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Objective: The corollary discharge mechanism is theorized
to dampen sensations resulting from our own actions and
distinguish them from environmental events. Deficits in
this mechanism in schizophrenia may contribute to misper-
ceptions of self-generated sensations as originating from
external stimuli. We previously found attenuated speech-
related suppression of auditory cortex in chronic patients,
consistent with such deficits. Whether this abnormality pre-
cedes psychosis onset, emerges early in the illness, and/or
progressively worsens with illness chronicity, is unknown.
Methods: Event-related potentials (ERPs) were recorded
from schizophrenia patients (SZ; n5 75) and age-matched
healthy controls (HC; n5 77). A subsample of early illness
schizophrenia patients (ESZ; n 5 39) was compared with
patients at clinical high-risk for psychosis (CHR; n 5 35)
and to a subgroup of age-matched HC (n 5 36) during
a Talk-Listen paradigm. The N1 ERP component was eli-
cited by vocalizations as subjects talked (Talk) and heard
them played back (Listen). Results: As shown previously,
SZ showed attenuated speech-related N1 suppression rel-
ative to HC. This was also observed in ESZ. N1 suppres-
sion values in CHR were intermediate to HC and ESZ and
not statistically distinguishable from either comparison
group. Age-corrected N1 Talk-Listen difference z scores
were not correlated with illness duration in the full SZ sam-
ple. Conclusions: Putative dysfunction of the corollary dis-
charge mechanism during speech is evident early in the
illness and is stable over its course. The intermediate effects
in CHR patients may reflect the heterogeneity of this
group, requiring longitudinal follow-up data to address if
speech-related N1 suppression abnormalities are a risk
marker for conversion to psychosis.
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Sensations resulting from our own actions are experienced
differently than sensations produced by others. When we
move our eyes, we do not perceive a moving room; even
ticklish people cannot tickle themselves.1 It is posited that
this is due to the ‘‘efference copy/corollary discharge’’ sys-
tem, which both dampens the sensations resulting from
our own actions and tags them as coming from ‘‘self’’.2

Its neurobiology has been described across the animal
kingdom3: it allows the cricket to sing without deafening
itself; it allows bats to distinguish their own sonar signals
from those produced by others.4 Although the terms are
sometimes used interchangeably and were coined in the
1950s5,6 to describe similar phenomena, recent theorists
of motor-sensory feed-forward systems have found it use-
ful to distinguish between the efference copy, defined as
a copy of an impending motor plan sent from motor to
sensory cortical areas, and the corollary discharge, defined
as the expected sensory consequences of the motor act,
generated in the sensory cortex by the arrival of the effer-
ence copy. When there is a match between the corollary
discharge and the stimulation produced by execution of
the motor plan (the sensory reafference), sensation is
dampened or canceled and tagged as self-generated.2

Here, we will use the term ‘‘corollary discharge’’.
Operation of the corollary discharge mechanism in the

auditory system was empirically supported by recordings
from the temporal cortex in neurosurgical patients while
they talked and listened to others talking.7 During listen-
ing, all recorded neurons in superior temporal gyrus
responded to speech within 200 ms of its onset. During
overt talking, suppression of ongoing activity in ;1/3 of
middle temporal gyrus neurons preceded vocalization by
a few hundredmilliseconds and outlasted it up to 1s. How-
ever, while evidence of the corollary discharge mechanism
is present in the auditory cortex, it is possible these effects
could originate at a lower level in the auditory pathway.3
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Auditory cortical suppression during speech is further
supported by recordings from single units in primary au-
ditory cortex in monkeys during vocalization.8 To study
this phenomenon in humans, several groups have used
electroencephalography (EEG) and magnetoencephalog-
raphy to record auditory cortical response to speech as it
is being spoken.9–12 Auditory cortical excitation is
reflected in the N1 component of the event-related poten-
tial (ERP),13 a negative-going potential generated in pri-
mary and secondary auditory cortices,14 occurring ;100
ms poststimulus. N1 amplitude to speech sounds is sup-
pressed during speaking compared with listening to a re-
cording of the sounds.9–11We and others suggest that this
suppression results from a match between the corollary
discharge and the sensory reafference10,11 and the closer
the match the greater the suppression.15

