a number of promising properties,
including a greater therapeutic index as a chemotherapeutic agent, compared to 13.83

Clinical trials with this compound, however, were halted due to severe side-effects, which
included CNS toxicities.84 These CNS side effects are possibly the earliest evidence that 17
is a brain-penetrant compound, and reports from the patent literature indicated that this is
indeed the case.85 Furthermore, in 2006 17 was reported to be effective in an animal model
of schizophrenia, the STOP-null mouse model, which both lacks a MAP known as STOP
(Stable Tubule Only Polypeptide) and exhibits cytoskeletal defects in CNS neurons.86 The
selection of 17 as preferred candidate compound for efficacy studies in tau Tg animals
followed a comparative study in which selected taxanes and epothilone D congeners,
including deoxy-epothilone F87 and fludelone88 (19 and 20, respectively, Figure 4), were
evaluated for their ability to diffuse across cellular membranes in vitro and enter the brain in
vivo. In addition, these compounds were tested for their ability to elicit MT-stabilization in
the CNS of normal mice, as determined by the elevation in acetylated α-tubulin (AcTub),
which is known to be a marker of stable MTs.89, 90 Interestingly, PK studies revealed that
significant concentrations of these epothilones in the brain were achieved.36 Furthermore,
these studies showed that 17 exhibits a considerably longer half-life in the brain than in
plasma. Similar PK properties have been described for 13.38 The ability of 17 to be retained
selectively in the brain for relatively prolonged periods of time permitted infrequent (i.e.,
weekly) administration of the compound in efficacy studies and likely reduced the potential
for systemic toxicities in tau Tg mice.26, 27

After the first total syntheses of 12 by the groups of Danishefsky,91 Nicolaou92 and
Schinzer93 between 1996–97, several synthetic strategies for the efficient synthesis of
epothilone analogues have been developed (for comprehensive overview, see Altmann et
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al.94 and references therein). Collectively, these studies enabled the synthesis and evaluation
of several hundred analogues. Among these, the epothilone lactam, ixabepilone (Ixempra®,
24, Figure 4 B), was the first epothilone to receive FDA approval for the treatment of
metastatic breast cancer.95 Other synthetic epothilones in clinical development include
sagopilone (25, Figure 4 B),96 which is characterized by the presence of the benzimidazole
side-chain. Compound 25 was found to be more potent in vitro than 13, as well as highly
effective in mouse tumor xenograft models.96, 97 Notably, this compound has been found to
be brain-penetrant.37

Discodermolide
(+)-Discodermolide (26, Figure 5), a cytotoxic polyketide isolated by Gunasekera and co-
workers from the deep-water Caribbean sponge Discodermia dissoluta,98 was initially
reported to be an immunosuppressant agent.99, 100 The MT-stabilizing properties of this
compound were discovered in 1996,101, 102 when it was found that 26 is even more potent
than paclitaxel in promoting the nucleation phase of tubulin-assembly. Further studies
revealed that discodermolide, unlike paclitaxel, retains potent anti-mitotic activity against
Pgp-overexpressing cancer cell lines.103 Mechanistically, 26 was found to compete with
paclitaxel for the taxane binding site on β-tubulin,102, 103 and photoaffinity labeling
experiments by Horwitz, Smith and co-workers confirmed that the discodermolide binding
site is in close proximity with the taxane site.104 Interestingly, the bio-active conformation
of 26 is believed to be U-shaped, where the C19 side chain comes close to the lactone
moiety.105 Overlays of this folded conformation of 26 and the bio-active conformation of
paclitaxel highlight the similarities between the two 3D structures, supporting the possibility
that both compounds adhere to a common pharmacophore.105 However, unlike paclitaxel,
tubulin-bound discodermolide is thought to interact with the N-terminal H1-S2 loop106 and
not with the M-loop, which is believed to be a key mediator of paclitaxel induced MT-
stabilization.47 This observation suggests that the MT-stabilizing effects of paclitaxel and
discodermolide may be complementary,106 thus providing an explanation for the observed
synergistic effects of 26 and paclitaxel both in vitro and in vivo.107–109 Notably, 26 is the
only example among the taxane site MT-stabilizing agents that shows synergy with
paclitaxel.

