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Discovery or shotgun proteomics has emerged as the
most powerful technique to comprehensively map out a
proteome. Reconstruction of protein identities from the
raw mass spectrometric data constitutes a cornerstone of
any shotgun proteomics workflow. The inherent uncer-
tainty of mass spectrometric data and the complexity of a
proteome render protein inference and the statistical val-
idation of protein identifications a non-trivial task, still
being a subject of ongoing research. This review aims to
survey the different conceptual approaches to the differ-
ent tasks of inferring and statistically validating protein
identifications and to discuss their implications on the
scope of proteome exploration. Molecular & Cellular
Proteomics 11: 10.1074/mcp.R111.014795, 1097–1104, 2012.

CONTEXT

Protein Inference in Shotgun Proteomics—The shotgun
proteomics approach enables biologists to identify thousands
of proteins in mass spectrometric measurements of a single
sample. This approach borrows from its namesake, the ge-
nome shotgun sequencing approach that reconstructs whole
genomes from sequencing random DNA fragments (1). The
shotgun proteomics approach operates at the level of protein
fragments, i.e. peptides to reconstruct the ensemble of pro-
teins present in a biological sample (2) Both approaches
implement a divide-and-conquer strategy commonly encoun-
tered in computer science, i.e. to solve a difficult task by
breaking it down to many related easy tasks (3). The recon-
struction of the difficult task’s solution from those of the easy
tasks is typically nontrivial. The convenient physico-chemical
properties of peptides render the acquisition of informative
data about short protein fragments an “easy” task. The de-
structive nature of the shotgun proteomics approach though
shifts the challenge to the computational reconstruction of
protein identities from this data.

Shotgun proteomics workflows comprise three main steps.
First, proteins are biochemically extracted from a biological
sample and then, they are enzymatically digested to yield a
complex ensemble of peptides. Protein and/or peptide en-
sembles are optionally further fractionated according to phys-

ical/chemical properties. Second, tandem mass spectrometry
is used to sample and identify individual peptide species
present in the resulting ensembles and to finally recover the
set of proteins initially present in the biological sample. Mass
spectrometric analysis of complex protein or respectively
peptide mixtures comprises a two step scanning procedure
that first registers the m/z ratios of all peptide species of a
mixture, then selects, isolates and fragments one of these
species and records the resulting fragment ion spectrum (4–
6). Third, peptide fragment ion spectra define the data to
perform inference, i.e. to infer the proteins initially present in
the biological sample. Inference traditionally involves two
steps, peptide spectrum matching and protein inference (7).
Peptide spectrum matching refers to assigning each fragment
ion spectrum a peptide sequence that best explains its sig-
nals. Protein inference reconstructs the protein composition
from the peptide spectrum matches obtained in the first step.
Recent less widely used approaches blur the two step setup,
by either reconstructing proteins directly from the mass spec-
trometrical data without generating peptide spectrum
matches or by simultaneously matching peptides to spectra
and inferring protein identities (8).

Peptide spectrum matching is a task that admits a fragment
ion spectrum as input and that consists of finding the peptide
sequence best matching to the input according to a suitable
objective function (score) (9). The objective function encodes
our understanding of the relation between a peptide and its
fragment ion spectrum and is supposed to discriminate the
peptide that gave rise to the input spectrum from all other
peptides. It is nontrivial to find a good objective function
because the fragmentation of peptides is only partially under-
stood (10) and, furthermore, fragment ion spectra generated
from complex peptide mixtures are noisy, i.e. the fragment
signals are subject to statistical fluctuation (11) and convo-
luted with signals from moieties other than the enriched target
peptide (12). Some work recently adopted objective functions
that additionally account for peptide detectability. These ex-
tensions are based on expectations to observe a specific
peptide in the biological sample considering prior knowledge
about protein abundance distributions and peptide ionization
properties (13, 14). Most of the peptide spectrum matching
approaches independently process each fragment ion spec-
trum. In a first step, a set of suitable candidate peptides is
generated de novo (15–18) or from a sequence database (9,
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19). Each candidate is scored against the fragment ion spec-
trum. The top scoring candidate peptide in conjunction with
the fragment ion spectrum is reported as peptide spectrum
match. Peptide spectrum matching has been extensively
studied and reviewed in the past. For a more comprehensive
overview please refer to e.g. (20).