Corollary Discharge Dysfunction in Schizophrenia

In addition to dampening irrelevant sensations resulting
from our own actions, the feed-forward model provides
amechanism for automatic distinction between internally
and externally generated percepts across sensory modal-
ities and may even operate in the realm of covert
thoughts, which have been viewed as our most complex
motor act.16 Feinberg17 initially suggested that dysfunc-
tional corollary discharge mechanisms may underlie
symptoms that characterize schizophrenia. Frith18 ex-
panded this concept, motivating a series of behavioral
experiments confirming corollary discharge dysfunction
in schizophrenia.19 Evidence for dysfunction of the cor-
ollary discharge system in schizophrenia has been docu-
mented in auditory,9,20–24 visual,25 and somatosensory
modalities.19,26

Measuring the auditory N1 during a Talk-Listen par-
adigm, we found that normal dampening of auditory N1
amplitude during talking, relative to listening, is atten-
uated in chronic schizophrenia patients.9,23,24 However,
it is unknown whether the speech-related N1 suppres-
sion abnormalities observed in schizophrenia patients
are present in early stages of the illness, predate the on-
set of psychosis, and/or progress across the course of the
illness. These questions can be addressed by studying
patients early in their illness, patients clinically at
high-risk for developing psychosis, and patients span-
ning a large range of illness durations. Early illness is
typically defined as the first couple years of illness,
(eg, ref. 27). Clinical high-risk (CHR) is based on the Cri-
teria of Prodromal Syndromes (COPS28) and the similar
criteria for At Risk Mental States.29 The North Amer-
ican Prodromal Longitudinal Study consortium
reported that 35% of patients meeting COPS criteria
converted to a psychotic disorder within a 2.5-year fol-
low-up period.30

An increasing number of studies have found many of
the electrophysiological abnormalities associated with

schizophrenia to be evident in CHR patients31–33; how-
ever, none has assessed whether electrophysiological ev-
idence of corollary discharge dysfunction is present in
these patients. Corollary discharge dysfunction in
CHR patients may reflect vulnerability to the disorder
and/or abnormal neurodevelopment. Moreover, effects
of antipsychotic medications on the corollary discharge
mechanism have not been examined. Studying an anti-
psychotic-free sample of clinically high-risk patients
provides an opportunity to assess the role of antipsy-
chotics in producing this abnormality, a confound pres-
ent in all prior studies of corollary discharge dysfunction
in schizophrenia.
In spite of the possible contribution of corollary dis-

charge dysfunction to positive symptoms in schizophre-
nia, finding a relationship between positive symptoms
and the corollary discharge system has been more suc-
cessful using prespeech neural synchrony than N1 sup-
pression.9,23,24 Importantly, these studies all involved
chronic patients, in whom the relationship between neu-
robiology and clinical presentation may have been ob-
scured by prolonged treatment and the sequelae of the
disease.

Goals of This Study

In order to assess whether putative corollary discharge
modulation of auditory cortex responsiveness during
speech is compromised early in the course of schizophre-
nia, we recorded ERPs to vocalizations as they were being
produced and during their playback using our previously
described Talk-Listen paradigm12 in 3 groups: schizo-
phrenia patients, clinically high-risk patients, and healthy
controls (HCs). A subset of patients within their first
2.5 years of the disorder was defined as being early in
their illness. Based on our hypothesis that corollary dis-
charge dysfunction is a core pathophysiological process
in schizophrenia, we predicted that early illness patients
would show diminished speech-related N1 suppres-
sion, similar to our prior observations in chronic
patients.9,20–24 Based on the hypothesis that corollary dis-
charge dysfunction is a risk marker for the development
of psychosis, we also predicted that clinically high-risk
patients would exhibit speech-related N1 suppression ab-
normalities. However, given the heterogeneous nature of
patients in at-risk samples, with only a minority destined
to convert to schizophrenia, we predicted that their ab-
normality would be intermediate relative to early illness
patients and HCs. Furthermore, to examine whether cor-
ollary discharge dysfunction progressively worsens with
illness severity, we asked whether the degree of abnormal-
ity present in N1 suppression, relative to values expected
based on normal aging, is correlated with illness duration
across the full schizophrenia sample. Accordingly, we
studied patients spanning 3 months to 42 years of illness
duration.
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Methods