The first total synthesis of discodermolide was reported by the Schreiber laboratory, which
reported the synthesis of the natural product110 and, prior to that, the synthesis of the
unnatural (−) antipode.111 Several other syntheses of 26 have been reported (reviewed by
Smith and Freeze112). Notably, the gram-scale synthesis devised by Smith and co-
workers, 113, 114 combined with Paterson’s first generation endgame,115 was licensed to
Novartis to permit the synthesis of 60 g of material needed to conduct a Phase I clinical
trial.116 In addition to discodermolide, these synthetic efforts produced numerous analogues,
including discodermolide-dictyostatin117 and discodermolide-paclitaxel118 hybrid structures.
Interestingly, structural changes that impede the active U-shaped conformation proved to be
highly detrimental to the biological activity. On the other hand, relatively substantial
structural simplifications that maintain the characteristic folded conformation of 26
produced several interesting analogues (e.g., 27, Figure 5) with biological activities
comparable to the parent compound.119, 120

Dictyostatin
(−)-Dictyostatin (28, Figure 6), which was first isolated from a Maldives marine sponge
Spongia sp. by Pettit and co-workers,121 was found to be highly potent against a variety of
human cancer cell lines with a GI50 in the 50 pM to 1 nM range. The MT-stabilizing
properties of this compound were reported by the Harbor Branch Oceanographic
Institute.122 The same studies also demonstrated that 28 is active against paclitaxel-resistant
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cell lines that overexpress Pgp. Competition studies revealed that 28 binds to the taxane
binding site.123 Interestingly, the configurational assignment for dictyostatin is fully
consistent with a common biogenesis for the structurally related, but open-chain,
discodermolide. Indeed there is an exact configurational match of the C19-C26 and C6-C14
region of 28 with those at C17-C24 and C4-C12 of discodermolide, respectively. Moreover,
it has been shown that the preferred conformation for 28 in solution closely resembles the
conformation that was determined for discodermolide both in the solid state and in
solution,124 strongly suggesting that dictyostatin and discodermolide interact in a similar
fashion with the taxane binding site on β-tubulin.125, 126

The first total syntheses of (−)-dictyostatin were reported concurrently by the laboratories of
Paterson127 and Curran.128 Other approaches to the natural product were later
reported.129–131 Dictyostatin currently represents a promising antimitotic natural product
lead for development in cancer chemotherapy. To date, the ability of this compound and/or
related analogues to gain access to the CNS have not been reported.

Eleutherobin, sarcodyctins and related eleuthesides
Eleutherobin132, 133 (29, Figure 7) and sarcodyctins134, 135 (30–33 Figure 7) are structurally
related, coral-derived anti-mitotic agents isolated from Eleutherobia sp. and Sarcodictyon
roseum, respectively. The abilities of these eleuthesides to promote MT-stabilization were
described by Long et al.133 (eleutherobin) and Ciomei et al.136 (sarcodyctins). Competition
binding studies revealed that these MT-stabilizing agents interact with β-tubulin at the
taxane binding site.133, 137 Like paclitaxel, 29 was found to be a substrates for the Pgp.133

The carbohydrate moiety of this compound is thought to be important for the eleutherobin-
Pgp interaction, as indicated by the observation that analogues lacking this fragment,138

such as SKBII.294 and SKBII.296 (34 and 35, respectively, Figure 7), did not appear to be
sensitive to Pgp-mediated efflux.138

Total syntheses of eleutherobin and sarcodyctins have been reported by the Nicolaou139– 142

and Danishefsky laboratories.143–145 To date, no studies describing the evaluation of these
compounds in either cell or animal models of neurodegenerative tauopathy have appeared.

Laulimalide
Laulimalide and the rearrangement product, isolaulimalide, (36 and 37, respectively, Figure
8) were isolated from marine sponges collected in Indonesia,146 Vanatau,147 and the island
of Okinawa.148 These compounds were described as cytotoxic agents; however, their mode
of action was unknown until 1999, when Mooberry and co-workers reported that these
compounds exhibit taxol-like MT-stabilizing properties.149 In addition, the same studies
demonstrated that 36 retains strong anti-mitotic activity against cancer cell-lines
overexpressing Pgp.149, 150 Interestingly, competition studies with radiolabeled or
fluorescently-labeled paclitaxel revealed that 36 does not compete for the taxane binding
site.150 Furthermore, consistent with this observation, 36 was found to be active against cell
lines with β-tubulin mutations151 that cause resistance to both taxanes and epothilones.150 In
addition, synergistic effects of laulimalide with taxane drugs have been reported.152 Taken
together, these results clearly indicate the existence of a distinct tubulin binding site for this
compound. Recent studies revealed that 36 binds to the exterior of the MT on β-tubulin.153

