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Peptide sequencing by computational assignment of tan-
dem mass spectra to a database of putative protein se-
quences provides an independent approach to confirming
or refuting protein predictions based on large-scale DNA
and RNA sequencing efforts. This use of mass spectro-
metrically-derived sequence data for testing and refining
predicted gene models has been termed proteogenomics.
We report herein the application of proteogenomic meth-
odology to a database of 10.9 million tandem mass spectra
collected over a period of two years from proteolytically
generated peptides isolated from the model legume Medi-
cago truncatula. These spectra were searched against a
database of predicted M. truncatula protein sequences
generated from public databases, in silico gene model pre-
dictions, and a whole-genome six-frame translation. This
search identified 78,647 distinct peptide sequences, and a
comparison with the publicly available proteome from the
recently published M. truncatula genome supported trans-
lation of 9,843 existing gene models and identified 1,568
novel peptides suggesting corrections or additions to the
current annotations. Each supporting and novel peptide
was independently validated using mRNA-derived deep se-
quencing coverage and an overall correlation of 93% be-
tween the two data types was observed. We have addition-
ally highlighted examples of several aspects of structural
annotation for which tandem MS provides unique evidence
not easily obtainable through typical DNA or RNA sequenc-
ing. Proteogenomic analysis is a valuable and unique
source of information for the structural annotation of ge-
nomes and should be included in such efforts to ensure that
the genome models used by biologists mirror as accurately
as possible what is present in the cell. Molecular & Cellular
Proteomics 11: 10.1074/mcp.M112.019471, 933–944, 2012.

Many analyses in systems biology rely on an annotated
genomic sequence as a starting point, and the quality of the
genome sequence and annotation directly affects the reliabil-
ity of the resulting conclusions. Improving the accuracy of the
structural and functional annotation should therefore be a
major focus in the study of any model organism, and many
sources of data are available which can be used to assist in
this effort. Common sources of experimental evidence used
to improve in silico gene model predictions include the se-
quences of full-length cDNA clones and expressed sequence
tag (EST)1 libraries, alignment of homologous sequences from
related organisms, and, more recently, the deep sequencing
of mRNA-derived cDNA libraries using next-generation plat-
forms (RNA-Seq). The use of information from these sources
can significantly improve the results of automated gene-call-
ing efforts, but all operate at the transcript level and are
unable to differentiate between coding and non-coding se-
quences. The field of proteogenomics has recently emerged
in response to this perceived gap. Broadly defined, proteo-
genomics is the use of proteomics data and methodology to
assist in the annotation of genome sequences. This typically
involves the “sequencing” of an organism’s proteome using
tandem mass spectrometry (MS/MS) with a greatly expanded
search database consisting of published protein sequences,
possible splice variants, and a six-frame translation of the
entire genome. The identified peptide sequences are then
mapped back to the genome, and these peptide/genome
mappings are used to confirm, refute, or add to existing gene
annotations. They can also be included directly in the anno-
tation pipeline alongside other sources of evidence. Proteo-
genomics, along with other recent developments such as
ribosome profiling (1, 2), can thus provide an additional layer
of information to assist in delineating transcript coding re-
gions and reading frames.

Recently the draft sequence of the Medicago truncatula
genome was released (3). M. truncatula, a relative of the
important agricultural crop alfalfa, serves as a model orga-
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nism for the legume family and is the focus of much research
to understand the mechanisms of symbiosis between the
plant and soil microbes that result in fixation of atmospheric
nitrogen. Although publication of the draft sequence is an
important step forward for Medicago researchers, efforts to
improve the genomic assembly and structural and functional
annotations are ongoing. To assess the quality of the pub-
lished annotations and establish an independent source for
improving them, we have evaluated the use of existing
MS/MS data to confirm or correct current gene models and
discover possible novel, unannotated genes in the M. trunca-
tula genome. Similar work performed in other sequenced
organisms (4–9) has shown the potential for this type of
analysis, and proteogenomic data for the model organism
Arabidopsis is being incorporated directly into the structural
annotation process (10). MS/MS data can confirm expression
of current gene models, help to correct errors in splice sites
and reading frames, suggest missing exons and alternative
splicing, and provide evidence for novel genes missing from
the current annotations. We used a database of 10.9 million
MS/MS spectra generated from ongoing proteomic and phos-
phoproteomic studies to test the utility of this approach in the
model legume. Although the vast majority of identified pep-
tides supported existing gene models, there is evidence for
the need for further work to improve the Medicago annota-
tions. Conclusions based on mapped peptide evidence were
independently validated using a database of 341 million RNA-
Seq reads taken from ongoing transcriptomics experiments.
The results show the validity of the use of MS/MS data to
improve the quality of existing structural annotations, partic-
ularly in cases in which peptide data provides evidence not
derivable from other sources. In practice, all available sources
of information (MS/MS, RNA-Seq, EST databases, etc) should
be used simultaneously to guide the construction of accurate
gene models both by automated gene calling and, where
feasible, by manual curation.

EXPERIMENTAL PROCEDURES

Sample Preparation and MS/MS—The data used in this study were
generated from tissue of M. truncatula ’Jemalong A17� wild type as
well as C31 and TRV25 mutants in 11 different experiments using
multiple growth conditions, treatments and protein isolation proce-
dures. Aeroponic and hydroponic plants were grown as described
previously (11, 12). Additionally, seedlings were sown on 23 � 23 cm2

plates containing modified Fahraeus medium overlaid with moist
sterile germination paper and grown at room temperature in the dark
for 5 days. All plants were treated for one hour by replacement of the
medium with modified Fahraeus medium with and without 10�8 M

Nod factors obtained from Sinorhizobium meliloti strain Rm1021
pRmE43 (pTE3:nodD1) as described in (12). Seedlings were har-
vested after one hour of treatment and either flash frozen in liquid
nitrogen or processed using two-phase isolation of membrane frac-
tions as outlined in (13).

