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from LDL from the circulation. LDL bound to the LDLR 
is internalized into clathrin-coated pits and subsequently 
undergoes lysosomal degradation. The LDLR is then re-
cycled back to the plasma membrane where it can bind 
more LDL. Internalization and reshuttling of the receptor 
toward the plasma membrane is a continuous process. 
Proprotein convertase subtilisin kexin type 9 (PCSK9) 
plays a pivotal role in this process because it promotes the 
degradation of the LDLR and prevents it from recycling to 
the membrane. Consequently, PCSK9 has become a novel 
target for lipid-lowering therapy. The added incentive that 
inhibition of PCSK9 acts synergistically with existing treat-
ments such as statins has led to a fl urry of research to 
understand the biology of PCSK9. 

 DISCOVERY OF PCSK9 

 Familial hypercholesterolemia (FH) is an autosomal 
dominant form of dyslipidemia characterized by elevated 
plasma LDL-C levels, which are typically above the 95th 
percentile for age and sex ( 1 ). Apart from pathogno-
monic clinical signs, such as tendinous xanthomas and a 
presenile corneal arcus, heterozygous FH patients are at a 
sharply increased risk for premature CVD, which usually 
becomes evident in the fourth or fi fth decade ( 2 ). Molecular 
defects in the gene encoding the LDLR are identifi ed in 
the vast majority of FH patients ( 3 ), but the exact propor-
tion of LDLR mutations is not known, which might be due 
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  Elevated plasma levels of LDL cholesterol (LDL-C) have 
consistently been shown to be a risk factor for the develop-
ment of atherosclerosis and associated ischemic cardiovas-
cular disease (CVD), such as myocardial infarction and 
stroke. Plasma LDL-C levels are highly inheritable, and a 
number of molecular defects have been shown to underlie 
extreme levels of LDL-C. One of the pivotal factors in LDL 
metabolism is the LDL receptor (LDLR) by virtue of its 
capacity to bind and subsequently clear cholesterol derived 
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secreted from liver cells, circulates in the plasma, binds to 
LDLR, and is subsequently internalized together with the 
LDLR, thereby promoting the cellular degradation of the 
receptor ( 22 ). 

 PCSK9 is a serine protease encoded by a gene compris-
ing 12 exons, located on chromosome 1p32.3. It is synthe-
sized primarily by the liver and intestine as a 692-amino 
acid precursor ( � 75 kDa) in which a signal peptide (resi-
dues 1–30) and a prodomain (residues 31–152) precede 
a catalytic domain (residues 153–451) that contains the 
canonical D-H-S catalytic triad, followed by a C-terminal 
domain (residues 452–692) ( 23 ). Pro-PCSK9 undergoes 
autocatalytic intramolecular processing between the Q 152  
and S 153  residues in the endoplasmic reticulum to form a 
mature enzyme ( � 62 kDa). The cleavage of the prodo-
main is required for PCSK9 maturation and secretion. 
This was demonstrated by experiments in which the pro-
domain and the catalytically inactive 62 kDa PCSK9 moiety 
were coexpressed, allowing the exit of a noncovalently 
bound PCSK9/prodomain complex from the endoplas-
mic reticulum to the Golgi complex, which ultimately pro-
moted LDLR degradation ( 24, 25 ). It is noteworthy that a 
naturally occurring amino acid substitution within the 
PCSK9 cleavage site (Q 152 H) has recently been described. 
This mutation prevents autocatalytic processing, thereby 
precluding PCSK9 secretion, and it is associated with a 
48% reduction in plasma LDL-C levels ( 26 ). After cleav-
age, the prodomain forms hydrogen bonds with key amino 
acids of the catalytic domain, thereby preventing access of 
other potential substrates to the catalytic pocket of PCSK9 
( 27, 28 ). The ability of PCSK9 to promote LDLR degrada-
tion is, therefore, independent of its catalytic activity, indi-
cating that PCSK9 functions as a chaperone, a mode of 
action that is unique among serine proteases ( 24, 25 ). 