SOLUTIONS

Protein Inference Approaches—Protein inference consti-
tutes the second step after peptide spectrum matching and,
in simple terms, typically takes the peptide spectrum matches
as input and compiles a set of protein identifications that best
represent the identified peptides. The protein inference task is
specific to the shotgun proteomics setup (7). Enzymatic di-
gestion of the proteins into peptides facilitates sample han-
dling and dramatically enhance throughput. These benefits
come at the cost of loosing the information which proteins
gave rise to which of the identified peptides. For complex
proteomes or mixtures of proteomes originating from various
organisms (i.e. infectious diseases, microbial communities)
peptide spectrum matches can map ambiguously to several
protein entries, e.g. protein splice variants or highly conserved
sequence stretches in orthologous proteins. Protein inference
approaches aim to disambiguate these matches and have
been implemented in various ways.

Different data input types and analysis procedures have
been proposed for protein inference. Many approaches start
off from a static list of peptide spectrum matches obtained
from a database search (21–26). Probabilistic approaches
revisit the peptide spectrum matches and rescore these
based on presence or absence of sibling matches pointing to
the same protein (27–30). Other approaches perform infer-
ence in a single step by jointly fitting a probabilistic model to
establish peptide spectrum matches and protein identifica-
tions at the same time (8). To benefit from multiple database
search engines, a recently proposed method performs protein
inference from a list of nonredundant peptides (31). Spectral
alignment approaches take a special position and start off
from the raw mass spectrometrical data and de novo assem-
ble (partial) protein sequences by aligning fragment ion spec-
tra of overlapping peptides without resorting to sequence
databases (32).

The main challenge in protein inference consists of dealing
with peptide spectrum matches ambiguously mapping to sev-
eral protein entries in the protein database. Each approach
addresses this issue by defining different notions of a protein
identification. A first class of protein inference approaches
maps peptide spectrum matches back to a set of ambiguous
protein entries that are either defined by a priori grouping
protein isoforms or reporting one representative variant for
each set of isoforms (21–25). This a priori grouping effectively
disambiguates the protein database and therefore allows for
unambiguously mapping peptide spectrum matches to the
respective groups. This approach circumvents possible am-

biguities related to isoform discrimination at the cost of not
resolving these ambiguities even in case of sufficiently inform-
ative data. A second class of protein inference approaches
defines protein groups a posteriori, i.e. groups that take into
account the acquired spectral data. Specifically, each peptide
identification is associated to its supported group of protein
entries. The goal of these approaches is to summarize this list
into a parsimonious, i.e. minimal list of protein groups that
explains all peptide identifications (7). Probabilistic ap-
proaches assign each peptide identification to a protein entry
(or group of indistinguishable proteins) with highest posterior
probability (27, 33, 34). On the basis of predicted peptide
detectabilities (35), Alves et al. have augmented this approach
by scoring protein identifications with respect to expected
though unobserved peptides (34, 36). Other approaches for-
mulate the parsimony constraint as a set cover problem (37,
38), or as bipartite graph analysis (39). These approaches
represent each protein as a set of peptides that they can give
rise in a shotgun proteomics experiment and then seek to find
a minimal list of proteins whose peptide sets comprise (cover)
all peptides supported by the spectral data. A recent ap-
proach furthermore defines protein groups with richer hierar-
chical structure to better guide the user in disambiguating
degenerate protein identifications (37). Given sufficiently dis-
criminative data, this class of approaches is able to resolve
apparent ambiguities related to proteins with shared peptide
identifications. In addition to the application of one of the
above protein inference approaches, it is common practice to
exclude possibly unreliable protein identifications, such as
e.g. single hit protein identifications. There has been consid-
erable debate about whether such post-processing enhances
protein inference (40, 41). Latter approaches might miss pro-
tein identifications that are falsely discarded by the a priori
grouping scheme or the parsimony constraint. Instead of dis-
ambiguating ambiguous peptide identifications, Farrah et al.
report all proteins consistent with the spectral data (42). To be
able to make statements about the occurrence of proteins in
the biological sample, the authors of this study introduced the
CEDAR scheme for protein identifications. This scheme de-
fines a hierarchy of five protein identification types that are
characterized by the ambiguity of their supporting peptide
identifications. This approach allows the user to exploit a
shotgun proteomic dataset while explicitly accounting for all
protein identification ambiguities.