Proteins were isolated for MS/MS analysis from whole-cell lysates
of flash-frozen root tissue or membrane-enriched fractions with the
addition of a variety of phosphatase inhibitors as described previously
(37). Protein samples were reduced with DTT at a final concentration

of 5 mM and alkylated with 15 mM iodoacetamide before final capping
with 5 mM DTT. Proteins were digested with trypsin, derivitized with
isobaric labels (TMT 6-plex, iTRAQ 4-plex, or iTRAQ 8-plex according
to experiment) (14, 15) and fractionated by strong cation exchange
(SCX). For phosphorylation experiments, samples were enriched for
the presence of a phosphate group by IMAC chromatography. All
samples were analyzed on a LTQ-Orbitrap Velos mass spectrometer
(Thermo Scientific). For mRNA sequencing, seedlings from ‘Jemalong
A17’ wildtype grown using the plate system were used and root tissue
was excised and flash frozen. RNA was isolated using a Qiagen
RNeasy Plant Mini kit. Sequencing libraries were prepared using the
Illumina TruSeq RNA Sample Preparation Kit (mRNA protocol rev. A)
and sequenced on an Illumina HiSeq 2000 system.

Database Generation, Searching, and False Discovery Rate Estima-
tion—The database of protein sequences used for spectral searching
was generated from several sources. Protein sequences from the
published version of the M. truncatula genome annotations (Mt3.5v4)
were downloaded from the JCVI Medicago FTP server (ftp://ftp.
jcvi.org/pub/data/m_truncatula/Mt3.5/Mt3.5v4/). The Mt3.5 genome
sequence from the same site was used to generate a six-frame
translation of the entire genome, discarding open readings frames of
fewer than 30 putative amino acids (a.a.) between stop codons to
minimize the database size. Lastly, the gene-finding program
AUGUSTUS (16) was used to generate a de novo gene model pre-
diction for the Mt3.5 genome based on Arabidopsis training param-
eters. Parameters for AUGUSTUS were set to be liberal in intron/exon
prediction and to report all possible predicted splice variants for each
gene model to maximize the search space for discovering novel
peptides, as described in Castellana et al. (4). The three sets of
predicted protein sequences were reduced to a non-redundant da-
tabase using in-house software to remove duplicate protein entries.
Redundant proteins were determined by comparing amino acid se-
quences (ignoring I/L ambiguity) for an exact match against all other
proteins. A decoy database of reversed sequences was added for the
purpose of false discovery rate (FDR) estimation as described previ-
ously (17).

Database searching was performed using the Coon OMSSA Pro-
teomic Analysis Software Suite (COMPASS) (18) and using the Open
Mass Spectrometry Search Algorithm (OMSSA) version 2.1.8 (19).
Proteins were digested in silico by OMSSA using tryptic cleavage
specificity. Peptide precursors were searched using a multi-isotopic
search (�50 ppm, max 4 isotopes) and product ion mass tolerance
was set to �0.015 Da. Carbamidomethylation of cysteines, isobaric
labeling (TMT or iTRAQ) on the N terminus, and isobaric labeling on
lysines were included as fixed modifications. Oxidation of methio-
nines and isobaric labeling on tyrosines were included as variable
modifications. For all phosphorylation experiments, variable modifi-
cations of phosphorylation on threonines, serines, and tyrosines were
applied. Results were filtered to a 1% peptide FDR based on decoy
database matches using the high resolution tool FDROptimizer from
the COMPASS suite. Peptides were further grouped into protein
groups and filtered to a 1% protein FDR based on the product of
included peptide p values. The highest (worst) p value was used when
peptides were observed in multiple spectra. Only peptides belonging
to filtered protein groups were used in further analysis.

Peptide Mapping and Analysis—The full list of spectral matches
was collapsed to a set of unique peptide sequences. Each peptide
was mapped back to its genomic location(s) using a combination of
database/peptide and database/genome coordinate tables, taking
into account split peptides spanning splice junctions and Leu/Ile
ambiguity. This generated a set of expressed peptide tags (EPTs) as
originally defined by Savidor et al. (6). Each EPT was subsequently
classified by a number of non-exclusive criteria using a combination
of the bedtools software package (20), in-house scripts, and manual
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inspection using the Integrative Genomics Viewer (IGV) (21). Inter-
genic clusters were generated by single-linkage clustering using bed-
tools with a distance cutoff of 1500 bp. AUGUSTUS was used to
search for alternative gene models for intragenic nEPT loci and for
novel gene models at intergenic nEPT clusters, allowing for multiple
alternative transcripts per model with a sampling of 100 and using
EPT-based hints to guide prediction.

RNA-Seq Validation—A total of 340,622,166 100bp single-end
reads from Illumina HiSeq2000 sequencing of M. truncatula ‘Jema-
long A17’ poly-A enriched mRNA were mapped to the Mt3.5 genome
using Tophat v1.3.2 (22). Parameters for minimum intron size, maxi-
mum intron size, and microexon searching were set to 10, 20000, and
TRUE, respectively. All other parameters used default settings. A total
of 269,109,482 reads were successful mapped to the genome. These
alignments were used in both automated validation using bedtools
and in-house software as well as visual validation using IGV.