 PCSK9 BLOCKS THE STRUCTURAL TRANSITION 
OF THE LDLR IN THE ENDOSOME 

 The region where secreted PCSK9 interacts with the ex-
tracellular domain of the LDLR is located in the fi rst epi-
dermal growth factor-like repeat homology domain (EGFA) 
of the human LDLR ( 29, 30 ). Binding appears to be cal-
cium dependent and occurs with a 1:1 stoichiometry at a 
K d  of 170–750 nM at the neutral pH of plasma ( 27, 30–32 ). 
At the plasma membrane (i.e., at neutral pH), only the 
catalytic domain of PCSK9 interacts with the EGFA domain 
of the receptor ( 30, 31, 33 ). The acidic stretch located 
within the prodomain negatively modulates the binding 
affi nity between PCSK9 and the LDLR ( 34, 35 ). In con-
trast, after endocytosis (i.e., at the acidic pH of endosomes), 
the affi nity between the receptor and PCSK9 is much higher 
(K d  of 1–8 nM) than that observed at neutral pH ( 27, 30, 
31 ). Under acidic pH conditions, the prodomain of PCSK9 
establishes salt bridges with the  � -propeller domain of the 
receptor ( 31 ), and the positively charged C-terminal domain 
of PCSK9 has been proposed to bind to the negatively 
charged ligand-binding domain of the LDLR ( 31, 36, 37 ). 
These studies demonstrate that PCSK9 locks the LDLR in 

to variability in clinical phenotype and referral bias. Ap-
proximately 5–10% of individuals with an FH phenotype 
are found to carry mutations in the ligand-binding domain 
of apolipoprotein B (apoB), the protein component of 
the LDL particle that interacts with the LDLR. 

 In 2003, Abifadel and coworkers identifi ed mutations in 
the gene encoding PCSK9 ( 4 ) in two French families with 
an autosomal dominant form of FH ( 5 ). These mutations 
were later shown to be “gain-of-function” mutations. Given 
the fi nding of this third defect, FH caused by PCSK9 muta-
tions is commonly referred to as “FH3” (OMIM# 603776). 
The mutation was identifi ed in a kindred previously de-
scribed by Varret et al. ( 6 ) as not carrying a mutation in 
LDLR or apoB, with linkage analysis having shown a posi-
tive logarithm of the odds (LOD) score of 3.13 on a 9 cM 
interval at 1p34.1-p32. Other PCSK9 mutations were sub-
sequently reported in FH patients from Utah, Norway, and 
the United Kingdom ( 7–9 ), but in general, the prevalence 
of PCSK9 mutations is very low compared with defects in 
LDLR and apoB ( 10 ). In the latter study, the risk of coro-
nary artery disease (CAD) associated with the rare variant 
D374Y was shown to be sharply increased and exceeded 
the risk associated with mutations in the LDLR gene. Cur-
rently, information about all reported PCSK9 mutations 
can be easily accessed online (www.ucl.ac.uk/ldlr). 

 Subsequent studies showed that PCSK9 was responsible 
for intracellular LDLR degradation in vivo ( 11 ), which is 
in line with the fi nding that mutations within the PCSK9 
transcription unit that decrease cell surface LDLR expres-
sion are associated with increased plasma LDL-C levels. 

 Large cohort studies have been undertaken to address 
the role of common PCSK9 sequence variations in lipid 
metabolism and CAD risk. In 2005, a causative association 
was established between two relatively common “loss-of-
function” mutations in PCSK9 and low plasma LDL-C lev-
els ( 12 ). The individuals that carried these mutations 
(PCSK9-679X or PCSK9-142X) exhibited LDL-C levels of 
100 ± 45 mg/dl compared with 138 ± 42 mg/dl for noncar-
riers, which was accompanied by an astonishing 88% re-
duction in global coronary heart disease risk ( 13 ). No other 
clinical phenotypes were identifi ed in this patient popula-
tion. Likewise, persons of European descent carrying the 
PCSK9-R46L “loss of function” mutation exhibited LDL-C 
levels of 116 ± 33 mg/dl, compared with 137 ± 37 mg/dl 
for noncarriers, which was accompanied by a 47% reduction 
in global coronary heart disease risk ( 13 ). As a result of 
these landmark observations, PCSK9 has become a very at-
tractive drug target and the subject of intensive research. 