For the experimentalist it is difficult to choose an appropri-
ate protein inference approach for his/her applications, given
the many available protein inference variants. Although the
criteria for this decision generally depend on the specific
application scenario, a typical goal is to maximize the number
of true protein identifications while keeping the number of
spurious protein identifications low. Many of the develop-
ments discussed above aim at and provide empirical support
for improving on this goal. However, general conclusions on
protein inference performance are difficult due to the plethora
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of application scenarios. Ideally, the choice of a protein infer-
ence approach is guided by an application specific bench-
mark of a set of competing approaches with respect to their
ability to achieve the designated goal (43). The following sec-
tions will address this issue by reviewing methods to count
spurious protein identifications, factors influencing this count,
and concluding remarks on how to report protein identifica-
tions in the light of these findings.

VALIDATION

False Discovery Rates for Protein Identifications—Protein
identifications are not perfect. This observation is mainly re-
lated to the occurrence of spurious peptide spectrum
matches. False positive peptide spectrum matches arise
when the top-scoring candidate is not the source of the
respective fragment ion spectrum. These events can mostly
be attributed to flaws in the score related to the approximate
encoding for the peptide fragmentation process and the lack
of information in the fragment ion spectrum, e.g. in terms of
lacking fragment ions.

It is important to control the quality of peptide spectrum
matches for both the compilation of identified peptides and
their inferred proteins. Various statistical approaches have
been devised to control different measures of peptide spec-
trum match uncertainty, the false discovery rate being the
most useful one because it accounts for multiple testing (44,
45). In the context of peptide spectrum matching, the false
discovery rate corresponds to the expected fraction of false
positive matches. Three routes can be pursued to estimate
the false discovery rate for a set of peptide spectrum
matches. The false discovery rate can be derived from p
values associated to each peptide spectrum match that is
considered significant (44, 45). E-value calibration methods
for score normalization allow us to apply this approach to data
sets that have been analyzed with multiple search engines
(46). This approach to false discovery rate estimation is valid
as long as p values can be accurately computed (47). This
requirement is though rarely met (48). The false discovery rate
can be estimated from the score distributions of true and false
positive peptide spectrum matches (49). This mixture distri-
bution has to be learned in an unsupervised scenario because
the information whether a match is true or false positive is not
known for any match. This task has been successfully imple-
mented in e.g. PeptideProphet (49) by resorting to Expecta-
tion Maximization (50). Recently, the target-decoy strategy
became very popular to estimate the peptide spectrum match
false discovery rate (51). A decoy database with nonsense
protein sequences is searched in addition to the (target) pro-
tein database of the studied organism. The number of peptide
spectrum matches mapping to the decoy database serves as
an estimate of the number of false positive matches. If the
decoy database is designed similar to the target database,
then we expect the false positive matches to uniformly dis-
tribute across the target and decoy database. Elias et al. have

shown that reversed, pseudo-reversed as well as scrambled
databases serve equally well as decoy databases, particularly
ensuring uniform distribution of false positive matches (52). Its
simplicity and generic applicability make the target-decoy
strategy an appealing alternative to estimate false discovery
rate of peptide spectrum matches.

Typically, protein identifications, instead of peptide spec-
trum matches, are the biologically relevant outcome of a
shotgun proteomics study. Therefore it is highly desirable to
control the quality of a shotgun proteomics study at the level
of protein identifications. Statistical validation of protein iden-
tifications has long falsely been equated with statistical vali-
dation of peptide spectrum matches (Fig. 1). It turns out,
however, that errors at the level of peptide spectrum matches
propagate in a nontrivial fashion to the level of protein iden-
tifications (53). Therefore, the estimation of false discovery
rates for protein identifications requires appropriate ap-
proaches differing from those for validation of peptide spec-
trum matches and is still a topic of ongoing research.