RESULTS

Spectral searching against our M. truncatula protein data-
bases resulted in 1.7 million spectral matches at a 1% protein
FDR (supplemental Table S1), representing 78,647 unique
peptide sequences. Of these, 78,558 unique peptide se-
quences were mapped to 112,720 locations on the genome
with no mismatches allowed. We refer to these unique peptide
sequences as expressed peptide tags or EPTs, as suggested
by Savidor et al. (6). The parallel to the terminology of ESTs
emphasizes that, for the purposes of proteogenomics, EPTs
occupy genome coordinate space. Of these EPTs, 62,802
mapped to unique locations, 10,608 mapped to two locations
and 5,148 mapped to three or more locations. The median
length of identified EPT sequences was 14 a.a, with a mini-
mum length of 5 a.a. and a maximum of 89 a.a. (Fig. 1A).
Although the overwhelming majority of peptides mapped to
only one location, a comparison of length against mapping
count for each EPT showed distinct non-specificity for short
peptides (Fig. 1B, C). The median mapping count for 5 a.a.
EPTs is 62 locations, with no 5 a.a. EPT mapping to fewer
than 40 locations. The median mapping count for 6 a.a. EPTs
is 6, whereas at a length of 7 a.a the median falls to one.
Based on this analysis, and to minimize the number of spuri-
ous mappings resulting from the probability of any given short
peptide occurring randomly in a six-frame translation of the
genome, we discarded from consideration any EPTs shorter
than 7 a.a. This reduced the number of unique EPTs by 0.2%
to 78,362 while reducing the number of mapped locations by
6.0% to 105,973 (Table I). A similar threshold has been used
by others in proteogenomic studies (23). EPTs above this
threshold were further classified and characterized as de-

FIG. 1. Statistical analysis of peptide length and mapping oc-
currence distributions. Histogram (A) depicts frequency of unique
peptide length in the dataset. The median peptide length was 14 a.a.,
as indicated by the solid vertical bar. The minimum length was 5 a.a.
and the maximum was 89 a.a. The dashed line represents the
median-normalized frequency polygon of an in silico tryptic digest of
annotated proteins and correlates well with the observed distribution.
The histogram is clipped on the right at the 999th permille for easier
viewing. Plot (B) depicts the number of mapped locations per peptide
versus frequency. The minimum and median number of mapped
locations was one and the maximum was 2,649. Both axes are plotted
on a log scale to facilitate viewing. Plot (C) depicts peptide length
versus the number of genomic locations the peptide mapped to. Each

point represents a unique sequence in the database, and the solid line
connects median mapping counts for each peptide length. It is clear
that very short peptides map to a large number of locations in the
genome and hence are unreliable as indicators of expression at a
locus. Based on this analysis we settled on a minimum length cutoff
of 7 a.a., the point at which the median number of mapped locations
drops to one.
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scribed in the following sections and are summarized in
Table I.

Supporting Peptides—The Mt3.5v4 release of the M. trun-
catula gene models contains 64,152 predicted protein-coding
models, although many of the models located in short-read
sequencing scaffolds are expected to be partial fragments
of the same genes because of the relatively small size of the
assembled contigs (Illumina N50 � 2364; N80 � 1095). A
total of 76,505 EPTs were mapped to 95,633 locations that
were in agreement with the published gene models of
Mt3.5v4. These supporting EPTs (sEPTs) provide evidence
for translation of the existing gene models. Of the 64,152
current Mt3.5v4 gene models, 160 were covered by sEPTs
over � 80% of their coding sequence length, 2205 had �

50% sEPT coverage, and 15,541 contained at least one
sEPT as evidence of translation (Table II). A more stringent
evaluation considering only gene models containing two or

more sEPTs with at least one uniquely mapped at that
genomic locus provides evidence for the translation of
9,843 gene models (supplemental Table S2).

N-Terminal Modification—To take advantage of the unique
nature of MS/MS data as applied to structural annotation, we
analyzed the sEPT data set to look for evidence of N-terminal
methionine excision (NME). A total of 352 sEPTs were identi-
fied as being N-terminal (starting at position 1 or 2 of the
protein sequence). Thirty-eight of these were filtered out as
being contained within longer peptides in the full set of EPTs,
suggesting possible degradation. Of the remaining sEPTs, 47
mapped to position �1 of the protein sequence and 267
mapped to position �2 (evidence of N-terminal methionine
excision). This suggests a cleavage rate of 85%, in agreement
with research in other organisms finding that the majority of
both cytoplasmic and organellar proteins undergo NME in
plants as well as other eukaryotes and prokaryotes (24–27).

FIG. 2. Relative frequency of N-terminal methionine cleavage
for each of the 19 possible amino acids in the �2 position.
Frequencies are calculated as the number of observed cleavage
events for the amino acid divided by the sum of the observed cleaved
and uncleaved termini with that amino acid in the �2 position
[cleaved/(cleaved � uncleaved)]. Numbers above the bars are the
total number of observed termini with this amino acid in the �2
position for uncleaved or �1 position for cleaved proteins. The amino
acid code “Z” represents either Leu or Ile, which are indistinguishable
in the technology used. In general the trends agree with research
published on the phenomenon in other organisms, with cleavage
occurring in the presence of small amino acids in the �2 position.

