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Background: Genome-wide association studies (GWAS) 
implicate single nucleotide polymorphisms (SNPs) on 
chromosome 6p21.3-22.1, the human leukocyte antigen 
(HLA) region, as common risk factors for schizophrenia 
(SZ). Other studies implicate viral and protozoan expo-
sure. Our study tests chromosome 6p SNPs for effects 
on SZ risk with and without exposure. Method: GWAS-
significant SNPs and ancestry-informative marker SNPs 
were analyzed among African American patients with 
SZ (n = 604) and controls (n = 404). Exposure to herpes 
simplex virus, type 1 (HSV-1), cytomegalovirus (CMV), 
and Toxoplasma gondii (TOX) was assayed using spe-
cific antibody assays. Results: Five SNPs were nominally 
associated with SZ, adjusted for population admixture 
(P < .05, uncorrected for multiple comparisons). These 
SNPs were next analyzed in relation to infectious expo-
sure. Multivariate analysis indicated significant associa-
tion between rs3130297 genotype and HSV-1 exposure; 
the associated allele was different from the SZ risk allele. 
Conclusions: We propose a model for the genesis of SZ 

incorporating genomic variation in the HLA region and 
neurotropic viral exposure for testing in additional, inde-
pendent African American samples.

Key words: HLA/gene/HSV-1/cytomegalovirus/
schizophrenia/African American

Introduction

Recent genome-wide association studies (GWAS) have 
detected risk for schizophrenia (SZ) associated with 
polymorphisms in the chromosome 6p/human leuko-
cyte antigen (HLA) region.1–3 Combined data from 
independent Caucasian ancestry samples, comprising 
SZ cases (n = 12 945) and controls (n = 34 591) indicated 
significant associations corrected for multiple compari-
sons at 5 SNPs, localized to chromosome 6p21.3-22.1; 
genomic locations from 27.2 Mb to 32.3 Mb (National 
Center for Biotechnology Information map, Build 36).1–3 
Follow-up studies using additional Caucasian samples 
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continue to support associations with these and addi-
tional SNPs in the HLA region.4,5 Our prior candidate 
gene studies have also reported associations with differ-
ent HLA polymorphisms in several ethnic groups.6–11 
The risk conferred by individual variants in the HLA 
region is modest, with most odds ratios (ORs) in the 
1.15–1.80 range. The risk due to any one marker could 
not account for all the associations, suggesting multiple 
risk loci.2 Further, no functional significance could be 
ascribed to the associated SNPs, although some of  them 
are in linkage disequilibrium (LD) with HLA markers 
and other SNPs associated with infectious exposure and 
autoimmune diseases.2

In this study, we further investigated the HLA asso-
ciations with SZ as they are related to exposure to 
infectious agents. HLA polymorphisms are known to 
influence immune surveillance and there are reports of 
neurotropic infectious agents as risk factors for SZ.12,13 
Although a variety of viral agents have been proposed 
as putative SZ risk factors, including Toxoplasma gondii 
(TOX), a protozoan parasite,14,15 many of the studies have 
not been consistent. It is possible that the lack of consis-
tency stems from the failure to investigate host genetic 
variations. In support, our prior analyses suggest inter-
actions between host HLA polymorphisms and exposure 
to herpes simplex virus type 1 (HSV-1) and cytomega-
lovirus (CMV).10,11 We reported that exposure to CMV 
is increased among multiplex SZ families versus simplex 
families (OR 2.47, 95% confidence interval, CI = 1.48–
5.33).10 In those earlier studies, we further suggested that 
CMV exposure increases risk for SZ among Caucasians 
when considered in conjunction with host genetic vari-
ability in the HLA region.10,16 Therefore, in this study 
variation in the HLA region was analyzed in conjunction 
with exposure to TOX, as well as HSV-1 and CMV. We 
investigated cases and controls from an African American 
multisite collaborative study called the Project Among 
African Americans to Explore Risks for Schizophrenia 
(PAARTNERS).17

Methods

Design of the Study 

Our goal was to evaluate published HLA/SZ associations. 
Using a case-control design and a nominal threshold of 
statistical significance, we initially evaluated individual 
SNPs previously reported to be associated with SZ (see 
online supplementary table 1). The associated SNPs were 
then individually screened in relation to exposure to 3 
putative infectious risk agents for SZ.

Participants

Unrelated SZ/schizoaffective disorder (SZA) cases 
(n  =  604) and screened adult controls (n  =  404) 
with self-reported African American ancestry were 
evaluated through the PAARTNERS study.17,18 Briefly, 
all participants were interviewed using the Diagnostic 
Interview for Genetic Studies. Additional clinical 
information was obtained from medical records and 
consenting relatives. The detailed information was used 
to obtain consensus diagnoses based on DSM-IV criteria. 
All participants provided blood samples.

Venous Blood Collection and DNA Extraction

Venous blood was obtained from participants and 
genomic DNA extracted using the phenol chloroform 
method as described.19 Serum was extracted from coagu-
lated blood following centrifugation.