Because of these promising biological activities, and because of the limited natural supply,
laulimalide became an attractive synthetic target. The first total synthesis of 36 was reported
by Ghosh and co-workers.154 Several other synthetic approaches, reviewed by Mulzer and
Ohler,155 have been developed. Notably, scientists at the Eisai Research Institute were able
to synthesize sufficient quantities of laulimalide to enable in vivo efficacy studies.156
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Somewhat surprisingly, despite the promising in vitro anticancer activity, as well as PK
properties, 36 did not produce a statistically significant tumor growth inhibition. The reasons
for the lack of in vivo anticancer effects of laulimalide remain unclear but may be explained,
at least in part, by the relatively high mitotic block reversibility ratio observed for this
compound. A high reversibility of the anti-mitotic effect would imply that, in vivo, cancer
cells exposed to laulimalide may resume mitosis soon after the circulating drug levels
becomes sufficiently low.157 Furthermore, this lack of in vivo anticancer activity was
accompanied by severe toxicities indicating that 36 may not be a viable candidate for cancer
chemotherapy.157 However, subsequent studies in a different animal model demonstrated a
significant inhibition of tumor growth.158

Peloruside A
Isolated in New Zealand from the marine sponge, Mycale hentscheli, peloruside A (38,
Figure 9) was identified as a potent cytotoxic agent with paclitaxel like activities.159, 160 In
addition to the anti-mitotic activity, this natural product was found not to be affected by the
overexpression of Pgp or by tubulin mutations that are known to affect the activity of
paclitaxel.161 Competition binding experiments revealed that 38 does not bind to the taxane
site in β-tubulin, while the observation that laulimalide can displace 38 clearly suggests that
these two compounds may have overlapping binding sites.161, 162 In line with these results,
38 did not show synergistic effects with laulimalide, but like the latter, it was found to
synergize with other taxane site drugs in both polymerizing purified tubulin152 and cellular
activity.163

The first total synthesis of peloruside A was reported in 2003 by De Brandander and co-
workers. 164 Several other approaches to this natural product were later developed.165–171 In
addition to 38, other naturally occurring congeners have been isolated,172, 173 including
peloruside B (39, Figure 9), which exhibits similar MT-stabilizing and biological activities
as 38.172

Recent studies have shown that 38 protects cultured neurons against okadaic acid-induced
tau phosphorylation.21 These results suggest that in addition to the epothilones, other MT-
stabilizing agents, including those that do not target the taxane binding site on β-tubulin,
such as peloruside and laulimalide, may be considered potential candidates for the treatment
of tauopathies. However, there are presently no reports on the brain-penetration of 38.21

Cyclostreptin
(−)-Cyclostreptin (40, Figure 10), a bacterial natural product also known as WS9885B and
FR182877, was originally identified as a compound with paclitaxel-like biological activities
using a cell-based screen for novel antimitotic agents.174, 175 Structurally, 40 is
characterized by an unusual ring system featuring a constrained α, β-unsaturated lactone.
The natural product was initially assigned the opposite configuration.176 Total syntheses of
both (+) and (−)-cyclostreptin, as reported by the laboratories of Sorensen177, 178 and
Evans,179 confirmed the (−)-enantiomer to be the natural product.

Cytotoxicity studies revealed that 40, although ~10 times less potent than paclitaxel in taxol-
sensitive cell-lines, is considerably more effective than paclitaxel against Pgp-
overexpressing cell-lines.180 Furthermore, these studies demonstrated that 40 is not affected
by tubulin mutations that are known to cause resistance to both paclitaxel and epothilone
A.180 Interestingly, whereas cyclostreptin was found to be an effective competitive inhibitor
of the binding of paclitaxel to MTs, significant differences were observed in the MT-
stabilizing properties of these two compounds. While cyclostrept-intreated MTs are more
stable to depolymerizing conditions than those resulting from paclitaxel treatment,
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cyclostreptin-induced MT-stabilization requires the presence of MAPs and GTP, which are
not necessary for paclitaxel-induced MT-assembly.180 Subsequent studies revealed that 40
interacts covalently with specific amino acid residues of β-tubulin in both MTs and tubulin
dimers. These residues are Asn228, which resides in the proximity of the taxane binding
site, and Thr220 at the outer surface of a pore43 in the MT wall.181 Computational studies
suggested that the covalent attachment of 40 to Thr220 may prevent the diffusion of
paclitaxel and other taxane-binding drugs across the MT pore, into the taxane binding
site.182 This model provides an explanation as to why 40 can prevent the binding of
paclitaxel to β-tubulin despite the relatively weak tubulin polymerization properties
compared to paclitaxel. Cyclostreptin is the first example of a MT-stabilizing agent found to
interact irreversibly with tubulin. Similar mode of action has recently been reported for
zampanolide183 (vide infra). To date, there are no reports of 40 being evaluated in cell- and/
or animal-models of tauopathies; thus, it is not clear yet whether the particular mode of
action of cyclostreptin, which involves covalent modification of tubulin, may be effective in
restoring axonal transport deficits in neurons affected by tauopathy.