Participants

Study participants included 40 patients at CHR for psy-
chosis based on the Structured Interview for Prodromal
Syndromes,28 81 patients with Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, (DSM-IV)
schizophrenia (SZ) based on the Structured Clinical In-
terview for DSM-IV (SCID), and 89 HC subjects. CHR
patients met criteria for at least 1 of the 3 subsyndromes
defined by the COPS28: (1) Attenuated Positive Symp-
toms, (2) Brief Intermittent Psychotic States, and (3) Ge-
netic Risk with Deterioration in social/occupational
functioning. Among the SZ, a subsample of 41 patients
were identified as early illness (ESZ), defined as being
within 2.5 years of initial hospitalization for psychosis
or initiation of antipsychotic medication. Interviews
were conducted by a trained research assistant, psychia-
trist, or clinical psychologist.
Out of the 89 HC subjects, an age-matched group of 86

HCs (age range 16-59) was used for comparison for the
full SZ group. In addition, an overlapping subgroup of 42
HCs (age range 13-32) was agematched to CHR and ESZ
patients for group comparisons.
HC were recruited by advertisements and word-of-

mouth. Exclusion criteria for HC included a past or cur-
rent DSM-IV Axis I disorder based on a SCID interview
or having a first-degree relative with a psychotic disorder.
Exclusion criteria for all groups included a history of sub-
stance dependence or abuse within the past year, a history
of a significant medical or neurological illness, or a his-
tory of head injury resulting in loss of consciousness. The
study was approved by the institutional review board of
University of California, San Francisco, and adult partic-
ipants provided written informed consent. In the case of
minors, parents provided written informed consent;
youths provided written informed assent (table 1).

Clinical Ratings

Within 4 weeks of ERP assessment (M = 11.6, SD = 15.99
days), a clinically trained research assistant, psychiatrist,
or clinical psychologist rated schizophrenia symptoms
using the Positive and Negative Syndrome Scale
(PANSS).34 Prodromal symptoms were rated using the
Scale of Prodromal Symptoms (SOPS).28

Procedure

Participants completed the Talk-Listen paradigm, as de-
scribed previously,12 using Presentation software
(www.neurobs.com/presentation). In the Talk condition,
participants were trained to pronounce short (<300 ms),
sharp vocalizations of the phoneme ‘‘ah’’ repeatedly in
a self-paced manner, about every 1–2s, for 180s. The
speech was recorded using a microphone connected to
the stimulus presentation computer and transmitted

back to subjects through Etymotic ER3-A insert ear-
phones in real time (zero delay). In the Listen condition,
the recording from the Talk condition was played back,
and participants were instructed simply to listen. The num-
ber of trials generated for both Talk and Listen conditions
by SZ, CHR, and HC was not significantly different.

Acoustic Calibration and Standard Stimulus Generation

Participants were coached to produce ‘‘ah’’ vocalizations
>75 dB and < 85 dB by monitoring intensity with a dB
meter held ;6 cm in front of the participant’s mouth.
Sound intensity was kept the same in Talk and Listen con-
ditions for each participant by ensuring that a 1000Hz tone
(generated by a Quest QC calibrator) produced equivalent
dB intensities when delivered through earphones during the
tone’s generation (Talk condition) and during its playback
(Listen condition). In addition to recording ‘‘ah’’ vocaliza-
tions for playback, they were digitized and processed off-
line using an automated algorithm to identify vocalization
onset.12 Trigger codes were inserted into the continuous
EEG file at these onsets to allow time-locked epoching
and averaging of the EEG. To examine group differences
in hearing ability, a repeated measures Group 3 ear (left vs
right) 3 Hz level (250, 500, 1000, 2000, and 4000) ANOVA
was performed. No Group effects or any interactions in-
volving Group were observed.