 PCSK9 AND ITS ROLE IN LDLR DEGRADATION 

 PCSK9 acts by reducing the amount of LDLR at the cell 
surface of hepatocytes (  Fig. 1  ).  This was fi rst demonstrated 
in mouse models ( 11, 14–17 ) and inferred by human ge-
netic studies ( 18, 19 ). Numerous overexpression and 
knockdown/knockout animal studies clearly show that 
PCSK9 targets the LDLR for degradation ( 14–17, 20, 21 ). 
Probably the most elegant demonstration came from a 
series of parabiosis experiments showing that PCSK9 is 
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areas of the adult brain ( 50, 51 ), it has been proposed that 
PCSK9 requires tissue-specifi c partners to effi ciently re-
duce LDLR levels in tissues such as the liver, in which 
PCSK9 is most effi cient ( 48 ). A similar discrepancy has 
been described for the autosomal recessive hypercholes-
terolemia (ARH) adaptor protein, which was shown to be 
required for LDLR internalization in hepatocytes but not 
in some other cell types ( 22, 52–54 ). Given its original 
structure, the C-terminal domain of PCSK9 is very likely to 
interact with some of these yet unknown but key protein 
partners ( 28, 55 ). 

 PCSK9, A SECRETED FACTOR UNDER TIGHT 
CONTROL 

 The characterization of total and liver-specifi c PCSK9 
knockout mice indicates that hepatocytes are the main 
source of circulating PCSK9, despite a signifi cant, albeit 
lower, expression of PCSK9 in the intestine and in the kid-
ney ( 17, 56 ). It has been proposed that PCSK9 acts on the 
LDLR after biosynthesis, before it reaches the basolateral 
surface of the hepatocyte ( 40, 47, 57 ). This was demon-
strated by knocking down the clathrin light chains that are 
critical for vesicular traffi cking but not required for endo-
cytosis. In this experiment, only cells that expressed PCSK9 
had increased LDLR levels ( 58 ), indicating that PCSK9 in-
hibits the LDLR via an intracellular mechanism. A series 
of in vivo parabiosis experimental studies, however, have 
clearly demonstrated that PCSK9 acts on the LDLR pri-
marily as a secreted factor ( 22, 48 ). 

 It is, therefore, clinically relevant to measure circulating 
PCSK9 plasma levels in humans and to study pharmaco-
logical factors affecting its secretion. In that respect, sev-
eral ELISAs have been developed to measure PCSK9 in 
human sera ( 59–66 ). The mean concentrations varied 
widely among these studies, likely because of differences 
in specifi cities among antibodies to bind plasma PCSK9 
and the recombinant PCSK9 standards used in the assays 
( 55, 67 ). Measuring PCSK9 levels is, however, not an ideal 
surrogate marker for PCSK9 function, as most antibodies 

an extended (or open) conformation. The failure of the 
receptor to adopt a closed conformation in the endosome 
precludes normal recycling to the plasma membrane and 
targets the LDLR for lysosomal degradation ( 31, 38 ) ( Fig. 1 ). 
In line with this, some amino acid substitutions in PCSK9 
(e.g., D374Y and S127R) or, alternatively, in the LDLR 
(e.g., H306Y) that are causatively associated with FH tighten 
the molecular interactions within the PCSK9-LDLR com-
plex, thereby enhancing receptor degradation and conse-
quently increasing circulating LDL-C levels among carriers 
( 27, 31, 32, 39–41 ). In that respect, the D374Y-PCSK9 “gain-
of-function” mutation causes an extremely severe FH phe-
notype that is particularly hard to treat with statins ( 9 ). 
Carriers of this mutation are affected by CVD 10 years ear-
lier than other patients with FH. This mutant was found to 
bind to the LDLR with a 6- to 30-fold higher affi nity com-
pared with wild-type PCSK9, by allowing a hydrogen bond 
to form between PCSK9 and the EGFA domain of the 
LDLR ( 30 ). 