Taccalonolides
Taccalonolides are steroidal natural products that were originally isolated in 1963 from the
tubers of Tacca leontopetaloides.184 The structure of these compounds was fully elucidated
in 1987, when Chen and co-worker characterized taccalonolide A and B (41 and 42,
respectively, Figure 11) from Tacca plantaginea.185 Since then, several other members of
the taccalonolide class have been discovered (e.g., 43 and 44, Figure 11).186– 189 The MT-
stabilizing properties of the taccalonolides were first recognized in 2003, when taccalonolide
A and E were found to cause paclitaxel-like MT-bundling in dividing cells.190 Furthermore,
the taccalonolides were found to be poor substrates for the Pgp and exhibit only limited
cross-resistance with paclitaxel.190, 191

The mode of action of this class of natural products remains an active area of investigation.
Studies with 41 and 42 revealed that the taccalonolides do not bind to either tubulin or
MTs,192 and that the MT-stabilizing properties of these compounds is observed only in
intact cells, but not in cell extracts or purified tubulin preparations.192, 193 Recent studies,
however, reported the identification of considerably more potent MT-stabilizing members of
the taccalonolide family, such as taccalonolide AF and AJ (45 and 46, respectively, Figure
11), that promote MT assembly from purified tubulin.189 Further studies are needed to
elucidate the mode of action of taccalonolides and evaluate the potential of taccalonolides in
the context of neurodegenerative disorders. To date, there are no reports describing the total
synthesis of taccalonolides.

Zampanolide and dactylolide
(−)-Zampanolide and (+)-dactylolide (47 and 48, respectively, Figure 12), are structurally-
related natural products isolated, respectively, from Fasciospongia rimosa,194 the same
sponge found in the island of Okinawa that yielded laulimalide,148 and from Dactylospongia
sp.195 These two compounds share the same highly unsaturated macrolactone core but with
opposite absolute configuration. In addition, zampanolide features a characteristic N-acyl
hemiaminal side chain. The total synthesis and assignment of absolute configuration of both
antipodes of 47 and 48 were reported first by the Smith and then Hoye laboratories.196–205

In 2009, 47 was reported to stabilize MTs in cells, and to promote the polymerization of
purified tubulin in cell-free assays.206 The same studies revealed that 47 exhibits low nM
IC50 against several cell-lines, including those that overexpress the Pgp.206 Similar MT-
stabilizing properties have been described for 48,207 although this compound was found to
be considerably less cytotoxic than 47, with IC50 values in the low RM range.195
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Competition binding studies revealed that 47 targets the taxane site and does not interfere
with the binding of laulimalide with MTs.183 Interestingly, these studies also revealed that
the mode of action of 47 and 48, like cyclostreptin, involves covalent modification of
specific residues (Asn228 and His229) found in the taxane binding site. However, compared
to cyclostreptin, 47 is a considerably more potent MT-stabilizing agent. As in the case of
cyclostreptin, the therapeutic potential of 47 as a treatment for tauopathies may be limited
due to the alkylating properties of this compound.

Ceratamines
Ceratamine A and B (49 and 50, respectively, Figure 13), originally isolated from marine
sponge Pseudoceratina sp. collected in Papua New Guinea, are antimitotic heterocyclic
alkaloids characterized by an unusual imidazo[4,5-d]-azepine core.208

These compounds were found to promote the polymerization of purified tubulin in the
absence of MAPs, although less potently than paclitaxel.209 Competition binding studies
revealed that the ceratamines do not act as competitive inhibitors of paclitaxel binding.209