Several attempts have been made to control protein iden-
tification error rates. Many approaches estimate probabilities
for a protein identification to be wrong from the respective
probabilities of its constituting peptide spectrum matches (27,
28, 30, 54). It turns out, however, that this kind of estimate is
sensitive to the accuracy of the probability estimates for the
individual peptide spectrum matches. Because these esti-
mates are particularly difficult for peptide spectrum matches
giving rise to single hit wonders in large data sets these
approaches do not scale well with data set size (53) Another
approach estimates the number of incorrect protein identifi-
cations assuming that false positive peptide spectrum
matches distribute according to a Poisson distribution across
the protein database (25, 29). Depending on the choice of
different assumptions for single hit protein identifications, this
strategy gives either more or less optimistic estimates for
protein error rates. Naive target-decoy approaches estimate
protein identification false discovery rates as described for
peptide spectrum matches, i.e. by estimating the number of
false positive protein identifications with the number of decoy
identifications (26, 40, 54, 55) It turns out that the number of
decoy protein identifications is an estimate for “mixed” pro-
tein identifications, i.e. identifications that are both supported
by correct as well as incorrect peptide spectrum matches.
Because a single correct supporting peptide spectrum
match renders a protein identification true, the number of
“mixed” protein identifications cannot generally be equated
with the number of false positive protein identifications. In
fact, the number of false protein identifications is likely to be
smaller than the number of “mixed” protein identifications.
Consequently, naive target-decoy approaches turn out to
achieve too pessimistic error rates (53). The Mayu approach
adapts the target-decoy strategy to the protein inference
task by means of a hypergeometric model that also ac-
counts for the occurrence of “mixed” protein identifications.
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The hypergeometric model formalizes and takes advantage
of the observation that the statistics of the number of
“mixed” protein identifications is analogous to a draw from
an urn with two types of balls (e.g. black and white). In this
analogy the first type of balls represents the protein entries
for which there is correct support and the other type repre-
sents all other entries of the underlying protein database.
Mayu has shown to achieve accurate, independently vali-
dated protein identification false discovery rates for a range
of diverse datasets differing in size, underlying proteome
and experimental setting (53) and been added as additional
feature to PeptideAtlas (42).

Current approaches to statistical validation of protein iden-
tifications assume wrong peptide spectrum matches as the
single source of erroneous protein identifications. This as-
sumption does not hold true in the context of complex pro-
teomes featuring protein entries with overlapping sequences
as for instance protein isoforms or splice variants. Protein
inference approaches that assign ambiguous peptide spec-
trum matches to a single protein might suffer from events
where correct peptide spectrum matches are associated to an
incorrect protein identity. These events constitute an addi-
tional source of errors in the course of protein inference. To
the best of our knowledge, there is still no published method
to estimate the frequency of these subtle errors, thereby
constituting a relevant and interesting target for future re-
search. In the light of emerging targeted proteomics ap-
proaches like selected reaction monitoring (56) it is further-
more conceivable that reliable disambiguation of protein
identities will be tackled by specifically providing additional
informative experimental data.

PROTEIN INFERENCE IN PRACTICE

Data Set and Database Size Matter—The size of the data-
base used for peptide spectrum matching and protein infer-
ence influences protein identification false discovery rates. At
the level of peptide spectrum matching and for invariant filter
criteria, larger protein databases contribute more confound-
ing peptide sequences that lead to a larger amount of false
positive peptide spectrum matches. More stringent filter cri-
teria are required counteract this trend and to achieve an
acceptable confidence level. More stringent filter criteria
though come at the cost of increased false negative rates, i.e.
increased number of correct peptide spectrum matches
achieving below threshold scores. Besides this effect, the size
of protein databases additionally affects protein inference
performance by another mechanism. This phenomenon can
be seen by considering the behavior of an incorrect peptide
spectrum match, randomly mapping to some entry of the
protein database. The more entries the database comprises
the more likely the incorrect peptide spectrum match will map
to a new, so far unsupported protein entry and thereby give
rise to a false positive protein identification (Fig. 2). These
trends taken together strongly advocate to prefer small pro-
tein databases that in particular exclude exceedingly rare
protein entries.