Data Acquisition and Preprocessing

EEG data were recorded from 64 channels using a BioSe-
mi ActiveTwo system (www.biosemi.com). Electrodes
placed at the outer canthi of both eyes, and above and
below the right eye, were used to record vertical and hor-
izontal electrooculogram (EOG) data. EEG data were
continuously digitized at 1024 Hz and referenced offline
to averaged earlobe electrodes before applying a 1 Hz
high-pass filter using EEGLAB (http://sccn.ucsd.edu/
eeglab/). Data were next subjected to Fully Automated
Statistical Thresholding for EEG artifact Rejection
(FASTER) using a freely distributed toolbox.35 The
method employs multiple descriptive measures to search
for statistical outliers (>63 SD from mean). This process
included 5 steps: (1) outlier channels were identified and
replaced with interpolated values in continuous data, (2)
outlier epochs were removed from participants’ single tri-
al set, (3) spatial independent components analysis was
applied to remaining trials, outlier components were
identified (including components that correlated with
EOG activity), and data were back-projected without
these components, (4) within an epoch, outlier channels
were removed and interpolated, and (5) ERP averages for
the Talk and Listen conditions were separately assessed
in each subject group to identify outlier subjects. Nine
HC, 5 CHR, and 6 SZ (2 of whom were also character-
ized as ESZ) were excluded from further analysis based
on this last step. The final samples consisted of (1) 75 SZ
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age-matched with 77 HC and (2) 39 ESZ, 35 CHR, and
36 age-matched HC. Epochs were time locked to the on-
set of each ‘‘ah’’ and baseline corrected 100 ms preced-
ing vocalization. ERP averages were generated using
a trimmed means approach, excluding the top and bot-
tom 25% of single trial values at every data sample in the
epoch before averaging to produce a more robust mean
estimation.36

To address any remaining baseline contamination,
a temporal Varimax-rotated principal components anal-
ysis was performed on the ERP data.37 ERPs were recon-
structed by excluding factors with a maximum value
preceding ‘‘ah’’ onset or that accounted for less than
0.5% of the variance (43.7% remained). N1 was identified
in the ERP as the most negative peak between 60 and 140
ms after ‘‘ah’’ onset. N1 amplitude was quantified sepa-
rately for Talk and Listen conditions by integrating the
voltage in a 50 ms window centered on the peak. The N1
Talk-Listen suppression effect was estimated using the
N1 Talk-Listen difference score at Cz.

Statistical Correction for Normal Aging Effects

To control for the effects of normal aging, we compared
each patient group with an age-matched HC group. How-
ever, in order to examine the degree to which N1 suppres-
sion abnormalities are affected by illness duration, we
derived a single age-corrected N1 suppression value for
each subject. First, N1 Talk-Listen difference scores
were regressed on age in the HC group (age range 13-
59). Next, the resulting regression equation was used to
calculate age-corrected N1 Talk-Listen difference z scores
for all groups. The resulting age-corrected z scores
reflected deviations from the HCs at a specific age. This
method has been used previously38 and is preferable to us-
ing age as a covariate in an ANCOVA, which removes
pathological aging effects from the patient data.

Statistical Analysis

For the comparison of the full SZ sample to their age-
matched controls, Group differences in N1 Talk-Listen
difference scores were assessed using an independent
samples t test. In our secondary analysis, a one-way
ANOVA was conducted to compare N1 Talk-Listen dif-
ference scores between ESZ, CHR, and their age-
matched HC group. A significant Group effect was fur-
ther parsed using post hoc Tukey-Kramer tests. To assess
group differences in auditory processing of speech
sounds, an independent samples t test compared the
full SZ sample with their age-matched controls on N1
amplitude during the Listen condition. In addition, an
ANOVAwas conducted to compare N1 z scores between
ESZ, CHR, and their age-matched HC group. Tukey-
Kramer post hoc tests were used to examine pairwise
comparisons.