 The PCSK9 C-terminal domain plays a pivotal role in 
targeting LDLR for subsequent degradation ( 31, 36 ). This 
domain, however, is not required for LDLR binding at the 
cell surface, as demonstrated with a series of deletion 
mutants ( 30, 42, 43 ). The overall positive charge of this 
domain seems to be a major parameter for PCSK9 func-
tion ( 44 ). An antibody antigen-binding fragment directed 
against the C-terminal domain of PCSK9 has recently been 
shown not to affect LDLR binding but to signifi cantly in-
hibit the internalization of the PCSK9-LDLR complex 
( 45 ). Likewise, binding of annexin A2 to the C-terminal 
domain of PCSK9 prevents PCSK9 from interacting with 
the LDLR, thereby inhibiting receptor degradation ( 46 ). 
In this process, endocytosis and internalization of the 
PCSK9-LDLR complex is required, indicating that annexin 
A2 is secreted to exert its inhibitory function on PCSK9 
( 46, 47 ). Besides annexin A2 and the LDLR, the C-terminal 
domain of PCSK9 also establishes intra- and intermolecu-
lar interactions with its own prodomain along the secre-
tory pathway, thereby allowing proper secretion of the 
protein ( 43 ). Because PCSK9 does not (or very weakly) 
modulate LDLR levels in the adrenals ( 48, 49 ) and in some 

  Fig.   1.  PCSK9-mediated degradation of LDLR. A 
complex of LDL-C, LDLR, and PCSK9 is internalized 
into hepatocytes into clathrin-coated pits and subse-
quently undergoes lysosomal degradation.   
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attenuation of PCSK9 function enhances the hypolipemic 
effects of statins ( 17, 60, 85, 86 ). Atorvastatin, for example, 
has been reported to increase circulating PCSK9 levels by 
34% in 12 dyslipidemic patients treated with 40 mg daily 
for 16 weeks ( 60 ), and by 47% as early as 4 weeks in 74 
normolipemic individuals without CVD treated with 80 mg 
for 16 weeks ( 64 ). In line with this, when the atorvastatin 
dose was increased from 5 mg to 80 mg daily, plasma 
PCSK9 levels increased on average by 30% in 53 dyslipi-
demic patients ( 62 ). Recently, daily treatment with 20 mg 
rosuvastatin has been shown to increase plasma levels of 
PCSK9 by 28% in men and 35% in women in a large placebo-
controlled clinical trial (JUPITER) ( 66 ). The concomi-
tant upregulation of PCSK9 and of the LDLR is, therefore, 
of considerable clinical interest. Inhibiting PCSK9 will 
probably enhance the LDL-C lowering effects of statins 
and thereby might be synergistic with statins to further de-
crease LDL-C levels and CVD risk. 

 APPROACHES TO PCSK9 INHIBITION 

 Recently, two cases of homozygous “loss-of-function” 
mutations in PCSK9 were described. The carriers, who to-
tally lacked PCSK9, were healthy and fertile and presented 
with very low LDL-C levels ( � 15 mg/dl). This fi nding sug-
gests that pharmacologic interventions that inhibit PCSK9 
may be safe ( 18, 19 ). Three drug development approaches 
(  Table 1  )  are currently being tested to pharmacologically 
inhibit PCSK9 in humans. Gene silencing targets both 
PCSK9 intra- and extracellular functions, whereas mimetic 
peptides and monoclonal antibodies exclusively target 
circulating PCSK9 and therefore its extracellular function 
(  Fig. 2  ).  Other approaches, such as orally active cell per-
meable small molecules that target PCSK9 processing, 
have not reached preclinical development yet and have 
been extensively reviewed elsewhere ( 87 ). 