TABLE I
Summary of the mapping of a database of 10.9 M MS/MS spectra against the M. truncatula genome sequence

All spectral matches were considered and mapped to locations on the Mt3.5v4 genome sequence if possible. After filtering out peptides �
7 aa in length, the remaining EPTs were classified into initial categories as shown. Unique EPT counts represent unique sequences, while
location counts represent unique loci on the genome to which EPTs map. Intragenic EPTs are considered to be those which have any overlap
with current gene models, including coding sequences, introns, and untranslated regions.

Initial category Unique EPTs Locations Unspliced locations Spliced locations

Mapped to Mt3.5 genome 78,362 105,973 90,393 15,580
Support Mt3.5v4 gene models 76,505 95,633 80,541 15,092
Explained by Mt3.5v4 TE models 289 304 276 28
Locations ignored due to gene model match NA 8,305 7,954 351
Novel peptides 1,568 1,731 1,622 109

Category within novel peptides
Intergenic 1,060 1,134 1118 16
Intragenic 552 597 504 93

TABLE II
Summary of supporting evidence for existing gene models

For each annotated gene model, the fraction of transcript length
covered by at least one EPT at each base position was calculated
using bedtools. R (38) was used to transform the resulting coverage
counts into a cumulative frequency table. Fractions listed represent
the lower edge of bins, exclusive. The total number of predicted gene
models is likely to be artificially high due to splitting of genes over
multiple small short read contigs.

Fraction of
transcript covered

Cumulative abs.
frequency

Cumulative
percent

0.9 18 0.03
0.8 160 0.25
0.7 533 0.83
0.6 1261 1.97
0.5 2205 3.44
0.4 3475 5.42
0.3 5031 7.84
0.2 7164 11.17
0.1 10436 16.27
�0.0 15541 24.23
All 64152 100.00
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The frequency of occurrence of each of the 19 possible amino
acids (Leu and Ile are indistinguishable in MS/MS) was deter-
mined at the �1 position in cleaved and �2 position in un-
cleaved N-terminal sEPTs (Fig. 2). The activity of the MAP
peptidases involved in NME is thought to be specific to small
second position amino acids, typically one of [GAPCSTV] (24,
25, 28). Our results show a high MAP specificity for [GAPTV]
in the �2 position, all of which result in � 93% cleavage
frequency. Serine showed a slightly lower frequency of cleav-
age, and cysteine was never observed at the �1 position in
any of the identified N-terminal sEPTs. It should be noted
that another common post-translation modification, N-alpha-
acetylation (NAA), has also recently been shown to occur in a
large portion of the proteome of Arabidopsis (27). We did not

specifically search for acetylation modifications, so it is possible
that the ratio of cleaved to non-cleaved termini could be af-
fected by the lack of acetylated identifications if acetylation
occurs more or less frequently in cleaved versus non-cleaved
proteins.

Intragenic Novel Peptides—The remainder of the analysis
dealt with so-called “novel” EPTs (nEPTs) - peptides that
could not be explained by any existing gene models. Of the
1,568 novel peptides identified, 552 were intragenic (i.e., over-
lapped existing gene models, including introns and UTRs) at
597 locations in the genome. These were classified according
to a number of criteria to roughly quantify the types of evi-
dence they provide. A total of 79 spliced nEPTs were identi-
fied which suggested novel splice junctions at 75 genomic
locations. A visual inspection of these locations indicated that
64 were supported by RNA-Seq alignments as being the only
or predominant splice form, suggesting corrections to the
gene models. These were classified as corrections to donor
sites (n � 14), acceptor sites (n � 15), both donor and ac-
ceptor sites (n � 4), extraneous exons/introns (n � 19), miss-
ing exons/introns (n � 11), and incorrectly split genes (n � 1).
Seven sites were covered by EPTs with both annotated and
novel splice forms, giving strong evidence for alternative
splicing at these locations. Five of these nEPTs were the
minor form based on spectral match counts and two were
major forms. One additional nEPT was suggested to be a
minor splice form by RNA-Seq alignments alone, and three
novel splice sites were unsupported by RNA-Seq data. Over-
all, of the 75 novel splice junctions, 71 (95%) were supported
by 10 or more (median � 500) spliced mRNA reads with
identical donor and acceptor sites, indicating a high degree of
correlation between EPT and RNA-Seq evidence for splice
site correction.

FIG. 3. Insertion at locus AC225449_6.1 of M. truncatula. Shown are length of depicted region (in base pairs), contig ID, location of
mapped EPTs, the Mt3.5v4 gene model and 3-frame translation, and depth of RNA-Seq coverage (scale in reads per bp shown at left). An
apparent 1-bp insertion in the genomic sequence causes the gene caller to insert an erroneous intron to correct for the frameshift. EPT_046967
(8 PSMs) overlapping the intron justified a closer look at the genomic locus, and RNA-Seq data of 	1700-fold coverage clearly showed an
insertion in the genomic sequence at the location of the intron (black arrow). Such indels were observed numerous times in both BAC-based
pseudomolecule constructs as well as short read contigs.

TABLE III
Classification of unspliced intragenic nEPTs

Each nEPT location was classified by visual inspection of mapped
EPT on the genome alongside the published gene models, six reading
frame translations, and RNA-Seq read alignments using IGV. EPTs
were grouped into common categories based on the most likely type
of addition or correction suggested.