Successful deep sequencing projects for various model
organisms have achieved substantial proteome coverage by
resorting to well curated protein databases featuring low re-
dundancy (22–24, 57). These studies cover around 50% of the
respective sequence databases, indicating a reasonable
tradeoff between constraining the size of the protein database
while retaining sufficient diversity for comprehensive discov-

FIG. 1. Overview of data analysis tasks in shotgun proteomics. The inference tasks consist of assigning peptide sequences to fragment
ion spectra (peptide spectrum matching) and assembly of peptide spectrum matches to protein identities (protein inference). The validation
tasks consist of estimating confidence measures like false discovery rate (FDR) to the set of peptide spectrum matches and, separately, to the
set of protein identifications. Solution of these tasks requires different task specific methods. Particularly, FDR estimation procedures for
protein identifications differ from those for peptide spectrum matches.
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ery. These considerations are more intricate in proteogenomic
projects that aim at genome annotation and discovery of
novel gene models from shotgun proteomic data (58, 59). The
nature of these projects entails the use of large sequence
databases that account for all possible protein coding regions
of a genome. Proteogenomic studies for various model or-
ganisms resorted to six frame translated genomic databases
and expressed sequence tag (EST)1 databases to achieve this
goal (60–64). The number of peptides in such databases is in
the order of billions and further grows by two orders of mag-
nitude if single amino acid mutations are considered, too (58).
Several strategies have been pursued to faithfully compress
these databases. A simple heuristic consists of only consid-
ering open reading frames of at least average exon length.
More sophisticated lossless compression approaches involve
the use of exon database graphs (65) and Bruijn graph rep-
resentation of EST databases (66). Two pass database search
approaches combine the benefits of achieving low error rates
(and computational efficiency) and comprehensive discovery
by first confidently identifying data supported genomic re-
gions and secondly mapping the fragment ion spectra to a
subdatabase that comprises an enumeration of ab initio pre-
dicted gene models for this subset of regions (67, 68). The
applicability of EST databases for protein inference is further

complicated because a single gene product can map to sev-
eral sequence tags and the mapping in general is nontrivial
(68, 69). The choice of databases and compression strategies
can be guided by a benchmark with respect to a useful
optimality criterion, e.g. the number of protein identifications
or gene model discoveries at a user defined protein false
discovery rate (43).

Data-set size has an important influence on protein identi-
fication false discovery rates. This influence is related to the
different behavior of true and false positive peptide spectrum
matches. Typically, only a small fraction of proteins repre-
sented in the protein database are actually present, or at least
present at a level that is within the dynamic range of the mass
spectrometer, in the studied biological sample. Therefore,
true peptide spectrum matches start to redundantly map to
the same protein entries with growing dataset size. The rate of
true new protein discoveries slows down with data-set size.
False positive peptide spectrum matches do not feature this
redundant behavior (or at least to a significantly lower mag-
nitude) and thereby contribute to a constant rate of false new
protein discoveries over a wide range of dataset sizes. These
observations lead to the trend of protein false discovery rates
growing with data-set size while keeping the false discovery
rate for peptide spectrum matches fixed (Fig. 2). For large
data sets acquired to map out complete proteomes twenty
fold differences between these two types of false discovery1 The abbreviation used is: EST, expressed sequence tag.

FIG. 2. Error relation between peptide spectrum matches and protein identifications. Impact of dataset and database size on
discrepancy between false discovery rate of peptide spectrum matches and protein identifications. Protein database entries are represented
as colored circles. true/false peptide spectrum matches (PSM) are depicted as green/red discs. True protein identifications (PID) are supported
by at least one correct peptide spectrum match and tagged with a checkmark. The larger the data set or database size, the more pronounced
the discrepancy of false discovery rates (FDR) at the level of peptide spectrum matches (PSM) and protein identifications (PID). For large
datasets the apparent proteome coverage can deviate significantly from the coverage of true positive (tP) protein identifications.
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have been observed (53). Because of this significant effect it
is advisable to control the quality of a larger shotgun proteo-
mics experiment at the level of protein identifications.