 Gene silencing 
 The subcutaneous administration of the PCSK9 anti-

sense oligonucleotide (ASO) produced by Isis Pharmaceuti-
cals has been shown to result in a 2-fold increase in hepatic 
expression of the LDLR and a concomitant reduction in 
circulating total cholesterol levels by 53% in mice ( 88 ). 
Likewise, the intravenous injection of a 13-mer locked nu-
cleic acid (LNA) ASO from Santaris Pharma reduced 
PCSK9 mRNA levels by  � 60% in mice, thereby promoting 
a 2.5- to 3-fold increase in hepatic LDLR levels for up to 
8 days ( 89 ). This compound also decreased circulating 
PCSK9 up to 50% as well as plasma LDL-C and apoB levels 
by 35% in nonhuman primates. A 14-mer LNA-ASO spe-
cifi c for a human PCSK9 sequence yielded similar potency 
in reducing LDL-C levels but displayed longer-lasting 
effects associated with a signifi cant decrease in liver cho-
lesterol content. This compound did not affect HDL cho-
lesterol (HDL-C) levels ( 90 ). PCSK9 gene silencing in mice 
and monkeys has also been achieved using small interfer-
ing RNA (siRNA), a technology developed by Alnylam Phar-
maceuticals. The siRNA was incorporated into lipidoid 
nanoparticles to minimize toxicity and intravenously infused 

used to detect PCSK9 will also detect inactive truncated 
PCSK9 forms ( 21 ). Despite these limitations, all of these 
studies have consistently shown positive correlations ( r  = 
0.15–0.58) between circulating PCSK9 and LDL-C levels in 
the population ( 59–66, 68 ). Except for individuals carry-
ing “gain-of-function” mutations in the gene encoding 
PCSK9, plasma PCSK9 levels should logically correlate 
with the incidence of CVD events in humans. This has re-
cently been demonstrated in atherosclerosis-prone animal 
models genetically engineered to express increasing levels 
of PCSK9 ( 69 ). In that respect, we have observed that 
plasma PCSK9 levels are predictive of recurrent clinical 
events in a cohort of patients with stable CVD treated with 
low-dose atorvastatin ( 70 ). 

 Endogenous inactivation of PCSK9 
 The mature 62 kDa PCSK9 undergoes cleavage after the 

R218 residue, resulting in the detachment of the proseg-
ment and the formation of a 55 kDa truncated inactive 
PCSK9 form. This proteolytic cleavage appears to be medi-
ated in hepatocytes by two proprotein convertases, namely, 
furin and PC5/6A, as shown using a series of hepatic con-
ditional knockout mice ( 21, 71 ). In line with this, the natu-
rally occurring PCSK9 R218S missense mutation promotes 
autosomal dominant hypercholesterolemia among heterozy-
gous carriers ( 72 ). Together, these results indicate that a 
lack of PCSK9 inactivation by furin and/or PC5/6A mecha-
nistically leads to increased/elevated plasma LDL-C levels. 

 Dietary and hormonal regulation of PCSK9 
 PCSK9 expression and plasma levels are tightly con-

trolled by hormonal and nutritional status. Hepatic PCSK9 
expression and plasma levels are dramatically lowered 
upon fasting ( 20, 73–75 ). Circulating PCSK9 has a marked 
diurnal rhythm paralleling that of cholesterol biosynthesis 
in humans, an effect that appears to be mediated by varia-
tions in growth hormone secretion. As a result, plasma 
PCSK9 levels ought to be measured at a defi ned period of 
the day (e.g., in the morning after an overnight fast) to 
perform accurate comparisons between individuals. In ad-
dition, PCSK9 plasma levels increase in girls and decrease 
in boys during their teenage years, paralleling changes in 
LDL-C levels ( 76 ). In adulthood, PCSK9 levels are higher 
in women than in men, but apparently this does not result 
from   differences in the status of endogenous estrogens 
( 65, 68, 77, 78 ). 