In order to determine whether speech-related N1 sup-
pression progressively worsened over the illness course
independent of normal aging effects, duration of illness
was correlated with age-corrected N1 Talk-Listen differ-
ence z scores within the full SZ sample.
To assess the relationship between symptom severity

and speech-related N1 suppression abnormalities in the
full SZ group, N1 Talk-Listen difference scores were cor-
related with positive (total sum of PANSS positive symp-
tom ratings) and negative symptom (total sum of PANSS
negative symptom ratings) summary scores. Correlations
with SOPS positive and negative symptom summary
scores were performed in the CHR group. A Bonferroni
correction was applied for the number of correlations
performed within each patient group.

Results

Demographic Differences Between Groups

Pearson chi-square analysis showed that gender signifi-
cantly differed between the full SZ sample and their
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repeated using age-corrected N1 suppression difference z
scores, but the pattern of findings was unchanged.

Effects of Normal Aging on ERP Measures

There were no significant associations between age and
speech-related N1 suppression scores in the full HC
sample (r = .07, P = .58).

Group Differences in N1 During Listening

The full SZ sample showed a significantly reduced N1 am-
plitude during Listen (t150 = -3.46, P < .001), consistent
with the literature.39However, the one-wayANOVAcom-
paring ESZ and CHR to their age-matched controls did
not reveal a main effect of Group (F2,109 = 1.96, P =
.14); post hoc analysis also failed to find any pairwise
group differences on this measure.

Fig. 1. Grand average event-related potential (ERP) waveforms for Talk and Listen conditions. ERP waveforms for Talk and Listen
conditions show the N1 component during the Talk (dotted line) and Listen (solid line) conditions. (a) The N1 amplitude during Talk is
reduced relative to Listen in healthy controls. (b) This effect is attenuated in the schizophrenia patients. (c) TheN1 amplitude during Talk is
reduced relative to Listen in a healthy control group age matched to (d) clinical high-risk, and (e) early illness schizophrenia patients.

Fig. 2.N1amplitude (meanandSE) forTalkandListen conditions.Line graphs showgroupmeansandSEs forN1amplitudeassessedduring
TalkandListen conditions. (a)Normal speech-relatedN1 suppression is shown inhealthy controls (HC; solid line;Talk:M5�1.1, SE50.4;
Listen:M5�4.3, SE5 0.3), while the flatter slope indicates reducedN1 suppression in schizophrenia patients (SZ; dashed line; Talk:M5
�1.7, SE50.6;Listen:M5�2.9, SE50.2). In (b), clinicalhigh-riskpatients (CHR;dotted line;Talk:M5�2.4, SE50.6;Listen:M5�3.7,
SE50.4) showaslope that is intermediate toage-matchedhealthy controls (HC; solid line;Talk:M5�1.1,SE50.7;Listen:M5�4.3,SE5
0.6) and early illness schizophrenia patients (ESZ; dashed line; Talk:M5�2.5, SE5 0.9; Listen:M5�3.0, SE5 0.3). All amplitude values
are given in microvolts (lV).
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Correlational Analyses With Duration of Illness

Because duration of illness was significantly related to age in
the full SZ sample (r = .94, P < .001), age-corrected N1
Talk-Listen difference z scores were used to assess the
effects of illness duration, as described in the Methods. Ill-
ness duration was not significantly correlated with age-cor-
rected N1 suppression z scores (r = .16, P = .18), indicating
that the degree of speech-related N1 abnormality within the
full SZ sample was stable over increasing illness duration.

Correlational Analyses With Clinical Ratings

PANSS positive and negative symptom subscales were not
significantly correlated with N1 Talk-Listen difference
scores in the full SZ sample. Similarly in the CHRpatients,
SOPS positive and negative symptom subscales were not
significantly correlated with N1 Talk-Listen difference
scores.