Category Count

Other splice fix 115
Missing gene end 99
Splice fix at 3� exon 86
Insertion/deletion 56
Different strand/frame 53
Alternative splicing 18
Retained intron 15
Gene fusion correction 11
Alternate start codon 11
Noncanonical start codon 7
Other/unexplained 33
Total: 504
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The 504 unspliced intragenic nEPT locations were classified
as either completely within exons (33%), completely within
introns (20%), or overlapping exon boundaries (47%). These
locations were further examined by visual inspection along-
side RNA-Seq alignments to assign putative explanatory cat-
egories (Table III). A total of 201 locations suggested splice
corrections. Of these, 86 suggested removal of extra introns
at the 3� end, one of the more consistent patterns observed in
the nEPT data. Frameshifts resulting from small insertions or
deletions (indels) in the genomic sequence that are clearly
visible in the RNA-Seq alignments accounted for another 56
intragenic nEPT locations. These 1–2 bp indels generally re-
sulted in either a truncation of the gene model or the insertion
of an erroneous intron to correct for the frameshift (Fig. 3).
Although nEPT data itself cannot confirm the presence of
these errors, it can provide strong supporting evidence for
possible mistakes identified using more direct evidence such
as DNA or RNA sequencing. An additional 99 nEPT loca-
tions overlapping the ends of gene models located near the
ends of short genomic contigs are assumed to be because
of the incomplete nature of the gene models and would
likely be resolved with an improved genome assembly. The
remainder of the unspliced intragenic nEPTs were classified
into a number of smaller categories, including alternate ATG
usage, strand/frame disagreements, gene fusion correc-
tions, and possible noncanonical start codon usage as de-
scribed below.

Gene Model Refinement Based on Intragenic nEPTs—
AUGUSTUS was used to search for refined gene models for
each intragenic nEPT locus. A region of 10,000 bp on either
side of each intragenic nEPT was defined, and overlapping
regions were merged using bedtools. Each region was
searched using AUGUSTUS for all predicted transcript vari-
ants. Each intragenic nEPT was re-mapped to the resulting
protein sequences and classified as either explained by or not
explained by these predicted models, and a minimal set of
predicted gene models explaining all possible nEPTs was
generated. Of the 552 intragenic nEPT locations initially iden-
tified, 390 were explained by a minimal set of 293 refined gene
models.

Noncanonical Translation Initiation—The recurring identifi-
cation of nEPTs with no upstream in-frame canonical (ATG)
start codons led us to investigate the possibility of noncanoni-
cal start codon usage in M. truncatula. Non-canonical start
codon usage, or the use of a codon other than ATG for
translation initiation, is not uncommon in prokaryotes, occur-
ring in 	17% of Escherichia coli genes (29). Evidence for
non-canonical usage has also been found in eukaryotic or-
ganisms for a small number of genes (30–35), and in silico
homology-based analysis can be used to identify further po-
tential candidates (36). The emerging technique of ribosome
profiling has provided further evidence that the phenomenon
may be more common in eukaryotes than previously thought
(1, 2). Non-canonical start codons in other eukaryotic organ-

isms tend to have a single base difference from the canonical
ATG codon, as well as having optimal or near-optimal sur-
rounding sequence context. For example, in plants there is an
increased frequency of A or G at the �3 position and G at the
�4 position (34). Analysis of the surrounding sequence con-
text of annotated translation start sites in M. truncatula shows
a similar trend (Fig. 4). This information allows for a qualitative
analysis of the likelihood of a given non-canonical codon
being used for translation initiation when EPT evidence sug-
gests such an event.

After removing from consideration loci with clear RNA-Seq
evidence for missing 5� exons, as well as loci within 5000 bp
of the 5� end of a contig (which may also have missing 5�

exons) and loci without any supporting RNA-Seq evidence,
we evaluated 7 loci for the potential use of non-canonical start
codons. To be considered as a possible start site, a codon
must have both optimal nucleic acid residues at positions �3
and �4 and have no more than a one base difference from the
canonical ATG codon. Of the 7 loci considered, 5 contained
upstream in-frame codons satisfying these criteria. High-
lighted in Figs. 5 and 6 are two examples with particularly
strong supporting evidence based on homology to other pub-
lished work. As the N termini of proteins often direct cellular
localization, it is important that gene models contain accurate
coding sequence boundaries, and proteogenomics is one of
only a handful of tools able to provide evidence for possible
mistakes in start codon annotation. It should be noted, how-
ever, that because of the low expected frequency of nonca-
nonical usage events compared with the inherent 1% error
rate in peptide assignments, evaluation of such EPT evidence
is of more use in manual curation than in automated gene
calling pipelines and would require additional supporting ev-
idence such as provided for the two examples given.

FIG. 4. Sequence logo of the context surrounding the annotated
start codons of Mt3.5v4 gene models. Only gene models from the
pseudomolecule assemblies were used to generate the logo, because
an abundance of partial gene models in the short read contigs may
add artificial noise to any possible patterns. We observed a strong
preference for adenine in the �3 position and guanine in the �4 posi-
tion, in agreement with other plant species. Positions 1–3 were 100%
conserved - they are not shown to scale. Logo was generated using
WebLogo 3.2 (39) from a TRANSFAC motif file generated in-house.
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Intergenic Novel Peptides—The remaining 1,060 novel
EPTs mapped to 1,134 intergenic locations on the Mt3.5
genome. For our purposes, “intergenic” is defined as having
no overlap with existing gene models, including annotated
UTRs. These nEPTs generally fall into two categories - evi-
dence for novel gene models and evidence for the extension
of existing gene models. Initial classification was done by
single-linkage clustering, both to other novel EPTs and to
existing gene models. Choosing an appropriate distance for
clustering is complicated in eukaryotic organisms in which
exons from a single gene can be separated by large dis-
tances. An increase in distance results in an increased likeli-
hood of EPTs from adjacent genes being clustered together,
whereas a decrease in the distance cutoff results in an in-