Interestingly, ceratamines are the only non-chiral examples among all MT-stabilizing natural
products. Because of this, and because of the comparatively simpler structure, ceratamines
are considered as promising lead compounds for cancer chemotherapy.209 Such attributes
also suggest that compounds from this class may be identified as CNS-active candidates for
the treatment of tauopathies. The syntheses of the natural products have been described by
Coleman and co-workers,210 with several analogues constructed and evaluated.211, 212 This
effort resulted in the identification of selected derivatives (e.g., 51, Figure 13) with
improved antimitotic and MT-stabilizing properties.211

Other naturally occurring compounds with reported MT-stabilizing properties
In addition to the different classes of natural products discussed above, a number of other
naturally occurring compounds, or derivatives thereof, have been reported to exhibit MT-
stabilizing properties (Figure 14). These include dicumarol (52),213 jatrophanes (53– 55),214

tubercidin (56),215 xanthophylls (e.g., lutein, 57),216 as well as the NAP peptide (58), also
known as davunetide, which is a short peptide fragment (NAPVSIPQ) derived from the
activity-dependent neuroprotective protein (ADNP).217 However, as reported by Buey and
co-workers,192 who conducted a comparative study involving different classes of MT-
stabilizing agents, the MT-stabilizing properties of most of these compounds (i.e., 52–55,
57) were not confirmed. Likewise, the NAP peptide, which has been found to be
neuroprotective in many different animal models (reviewed by Gozes and co-
workers218– 220) and is currently in Phase II/III clinical trials for AD and progressive
supranuclear palsy (PSP), was reported to be a MT-stabilizing agent.221, 222 However recent
studies indicate that this peptide may not directly impact MT-dynamics.223

Synthetic MT-stabilizing Agents
Although the vast majority of known MT-stabilizing agents are structurally complex natural
products, progress has been made in the identification of small synthetic molecules with
MT-stabilizing properties. These compounds, which include GS-164 (59), identified by
scientists at Takeda Chemical Industries Ltd.,224 selected estradiol derivatives,225 such as
60, and a derivative of thalidomide, 5HPP-33 (61),226 could be considered as potentially
interesting leads for AD drug discovery programs (Figure 15).

Furthermore, screening programs directed at the discovery of antifungal agents identified
multiple series of synthetic mono- and di-heterocyclic compounds with MT-stabilizing
properties, including certain triazolopyrimidines, typified by cevipabulin227 (also known as
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TTI-237, 62, Figure 16A), as well as some structurally related phenylpyrimidines228 (Figure
16B), pyridopyridazines,229 pyridotriazines230 (Figure 16C) and pyridazines231 (e.g., 63,
Figure 16D).

Although the vast majority of these synthetic MT-stabilizing agents have been investigated
only as anti-fungal agents, in recent years there have been reports of compounds of this type
being explored as potential anticancer drugs. Among these, 62 displayed excellent anti-
cancer activities in several nude mouse tumor xenograft models.227 Moreover, 62 was found
to exhibit excellent pharmaceutical properties, including oral bioavailability, metabolic
stability, and water-solubility.227 Interestingly, the mechanism by which these heterocyclic
compounds promote MT-stabilization appears to be distinct from that of other classes of
MT-stabilizing natural products.232, 233 In fact, radioligand binding studies demonstrated
that 62 does not compete for the taxane binding site on β-tubulin.232 Instead, this compound
appears to affect vinblastine binding to β-tubulin, although it is not clear yet whether this
results from overlapping binding sites or a distinct allosteric cevipabulin site.232 However,
in sharp contrast to the mechanism of vinblastine, vincristine and other vinca alkaloids,
which de-stabilize MTs, 62 and related congeners promote the polymerization of tubulin
into MTs.232, 233 Cevipabulin is currently undergoing clinical trials as an anti-cancer
agent.234 However, because of the MT-stabilizing ability, favorable physical-chemical
properties and synthetic accessibility, 62 and/or related analogues may hold promise in the
development of CNS-active MT-stabilizing therapies.