Genotype Assays

SNPs were genotyped primarily using iPLEX, a multi-
plexed single base extension method using the MassArray 
MALDI-TOF MS detection platform (SequenomInc.) 
(http://www.sequenom.com/getdoc/197b98fa-93f7-4
0e8-9deb-a8dcfecf899e/iPLEX-brochure_web/). SNPs 
unsuitable for iPLEX were assayed using the multiplexed 
SNaPshot platform (Applied Biosystems, New Jersey) 

Table 1.    Comparisons Between Cases and Controls

Exposure Rates#a

Population
AdmixtureN Age (Years) Gender (Male/Female) CMV HSV-1 TOX

Controls 404 41.0 (14.6)* 178/226 (44%)** 77.50% 67% 20.60% 0.185 (0.068)

Cases 604 38.5 (11.4) 393/211 (65%) 66.80% 69.90% 26.30% 0.182 (0.067)

Note: Continuous variables shown as mean (standard deviation). Gender proportions shown as male/female, with proportion of men in 
brackets. Population admixture was estimated using LAMP software.
aExposure to cytomegalovirus (CMV), herpes simplex virus, type 1 (HSV-1) and Toxoplasma gondii (TOX) not significantly different 
between cases and controls, after correcting for age and gender.
*Controls significantly older than cases, P = .005, t = 2.83, P = .005, equal variances not assumed.
**Significantly higher proportion of men among cases, P = 4.96 × 10−11; χ2 = 43.5, 1 degree of freedom.
***P = 9.72 × 10−25, t = 10.76, equal variances not assumed.

http://schbul.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbs087/-/DC1
http://www.sequenom.com/getdoc/197b98fa-93f7-40e8-9deb-a8dcfecf899e/iPLEX-brochure_web/
http://www.sequenom.com/getdoc/197b98fa-93f7-40e8-9deb-a8dcfecf899e/iPLEX-brochure_web/
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(http://www3.appliedbiosystems.com/cms/groups/mcb_
support/ documents/generaldocuments/cms_041203.pdf).  
One SNP (rs2517614) was genotyped by Sanger sequenc-
ing. All assays included Centre d’Etude du Polymorphisme 
Humain (CEPH) samples with known genotypes, as well 
as blind duplicates and negative samples. Genotypes were 
read blind to case/control status. Assays were repeated for 
ambiguous genotypes.

SNP Selection

	(i)	 SNPs that showed the most significant associations 
in GWAS studies were selected (n  =  16, see online 
supplementary table 1); (see table 2 in Shi et al).1 This 
list includes rs2517614, a SNP which is in substantial 
LD with rs2021722 (r2 = 0.93), the most significantly 
associated SNP in a recent mega analysis.5

	(ii)	 Ancestry-informative markers (AIMs) suitable for 
analysis of African ancestry were assayed (n  =  22) 
(see online supplementary table 2).20

SNPs for which satisfactory genotypes could not be 
generated were replaced with tag SNPs in LD (r2 > 0.9). 
The relative locations of chromosome 6p SNPs and their 
LD patterns are provided in figure 1 and online supple-
mentary figure 1, respectively.

Serological Assays

The titers of IgG antibodies to HSV-1, CMV, and 
TOX were estimated using solid phase enzyme immu-
noassay kits (obtained from KMI Diagnostics Inc, 
Minneapolis).21,22 Using cutoff  values based on internal 
controls and the manufacturer’s recommendations, indi-
viduals were classified as exposed (raised titers) or unex-
posed to the appropriate infectious agent.16

The study was approved by the Institutional Review 
Boards (IRB) at the participating collaborative sites. 

Written informed consent was obtained from all partici-
pants in accordance with IRB guidelines.

Statistical Analysis

Associations between individual SNPs and SZ risk were 
initially tested among the cases and controls using logistic 
regression analysis. Case-control status was the outcome, 
with SNP minor allele dosage as the predictor variable, 
co-varying for admixture proportion. Logistic regression 
analyses were also used to evaluate interactions between 
SNPs and exposure variables in relation to SZ risk using 
case/control status as the outcome and individual SNP 
genotype, exposure variable, admixture proportion, and 
demographic variables as covariates. Corrections for mul-
tiple comparisons were not applied.

To test for associations with viral and TOX exposure, 
separate logistical regression analyses were conducted for 
each infectious agent with serological status (exposed/
unexposed) as the outcome. Minor allele dose for 
each SZ-associated SNP, age, gender, group status 
(case/control), and admixture proportion were used 
as covariates. These analyses were conducted using 
participants with available serological data (n  =  749). 
Population admixture was estimated from the AIMs using 
LAMP software,23 assuming 2 populations. Ancestral 
allele frequencies were estimated using HAPMAP CEU 
and YRI genotypes.