creased likelihood of single-gene EPTs being clustered sep-
arately. In practice, the impact of the first type of error is
minimized during the gene modeling stage. EPTs incorrectly
clustered together are filtered out when predicted models are
tested for inclusion of all clustered peptides. On the other
hand, the second type of error may result in missed novel
genes, as a gene containing two novel EPTs that are incor-
rectly clustered separately would not pass the minimum EPT
count filtering. We therefore chose a distance cutoff of 1500
bp, which represents the 96th percentile of the intron length
distribution and the 36th percentile of the intergenic distance
distribution in Mt3.5v4, to minimize the second error type.
Using this distance, nEPTs clustering with existing models
were considered as likely evidence of gene model extensions,

FIG. 5. Noncanonical start codon usage at locus Medtr7g085090 of M. truncatula. Panel (A) shows a graphical depiction of the locus
at two levels of resolution. Shown in each sub-panel are length of depicted region (in base pairs), chromosome ID, location of mapped EPTs,
the Mt3.5v4 gene model and frame translation (in secondary panel), and depth of RNA-Seq coverage (scale in reads per bp shown at left).
RNA-Seq evidence indicates that the first exon in the gene model is erroneous. EPT_022550 (11 PSMs) maps to a genomic location upstream
of the first in-frame start codon. The proposed true noncanonical start codon is shown by a black arrow. Panel (B) shows a multiple alignment
of the protein and nucleotide sequences of the region surrounding the proposed true start codon in M. truncatula and that of the homolog in
Arabidopsis, which has been shown to use the noncanonical codon highlighted by dashed lines to initiate translation (34).
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and the remaining clusters were considered as likely evidence
of novel unannotated genes.

The intergenic nEPT locations clustered into 209 novel clus-
ters of two or more peptides and 118 clusters with existing
genes, with 227 nEPTs remaining as singletons. Clusters con-
taining existing gene models were considered to be evidence
for extension of the current models. Novel clusters were fur-
ther filtered to remove those not containing at least one
uniquely mapped peptide, leaving 201 clusters considered as
possible evidence for novel genes. Each cluster, along with
10,000 bp of genomic sequence on either side, was analyzed
with the AUGUSTUS gene finding software to look for pre-
dicted gene models. For 190 of the novel clusters, gene
models were predicted which contained all of the clustered

peptides. Gene models were predicted for an additional two
clusters that contained at least one unique and two total
peptides but did not contain all clustered peptides, possibly
because of incorrect clustering. The translation products of
these novel genes were searched against the RefSeq protein
database using NCBI BLAST (37) with an E-value cutoff of
1e�20, and a list of the top hit and relevant scores for each of
the 133 clusters with RefSeq hits can be found in supplemen-
tal Table S3.

Most novel clusters (92%) were found in short read contigs,
suggesting a strong possibility that they are only partial mod-
els. To determine probable full-length models, we used two
additional filtering criteria. AUGUSTUS was set to allow partial
gene models at the ends of genomic sequences, and only 70

FIG. 6. Noncanonical start codon usage at locus Medtr4g034810 of M. truncatula. Panel (A) shows a graphical depiction of the locus
at two levels of resolution. Shown in each sub-panel are length of depicted region (in base pairs), chromosome ID, location of mapped EPTs,
the Mt3.5v4 gene model and frame translation (in secondary panel), and depth of RNA-Seq coverage (scale in reads per bp shown at left).
EPT_054593 (9 PSMs) maps to a genomic location upstream of the annotated start codon. Note the optimal sequence context at positions �3
and �4 relative to the proposed start codon. Panel (B) shows a multiple alignment of the protein sequences between the putative ribosomal
protein S8 encoded by Medtr4g034810.1 (using the proposed noncanonical start codon) and its closest homolog in Arabidopsis which uses
a canonical ATG start codon.
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of the 192 gene models it built contained both annotated start
and stop codons. These were further filtered during the
BLAST search by comparing the length of the predicted pro-
tein to that of the best RefSeq hit. Predicted proteins which
were at least 80% of the length of the best hit and which
aligned to the best hit starting within 20 a.a. of the N terminus
were classified as being likely to be full-length models. This is
a rather simplistic approach and relies on the robustness of
the RefSeq database to deduce the expected length of the
protein, but it gives an initial estimation of the quality of the
predicted novel genes. The 34 cluster models passing this
filtering are listed in Table IV, along with the total number of
nEPTs in the cluster, the number of uniquely mapping nEPTs,
and the description, percent identity, and E-value of the best
RefSeq hit for each associated gene model.

Full Validation Using RNA-Seq Alignments—To evaluate the
overall validity of the EPT mapping, the minimum read cover-

age over the length of the mapped tag for both supporting and
novel EPTs was calculated using a set of 269 million 100 bp
Illumina reads generated from M. truncatula ‘Jemalong A17’
mRNA and mapped to the Mt3.5 genome. Of all intergenic
and intronic regions (based on the Mt3.5v4 annotations),
78.3% were not covered by any mapped reads, indicting little
genomic DNA contamination in the sequencing samples. We
used a minimum coverage of 5x (the 90th percentile of inter-
genic/intronic region coverage) over the entire length of the
peptide to classify an EPT as confirmed by RNA-Seq. Based
on this criteria, 90,843 out of 95,633 sEPT mappings (95%)
were confirmed and 1495 out of 1731 nEPTs (86%) were
confirmed. Of all EPT locations combined, 93% met the cri-
teria for positive RNA-Seq validation.