Discussion

Using a Talk-Listen paradigm, we examined speech-
related suppression of the auditory N1 ERP component,
a phenomenon that we9,20–24 and others,10,11 have inter-
preted as reflecting the action of a corollary discharge
mechanism. Previously, we showed that this N1 sup-
pression during speech was diminished in chronic schizo-
phrenia9,20–24 consistent with predictions of corollary
discharge dysfunction in the disorder.17,18 As in previous
reports,9,15,24 we found diminished speech-related N1
suppression in this new sample of schizophrenia patients.
One aim of this study was to assess speech-related N1

suppression in patients early in their illness. The current
study extends our previous findings by showing, for the
first time, that abnormal suppression of N1 during talk-
ing is present in schizophrenia patients in the first 2.5
years of their illness and is not due to chronicity-related
clinical sequelae of the illness.
Because we studied patients across a wide range of ill-

ness durations, we were able to extend the literature by
showing that speech-related N1 suppression abnormali-
ties are not affected by illness duration. That is, abnormal
N1 suppression is not progressive and is evident before
many of the sequelae of chronic illness emerge (eg, chronic
disability and medication exposure, long-standing social
and occupational dysfunction). This question has not
been previously addressed in studies of corollary discharge
dysfunction in schizophrenia.9,15,23,24,26,40

In addition, the broad age range represented in our HC
sample allowed us to examine the effects of normal brain
maturation and aging from adolescence through adult-
hood on speech-relatedN1 suppression.We found no sig-
nificant age effects, suggesting that this putative corollary
discharge mechanism is present by adolescence and
shows no further age-related changes into midlife.
Another aim of this study was to assess patients at CHR

for psychosis. We found N1 suppression values that are
intermediate to the suppression observed inHCs and early
illness patients. In fact, CHR patients could not be

Table 2. Group Analyses for Speech-Related N1 Suppression across SZ and HC and in ESZ, CHR, and HC.

t-test Results (HC and SZ)a Cohen’s d df t/F P value
Group effect 0.428 150 2.64 .009

ANOVA Results (HC, CHR, and ESZ)b

Group effect 2,109 3.29 .041

Post hoc Tukey-Kramer Tests

HC vs ESZ 0.541 .037

HC vs CHR 0.463 .193

CHR vs ESZ 0.162 .763

Note: SZ, Schizophrenia patients; HC, Healthy Control; ESZ, Early Illness Schizophrenia; CHR, Clinical High-Risk.
aIndependent Samples t test comparing SZ and age-matched HC groups on N1 Talk-Listen difference scores. Significance based on
alpha = .05, 2-tailed.
bOne-way ANOVA comparing ESZ, CHR, and age-matched HC groups on N1 Talk-Listen difference scores. Significance based on
alpha = .05, 2-tailed.

Fig. 3. N1 Talk-Listen difference scores. Mean (6SE) N1 Talk-
Listen difference scores (inmicrovolts) for the age-matched healthy
control group, clinical high-risk, and early illness schizophrenia
patients.
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statistically distinguished from either the HC or the early
illness comparison groups. This pattern of intermediate
effects is likely due to the heterogeneity of clinically
high-risk patients and the fact that about one-third of
them will convert to schizophrenia.30 Whether attenuated
N1 suppression during speech predicts conversion to psy-
chosis in clinically high-risk patients awaits longitudinal
follow-up data, which are being collected in our lab.

Attenuated speech-related N1 suppression was not re-
lated to positive or negative symptoms in early illness or
CHR patients. This finding is consistent with some,24 but
not all,22,23 of our prior efforts to relate abnormal speech-
related N1 suppression to symptoms. It is worth noting,
however, that other studies have found relationships be-
tween psychotic symptoms to behavioral manifestations
of corollary discharge failures.40 At least 2 factors work
against finding relationships: First, medication can de-
couple the symptoms from the underlying neurobiology
that enable the symptoms to manifest during exacerba-
tions. Second, the symptom assessment interview is
a blunt instrument, dependent on the patient to articulate
features of the symptom and the clinician to hear what
the patient is saying.

This study demonstrates that putative corollary dis-
charge dysfunction during speech occurs early in schizo-
phrenia, before the inevitable sequelae of chronic illness
and remains stable over the course of the illness. Whether
the intermediate values observed for the patients clini-
cally at high-risk for developing psychosis is due to the
ultimate conversion of some in this group depends on
longitudinal studies of this cohort.
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