In the context of large shotgun proteomics projects aiming
at extensive proteome coverage it is desirable to minimize the
number of experiments not only to save resources but also to
keep dataset size small and thereby enhance protein infer-
ence. Experiment design aims at minimizing the data-set size
by identifying experiments that are expected to produce the
most informative data, i.e. to most effectively explore a pro-
teome. Four routes have been pursued to suggest informative
experiments: (1) A priori simulation of shotgun proteomics
experiments have been carried out to benchmark various
fractionation schemes. Shotgun proteomics experiments
have been modeled as consecutive fractionation steps at the
protein and peptide level that uniformly distribute species into
fractions with random omissions to account for sample losses
along the course of the experiment. These simulations sug-
gested that separation at the protein level results in more
significant gains in proteome coverage than fractionation at
the peptide level (70). (2) Directed mass spectrometry ap-
proaches exploit a small number of initial shotgun proteomics
experiments to, first, identify informative MS1 precursor sig-
nals and, second, to perform targeted experiments that
specifically generate fragment ion spectra for the selected
precursors (71–73). (3) A posteriori analysis of protein identi-
fication statistics has been exploited to design experiments
that specifically enrich for underrepresented identification
types, as for instance for short and basic proteins in the
context of a Drosophila sequencing project (22). (4) Finally,
proteome coverage prediction approaches lend themselves
to determine which experiments to carry out how many times
in a multidimensional shotgun proteomics scenario to opti-
mally improve proteome coverage (74, 75). Application of
these methods to design shotgun proteomics studies renders
them more efficient and, as delineated above, also more
informative and reliable.

GUIDELINES

Reporting Protein Identifications—Shotgun proteomics
projects typically aim at comprehensively and precisely re-
constructing the protein composition of the studied biological
sample. Ideally, the list of reported protein identifications
should be exempt from spurious identification and exactly
reflect the sample proteins. This goal is probably not achiev-
able. Fixing the protein false discovery rate at a reasonably
low level (e.g. 1%) and asking for the maximal number of
protein identifications constitutes a reasonable alternative
goal.

There has been substantial debate on guidelines for report-
ing protein identifications. Rigid guidelines like the general
exclusion of single hit wonders are recurring suggestions in
this context. These rigid guidelines predominantly aim at en-
suring high quality of the reported identifications and at avoid-

ing the inflation of identification lists with erroneous entries.
However, these suggestions neglect the second part of the
delineated aim, i.e. the aim of maximizing the number of
identifications at a desired quality. In fact, recent studies show
evidence that retaining single hit wonders instead is advan-
tageous since these still comprise many correct identifica-
tions (40, 43, 53). Besides these results on the specific rule of
single hit wonder exclusion, focusing on error avoidance by
means of rigid guidelines is generally prone to missing out on
sophisticated protein inference approaches that internally
deal with e.g. unreliable single hits and yet recover more
protein identifications at the same quality, i.e. protein false
discovery rate. These conceptual considerations motivate
guidelines that simply require reporting the protein false dis-
covery rate of a protein identification list and thereby leave the
choice of protein inference approach to the experimentalist.

CONCLUSION

Protein inference is a task arising in shotgun proteomics
that aims at mapping back peptide spectrum matches to
entries in the underlying protein database. Because of its
conceptual simplicity, breadth and depth, shotgun proteo-
mics is likely to keep on playing a pivotal role in exploratory
stages of proteomics projects. Protein inference will therefore
keep proteomics researchers busy for a while, either as con-
sumers or developers that tackle some of the still open and
intricate validation issues. It will be furthermore be interesting
to see how similar tasks will arise in new emerging peptide
centric mass spectrometry based proteomics technologies
and to what extent we will be able to transfer the lessons
learned in the shotgun proteomics scenario.
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