It is sometimes assumed that peptides with higher spectral
match counts (peptide spectral matches - PSMs) are more
reliable. For our purposes, a PSM is defined as an indepen-

TABLE IV
Novel EPT clusters with full-length gene model predictions

Genomic regions containing clustered nEPTs and 10,000 bp of flanking sequence were fed into the AUGUSTUS gene prediction software
along with EPT-based coding hints. Predicted gene models were then searched against the RefSeq database using NCBI BLAST. Shown are
gene models predicted by AUGUSTUS with both annotated start and stop codons and similarity in overall size to the top BLAST hit. Gene
models were reported by AUGUSTUS for an additional 99 novel EPT clusters but are likely to be incomplete due to missing genomic sequence.

Locus Contained uniquely
mapped nEPTs

All contained
nEPTs Description of top RefSeq hit Percent

identity E-value

Cluster_149 29 29 Nephrocystin-3-like 
Glycine max� 87.1 0.00E�000
Cluster_189 24 24 Subtilisin-like protease-like 
Glycine max� 82.3 0.00E�000
Cluster_162 17 17 Reticuline oxidase 
Medicago truncatula� 78.8 0.00E�000
Cluster_102 11 11 Conserved oligomeric Golgi complex subunit 1-like 
Glycine max� 84.9 0.00E�000
Cluster_033 10 10 UDP-glycosyltransferase 84B1-like 
Glycine max� 71.5 0.00E�000
Cluster_141 8 8 S-adenosylmethionine synthase-like isoform 1 
Glycine max�# 96.4 0.00E�000
Cluster_167 8 8 Probable glutathione S-transferase-like 
Glycine max� 77.4 4.00E�128
Cluster_184 8 8 ruBisCO large subunit-binding protein subunit alpha, chloroplastic-like


Glycine max�
91.1 0.00E�000

Cluster_043 7 7 Uncharacterized protein LOC100306450 
Glycine max� 80.2 9.00E�053
Cluster_010 6 6 Ubiquinone biosynthesis protein COQ9, mitochondrial-like 
Glycine max� 75.6 1.00E�161
Cluster_140 6 6 Uncharacterized protein LOC100818804 
Glycine max� 72.6 1.00E�101
Cluster_006 5 5 NADP-dependent malic enzyme, chloroplastic-like 
Glycine max� 89.3 0.00E�000
Cluster_173 5 5 Uncharacterized protein LOC100244411 
Vitis vinifera� 49.7 3.00E�076
Cluster_007 4 5 Methylmalonate-semialdehyde dehydrogenase 
acylating�, mitochondrial-like


Glycine max�
89.8 0.00E�000

Cluster_001 4 4 Uncharacterized protein LOC100788250 
Glycine max� 81.2 0.00E�000
Cluster_039 4 4 Uncharacterized protein LOC100527685 
Glycine max� 65.8 1.00E�021
Cluster_081 4 4 Uncharacterized protein LOC100805605 
Glycine max� 61.8 3.00E�129
Cluster_094 4 4 Poly(A) polymerase-like 
Glycine max� 80.2 0.00E�000
Cluster_096 4 4 Chlorophyll a-b binding protein 21, chloroplastic-like 
Glycine max� 91.7 6.00E�177
Cluster_169 4 4 Predicted protein 
Populus trichocarpa� 69.4 2.00E�114
Cluster_160 2 4 Probable methyltransferase PMT8-like 
Glycine max� 82.9 0.00E�000
Cluster_121 3 3 Expansin-A4-like 
Glycine max� 88.1 4.00E�171
Cluster_134 3 3 Em-like protein GEA1-like 
Glycine max� 79.1 3.00E�048
Cluster_029 2 2 Uncharacterized protein LOC100306283 isoform 2 
Glycine max� 73.0 1.00E�029
Cluster_067 2 2 Hypothetical protein MTR_6g034800 
Medicago truncatula� 36.2 1.00E�033
Cluster_097 2 2 LRR receptor-like serine/threonine-protein kinase FLS2-like 
Glycine max� 78.1 0.00E�000
Cluster_111 2 2 Uncharacterized protein LOC100527746 
Glycine max� 80.0 8.00E�065
Cluster_129 2 2 Uncharacterized protein LOC100811471 isoform 1 
Glycine max� 85.4 0.00E�000
Cluster_136 2 2 Uncharacterized protein LOC100794459 
Glycine max� 62.2 7.00E�053
Cluster_138 2 2 Zinc finger CCCH domain-containing protein 32-like 
Glycine max� 75.5 0.00E�000
Cluster_168 2 2 Transcription factor RF2b-like 
Glycine max� 73.7 0.00E�000
Cluster_186 2 2 Octanoyltransferase-like 
Glycine max� 86.2 8.00E�138
Cluster_194 2 2 Uncharacterized protein LOC100526970 precursor 
Glycine max� 68.3 1.00E�101
Cluster_002 1 2 Uncharacterized protein LOC100788250 
Glycine max� 81.2 0.00E�000
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dent observation of a given spectrum/peptide match and the
PSM count is the number of individual spectra matching a
given peptide sequence. To test this hypothesis, we repeated
the above analysis on sEPTs grouped by PSM and calculated
the percent of sEPTs confirmed at each PSM level. Fig. 7
shows a plot of spectral match count against percent RNA-
Seq correlation for PSMs in the range of 1–150. The slope of
the linear model fitted to this plot is near zero, suggesting little
or no correlation between spectral count and the reliability of
peptide identification as evidenced by RNA-Seq correlation.