 Key regulation of PCSK9 by sterols 
 Similar to LDLR, the expression of PCSK9 is modulated 

by intracellular cholesterol levels, and this is mediated pre-
dominantly by the transcription factor sterol-responsive 
element-binding protein 2 (SREBP2) ( 17, 79–83 ). The tran-
scription factor hepatocyte nuclear factor 1a (HNF1a) has 
also been shown to be a potent stimulator of PCSK9 gene 
expression ( 83, 84 ). Because PCSK9 and the LDLR are co-
ordinately regulated at the transcriptional level by choles-
terol, they are also coinduced by statin treatment. It is well 
established in humans and animal models that statin treat-
ment increases plasma PCSK9 levels and, conversely, that 
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function in Rhesus monkeys, reducing plasma LDL-C levels 
by up to 50% ( 45, 95 ). Pfi zer-Rinat has recently reported a 
humanized monoclonal J16 antibody directed against the 
PCSK9 LDLR-EGFA domain binding site ( 96 ). This anti-
body was injected once intravenously in cynomolgus mon-
keys and dose-dependently reduced LDL-C levels by 70%, 
an effect that lasted for 10 days at the 3 mg/kg dose. The 
magnitude and duration of this effect were similar when 
the J16 antibody was infused in high fat-fed monkeys. In 
addition, when these animals were treated with simvastatin 
(50 mg/day) and subsequently infused with the J16 anti-
body (3 mg/kg), an additional 65% reduction in LDL-C 
levels was observed ( 96 ). The J16 antibody has been modi-
fi ed to bind PCSK9 in a pH-sensitive manner and thereby 
escape degradation. The resultant J17 antibody was dem-
onstrated to be as potent as the J10 antibody, the mouse 
precursor to J16, in mice and monkeys for periods two to 
three times as long ( 97 ). 

 Several monoclonal antibodies targeting PCSK9 in the 
circulation are being tested in human clinical trials. Pfi zer-
Rinat RN316 is currently in a phase II study. Amgen’s anti-
body (AMG145) was evaluated in a phase I ascending 
single-dose study, which showed that LDL-C was dose-
dependently decreased by up to 64% relative to placebo 
when AMG145 was infused intravenously or subcutane-
ously in healthy subjects ( 98 ). In this study, there were no 
reports of serious adverse events or discontinuations as a 
result of an adverse event. The effect of AMG145 adminis-
tration will be investigated in subjects with hypercholes-
terolemia in the LAPLACE–TIMI 57 (NCT01380730) trial 
( 99 ). 

 In two phase I ascending single-dose studies in healthy sub-
jects, the Sanofi -Aventis/Regeneron SAR236553/REGN727 
antibody was associated with a signifi cant ( P  < 0.001 versus 
placebo) reduction from baseline in LDL-C, 33–46% when 
given subcutaneously (50–250 mg) and by 28–65% when 
given intravenously (0.3–12.0 mg/kg) ( 100 ). As an add-on 
to statin therapy, multiple doses of SAR236553/REGN727 
administered subcutaneously (doses 50–150 mg) signifi -
cantly ( P  < 0.001 versus placebo) reduced cholesterol levels 
by 41–58% in patients with FH and by 38–65% in patients 

in rats, mice, and monkeys. LDL-C levels were reduced 
upon administration by more than 50% in monkeys, with 
reductions lasting for nearly 21 days ( 91 ). 

 Mimetic peptides 
 Peptides mimicking the EGFA domain of the LDLR that 

interact with PCSK9 at the plasma membrane have also 
been developed to inhibit PCSK9 function. A synthetic 
EGFA peptide has been shown to dose-dependently re-
duce the cellular degradation of the LDLR induced by ex-
ogenously added recombinant PCSK9 ( 92 ). Because the 
naturally occurring H306Y substitution within the LDLR-
EGFA domain increases the affi nity of the receptor for 
PCSK9, an EGFA-H306Y peptide was used to effi ciently 
block PCSK9-induced LDLR degradation in hepatoma 
cells overexpressing either wild-type PCSK9 or the more 
effective PCSK9-D374Y variant ( 41 ). An alternative option 
is to use PCSK9 peptide sequences that are too short to 
promote LDLR degradation but long enough to compete 
with full-length PCSK9. An inhibitory effect of the isolated 
C-terminal domain of PCSK9 has recently been observed 
in vitro and in mice on PCSK9-induced LDLR degradation 
( 43 ), indicating that pharmacological inhibition of PCSK9 
extracellularly will lower circulating LDL-C levels in vivo. 