Concluding remarks
Over the past several years, remarkable progress has been made in the development of tau
focused therapies from target identification towards clinical trials for AD and related FTLD
tauopathies (see Lee et al.235). Among a growing number of potentially druggable targets
that could abrogate tau-mediated neurodegeneration,236 counteracting the functional loss of
tau with MT-stabilizing agents is one of the most biologically and pathologically well
grounded. Thus, these agents appear to be amongst the most compelling as potential
treatments for neurodegenerative tauopathies. The promising results obtained from the
epothilone D studies in tau Tg animal models, summarized here, provide important
validation of this therapeutic strategy and, notably, have resulted in the selection of
epothilone D as a clinical candidate for the treatment of AD.30
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FAT fast axonal transport

Pgp P-glycoprotein

Tg transgenic

MDR multi-drug resistance

FDA Food and Drug Administration

SAR structure-activity relationship

B/P brain to plasma ratio

PK pharmacokinetic

PD pharmacodynamic

BMS Bristol-Myers Squibb
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Figure 1.
Schematic of the tubulin polymerization process. (A) head-to-tail polymerization of α- and
β-tubulin heterodimers results in the formation of protofilaments; (B) lateral interactions
between protofilaments enable them to assemble into sheets of tubulin, which fold on
themselves to form hollow MT structures typically comprising 13 protofilaments per MT.
(C) During MT-polymerization, guanosine-5′-triphosphate (GTP)-bound α,β-tubulin
heterodimers are added at the polymerizing end of the MT. Concomitantly, or soon after
incorporation into the MT, GTP-bound to β-tubulin is hydrolyzed to the corresponding
diphosphate (GDP-MT). The GTP to GDP hydrolysis is not required for MT-
polymerization, however, this conversion plays an important role in determining the
dynamic instability of the MT, as GTP-tubulin forms more stable interactions, while GDP-
tubulin establishes comparatively weaker intersubunit interactions and is, therefore, prone to
depolymerization. The presence of a GTP-bound tubulin at the growing end of the MT
(GTP-cap) protects the MT from depolymerization. Removal of the GTP-cap can trigger
rapid depolymerization events. (D) Upon depolymerization, released tubulin heterodimers
can exchange GDP with GTP and re-enter the polymerization cycle.
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Figure 2.
Schematic representation of the axonal transport machinery, which comprises MTs, motor
proteins (kinesins and dyneins) and cargos. Kinesins and dyneins move towards the plus and
the minus end of the MTs, respectively, and are involved in either the anterograde (kinesins)
or retrograde (dyneins) axonal transport. The MT-stabilizing function of tau plays an
important role in the organization and dynamics of axonal MTs and, as such, is critical for
axonal transport. Under pathological conditions, hyperphosphorylation of tau leads to an
abnormal disengagement of tau from the MTs, which results in disruption of MT-dynamics
and impaired axonal transport.
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Figure 3.
The structures of paclitaxel, docetaxel, 10-deacetylbaccatin III and selected examples of
Pgp-insensitive taxanes.
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Figure 4.
Naturally occurring epothilones (A), and selected examples of synthetic epothilones (B).
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Figure 5.
The structure of discodermolide and a biologically active, structurally simplified analogue
(27).
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Figure 6.
The structure of dictyostatin.
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Figure 7.
Eleutherobin, sarcodyctins and selected synthetic derivatives.
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Figure 8.
Laulimalide and isolaulimalide.
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Figure 9.
Peloruside A and B.
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Figure 10.
The structure of (−)-cyclostreptin.
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Figure 11.
Selected taccanolides.
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Figure 12.
The structures of naturally occurring (−)-zampanolide and (+)-dactylolide.
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Figure 13.
The structures of naturally occurring ceratamine A and B, and of a synthetic congener (51).
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Figure 14.
Naturally products with reported MT-stabilizing properties.
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Figure 15.
MT-stabilizing GS-164, estradiol derivative 60, and 5HPP-33.
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Figure 16.
Representative mono- and di-heterocyclic MT-stabilizing agents.
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Table 1

Different classes of MT-stabilizing natural products and their stage of development as potential candidates for
neurodegenerative tauopathies.

Compound class Brain penetration Stage of development in the context of tauopathies

Taxanes Paclitaxel, docetaxel and several related analogues
are not brain penetrant; selected analogues and/or
prodrugs are reported to exhibit improved brain
penetration.32–35

Paclitaxel was evaluated in an animal model of tauopathies.25

Lack of brain penetration prevented further development of this
compound.

Epothilones Several examples reported to be brain penetrant.36–38 Epothilone D was evaluated in animal models26, 27 and recently
entered Phase Ib clinical trial for AD.28

Discodermolide Not reported Not reported

Dictyostatin Not reported Not reported

Eleuthesides Not reported Not reported

Laulimalide Not reported Not reported

Peloruside Not reported Cell-based studies.21

Cyclostreptin Not reported Not reported

Taccalonolides Not reported Not reported

Zampanolide Not reported Not reported

Ceratamines Not reported Not reported
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