Data Availability—All raw spectra and relevant analysis files
are available at the Medicago Omics Repository (http://
more.biotech.wisc.edu).

DISCUSSION

Proteogenomics is a valuable tool for enhancing existing
structural annotations of sequenced organisms. We have en-
deavored to apply this technique to the model legume Medi-
cago truncatula to gain a further understanding of the state of
the published genome and annotations. The purpose of this
effort was primarily exploratory in nature. In practice, ex-
pressed peptide tag data should be incorporated directly into
gene model prediction software alongside other forms of ev-
idence such as EST, RNA-Seq, and homologous protein data.
Some existing gene modeling tools, such as AUGUSTUS and
Maker, already have this capability. EPT data can also be
used for manual curation of individual genes, either by re-
search groups for their gene(s) of interest or in the course of
systematic manual curation for a full genome. Both types of
analysis are facilitated by the aggregation of MS/MS data by
genome working groups who can process it and provide it to
end users as EPTs either by download or within genome
browsers such as GBrowse and IGV. We are providing our full

set of existing EPT data to the International Medicago Ge-
nome Annotation Group to assist in their efforts and envision
similar collaborations in the future as more MS/MS data is
generated.

Although MS/MS and EPT data can serve a unique role in
any genome annotation effort, some aspects of structural
annotation are just as easily and in some cases more reliably
deduced based on other types of evidence. This includes the
correct identification of splice sites during mRNA processing,
which are a source of common errors in structural annotations
based on computer prediction. We have shown the ability of
proteogenomics to locate such errors, but also shown a high
correlation between EPT evidence and that provided by RNA-
Seq alignments. Because of this overlap, and the typically
higher level of coverage across any given transcriptome that
RNA-Seq provides compared with MS/MS, some researchers
in the genomics community have questioned the usefulness
of proteogenomic analyses. However, our analysis has shown
the reliability of EPT data as an additional tool for genomic
work. We have shown that novel peptides are supported by
RNA-Seq alignments at only slightly lower levels than sup-
porting peptides, and peptides with low spectral match
counts do not appear to be less reliable than those with
higher counts based on the same RNA-Seq correlation. We
conclude, therefore, that when such data is generated in the
course of other experiments it can and should be used as an
additional source of information for genome annotation. EPT
data can play a role in supporting other evidence and increase
the confidence level of a gene model. Its most useful role,
however, is in providing evidence that cannot be readily de-
duced from other common sources of data. This includes con-
firming translation of questionable coding sequence (such as
short ORFs or annotated pseudogenes), correcting reading
frames for gene models with several viable alternatives, distin-
guishing precursor mRNA from retained introns in RNA-Seq and
EST sequencing evidence, and providing evidence for rare but
potentially important events such as non-canonical start codon
usage. Along with other recent developments such as ribosome
profiling, it can provide structural information at the coding
sequence and even codon level, and can also provide clues to
the prevalence of post-translational modifications such as N-
terminal methionine excision, provided the spectral search
methods used allow for such detection.

Of the 78,362 filtered unique peptides identified in this
study, only 1568 (2.0%) were novel. This contrasts with the
12.5% of 144,079 peptides identified as novel in a similar
study in Arabidopsis (4). Assuming that we are using similar
definitions of identified and novel peptides, the significantly
lower proportion of novel peptides identified in M. truncatula
is surprising. The Arabidopsis genome sequence and anno-
tations are typically considered to be of high quality, whereas
the Medicago draft sequence was only recently published and
annotation efforts are still in the early stages. It is possible that
the increased number of novel peptides observed in the

FIG. 7. Correlation of spectral match counts to RNA-Seq evi-
dence for supporting EPTs. Peptide spectral match counts (PSMs)
are plotted against the fraction of sEPTs at that PSM with supporting
RNA-Seq evidence. The fitted linear model indicated by the solid line
(slope � –0.0002) suggests little correlation between peptide PSM
count and validity as estimated by RNA-Seq correlation. Spectral
match counts are the number of captured spectra assigned to a given
peptide sequence. RNA-Seq correlation values represent the fraction
of supporting EPTs with a minimum of 5� RNA-Seq coverage across
their entire length. At PSMs above 150 (not shown), the RNA-Seq
correlation values become highly discrete because of low represen-
tation and cluster at 0 and 1.
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Arabidopsis study is a consequence of the larger spectral
library used. It is also possible that recent genome sequenc-
ing efforts in plants have benefited from the substantial
work performed in Arabidopsis to improve the quality of
annotations. In either case, the MS/MS data analyzed in this
study largely support the latest Medicago annotations.
However, we have provided examples demonstrating the
unique role proteogenomic analysis can play in building the
most accurate and descriptive structural annotations pos-
sible, and there is a need for continued improvements to
existing gene models, annotation of missing genes, and
corrections to the genome sequence itself to provide Medi-
cago researchers with the accurate representation of the
Medicago genome, transcriptome, and proteome on which
their research relies.
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