 Monoclonal antibodies 
 Duff et al. were able to reverse the PCSK9-mediated ef-

fect on cell surface LDLRs by using antibodies that recog-
nize epitopes on PCSK9 in the vicinity of the region within 
the catalytic domain interacting with the LDLR ( 93 ). Like-
wise, a single 3 mg/kg intravenous infusion of the mAb1 
monoclonal antibody specifi c for the catalytic domain of 
PCSK9 (developed by Amgen) led to a signifi cant reduc-
tion of circulating LDL-C levels as early as 8 h after injec-
tion in nonhuman primates. The LDL-C-lowering effects 
of this antibody reached a nadir of –80% on day 10 postin-
fusion ( 94 ). Incidentally, this was accompanied by a slight 
decrease in HDL-C levels. Another monoclonal antibody 
(1D05-IgG2) was developed by Merck to structurally mimic 
the EGFA domain of the LDLR. This antibody (one single 
injection at 3 mg/kg) was also found to antagonize PCSK9 

  Fig.   2.  PCSK9 inhibition. Monoclonal antibodies 
bound to PCSK9 prevent the association between 
PCSK9 and the LDLR. The LDLR binds the LDL par-
ticle and is internalized, and then the LDL particle is 
degraded in the lysosome, whereas the LDLR is recy-
cled back to the plasma membrane.   
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with hypercholesterolemia (non-FH) ( 100 ). In these phase 
I trials, no evidence of drug-related adverse events was ob-
served. In a 12-week phase II study of patients with LDL-C 
levels  �  100 mg/dl on a stable dose of atorvastatin (10, 20, 
or 40 mg/day), add-on of SAR236553/REGN727 doses of 
50, 100, or 150 mg administered subcutaneously every 
2 weeks resulted in LDL-C reductions of 40–72% ( 100 ). 
Similarly, SAR236553/REGN727 doses of 200 or 300 mg 
every 4 weeks resulted in reductions of 43% and 48%, re-
spectively ( 101 ). SAR236553/REGN727 was generally well 
tolerated and with similar adverse events for all treatment 
groups. In an 8-week phase II study of patients with LDL-C 
levels  �  100 mg/dl on a stable dose of atorvastatin 10 mg/
day, SAR236553/REGN727 subcutaneously administered 
in combination with atorvastatin resulted in a 66% reduc-
tion in LDL-C (E. M. Roth, personal communication). In 
the same study, SAR236553/REGN727 as add-on to ator-
vastatin 80 mg/day resulted in a decrease of 73% com-
pared with a reduction of 17% with atorvastatin 80 mg/day 
alone ( P  < 0.0001). In this study, there was a single serious 
adverse event of dehydration that was not considered re-
lated to treatment. These results strongly support the con-
cept that inhibition of circulating PCSK9 in combination 
with statins will result in sharply decreased plasma levels of 
LDL-C and be well tolerated. 

 CONCLUSIONS 

 PCSK9 inhibition is considered an attractive target for 
therapy, especially in light of the fact that a large propor-
tion of high-risk patients do not reach the target LDL-C 
levels despite maximally tolerated forms of currently avail-
able lipid-lowering agents. Monoclonal antibodies are cur-
rently the most advanced PCSK9 inhibitors in terms of 
pharmacological development. Recent studies have sug-
gested that pharmacologically induced PCSK9 inhibition 
is effi cacious in the reduction of LCL-C levels. Evaluation 
of treatment over the long term will determine whether 
the benefi cial effects of PCSK9 inhibition on LDL-C levels 
will directly translate into CAD risk reduction.  
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