Results

Case-Control Comparisons for Demographic, 
Serological and Admixture Variables

Cases were significantly younger than controls. There 
were proportionately more men among the cases. Cases 
and controls did not differ significantly with respect 
to exposure rates for CMV, TOX, or HSV-1, following 

Table 2.    Chromosome 6p Single Nucleotide Polymorphisms With Nominally Significant Associations

SNP Gene Position
Minor  
Allele OR P

CMV Exposure HSV-1 Exposure TOX Exposure

OR P OR P OR P

rs9393709* BTN3A2 26365147 T 0.79 0.01 0.99 0.94 1.02 0.87 1.08 0.54
rs12199613* BTN3A2 26367218 T 0.79 0.02 0.99 0.96 1.022 0.86 1.08 0.56
rs12214031* BTN3A2_3UTR 26376628 C 0.76 0.0043 0.99 0.92 1.014 0.91 1.11 0.42
rs6932590 Intragenic 27248931 C 0.76 0.0074 1.16 0.27 1.011 0.93 1.03 0.81
rs3130297** Intragenic 32198981 A 0.41 0.0007 1.55 0.28 4.76 0.004 1.00 1.00

Note: SNP, single nucleotide polymorphism, OR, odds ratio; CMV, cytomegalovirus; HSV-1, herpes simplex virus, type 1; TOX, 
Toxoplasma gondii. Nucleotide positions are based on NCBI build 36.1. Associations with individual SNPs were tested using logistic 
regression analysis, with case-control status as the outcome, genotypes for the relevant SNP and estimates for admixture proportion as 
covariates. Only SNPs associated with schizophrenia at P = .05 or better are listed.
*rs3734536, one of the associated SNPs in the published GWAS could not be assayed reliably, so these surrogates were selected (linkage 
disequilibrium, r2 > 0.9).
**rs3130297: Allele G associated with schizophrenia risk; allele A (minor allele) associated with exposure to HSV-1.

http://www3.appliedbiosystems.com/cms/groups/ mcb_support/ documents/generaldocuments/cms_041203.pdf
http://www3.appliedbiosystems.com/cms/groups/ mcb_support/ documents/generaldocuments/cms_041203.pdf
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbs087/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbs087/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbs087/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbs087/-/DC1
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correction for age and gender. There were no significant 
case-control differences with respect to the individual 
estimates for admixture (table 1).

Associations Between SZ and Individual SNP 
Genotypes

Nominally, significant associations with SZ were noted 
for 5 SNPs (see table  2; rs12214031—BTN3A2_3UTR, 
P = .004; rs9393709—BTN3A2, P = .015; rs12199613—
BTN3A2, P  =  .016, rs6932590, P  =  .007; rs3130297, 
P = .0007; uncorrected for multiple comparisons).

Associations Between Infectious Agent Exposure and 
SZ-associated SNPs

To evaluate associations between infectious agent expo-
sure and SNPs associated with SZ from table 2, logistic 
regression analysis was used for each SNP that was associ-
ated with SZ, with exposure status as the outcome. HSV-1 
exposure was nominally associated with rs3130297, one 
of the SNPs associated with SZ (P < .05, table 2). At this 
SNP, allele A (minor allele) was associated with HSV-1, 
while the major allele (G) was associated with SZ risk. 
None of the other SNPs were significantly associated 
with HSV-1, CMV, or TOX exposure.

Discussion

Our goal was to evaluate previously reported GWAS 
results in the HLA region. We detected nominally signifi-
cant associations between SZ and 5 SNPs. The associated 
alleles are consistent with the published GWAS reports, 

although an earlier GWAS study of African Americans 
did not detect genome-wide significant associations in the 
HLA region.1 rs3130297, one of the SZ-associated SNPs 
is also associated with exposure to HSV-1 but the risk 
alleles differ. The allelic differences are reminiscent of a 
Caucasian ancestry sample in which we reported that the 
alleles of an exonic SNP at the MICB locus in the HLA 
region were associated with SZ or with CMV exposure.11. 
The basis for such associations is uncertain as there is 
no known functional effect of the sequence variation 
at rs3130297. They could indicate an epistatic effect at 
rs3130297 or a SNP in LD with it. Published studies indi-
cate that exposure to HSV-1 is associated with impairment 
in specific cognitive domains among SZ patients and com-
munity-based control individuals,16,24–27 although an asso-
ciation between HSV-1 exposure and SZ risk per se has 
not been convincingly demonstrated.28 Nevertheless, our 
results provide a testable model summarized in figure 2.

There are some shortcomings in our analyses. We did not 
correct the initial genetic association analyses for multiple 
comparisons, as the type of correction necessary for 
previously associated GWAS SNPs is uncertain. Further 
evaluations of our results are therefore necessary in other 
independent samples, preferably with African American 
ancestry. The replicate samples would necessarily require 
available DNA and serum samples. Another concern is 
that exposure to infectious agents was indexed indirectly 
using antibody titers in the serum because demonstration 
of the viruses in the host target tissues is difficult.29,30 The 
serological assays clearly indicate infectious exposure, 
but do not reveal when it occurred. The timing of the 
exposure may be a critical determinant of viral effects 

Fig. 1.    Single nucleotide polymorphisms in the human leukocyte antigen region analyzed in this study.
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on neurodevelopment thought to be critical for SZ 
pathogenesis.

In conclusion, our analyses suggest a complex relation-
ship between individual genomic variability, exposure to 
infectious agents, and SZ risk. The associations suggest a 
testable model of SZ genesis.
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