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Abstract
OBJECTIVE—Calculating the sample size for a multireader, multicase study of readers’
diagnostic accuracy is complicated. Studies in which patients can have multiple findings, as is
common in many computer-aided detection (CAD) studies, are particularly challenging to design.

MATERIALS AND METHODS—We modified existing methods for sample size estimation for
multireader, multicase studies to accommodate multiple findings on the same case. We use data
from two large multireader, multicase CAD studies as ballpark estimates of parameter values.

RESULTS—Sample size tables are presented to provide an estimate of the number of patients
and readers required for a multireader, multicase study with multiple findings per case; these
estimates may be conservative for many CAD studies. Two figures can be used to adjust the
number of readers when there is some data on the between-reader variability.

CONCLUSION—The sample size tables are useful in determining whether a proposed study is
feasible with the available resources; however, it is important that investigators compute sample
size for their particular study using any available pilot data.

Keywords
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Multiple-reader, multiple-case studies are common and important tools used to estimate and
compare diagnostic and screening tests’ accuracy, but they are challenging to design. There
are many possible sampling strategies for study patients and readers, a variety of reading
formats and confidence scales, various endpoints, and many factors to consider in
determining the number of patients and readers required for the study.

For diagnostic and screening tests used to detect and locate lesions, sample size
determination must take into account the possibility that multiple lesions can occur in the
same patient (e.g., multiple colon polyps, multiple lung nodules). Multiple lesions are
common in the types of conditions evaluated by computer-aided detection (CAD) devices.
In these studies, it is important that the reader not only determine that an image depicts the
condition, but also correctly locate the abnormalities. In a typical CAD study, readers are
asked to find and mark all suspicious lesions, grade their suspicion level, and recommend
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appropriate follow-up for the patient. A single interpretation of an image can include
multiple true- and false-positive findings of various suspicion levels.

There have been several excellent articles about the design of multireader, multicase CAD
studies [1–4]. In this article, we focus on sample size estimation for multireader, multicase
CAD studies. We illustrate how to modify sample size calculations for multireader,
multicase studies to account for multiple true lesions in the same patient and for both true-
and false-positive findings in the same patient. We generate sample size tables that can be
used as starting values or rough estimates for planning CAD studies.

Materials and Methods
Two Computer-Aided Detection

Study Examples—Two large completed CAD trials are used to illustrate common designs
for CAD studies and to provide ballpark estimates of several parameters needed for sample
size calculation.

The first trial is a study of high-risk patients with either symptoms of lung disease or a
suspicious finding on a prior chest radiograph who underwent CT of the lung (Nadich D et
al., presented at the 2005 annual meeting of the Radiological Society of North America).
Two hundred patients were recruited consecutively; thus, the final ratio of patients with lung
nodules versus those without lung nodules was unknown at the start of the study. Seventeen
study readers participated in blinded two-step sequential readings in which they first
interpreted a CT image without CAD and stored their results and then were shown the CAD
marks and asked to reinterpret the same image. The reference standard for the study was the
majority opinion of a five-member panel of expert chest radiologists. In this study, 85% of
the patients with nodules had more than one nodule.

The second study used a retrospective design to evaluate asymptomatic patients who had
undergone CT colonography [5]. Fifty-two patients with colon polyps and 48 patients
without polyps were selected for the study on the basis of the results of optical colonoscopy
or review by a three-member panel of expert radiologists; 25% of the patients with polyps
had more than one polyp. Nineteen study readers participated in a crossover design in which
all of the study readers interpreted the images twice: first, during a reading session without
CAD; and, second, 4 weeks later during a two-step sequential session. During the latter,
readers first interpreted an image without CAD (step 1) and then immediately were shown
the CAD marks and asked to interpret the image again (step 2).

In both studies readers were asked to mark all suspicious lesions and score each according to
their confidence that the lesion represented a lung nodule or colon polyp, respectively. In the
lung CAD trial, a confidence scale of 1–10 was used, where 1 indicated that the lesion was
definitely not a nodule and 10 indicated that the lesion was definitely a nodule. In the colon
CAD trial, a confidence scale of 1–100 was used, where a score of 1 indicated that the lesion
was definitely not a polyp and 100 indicated that the lesion was definitely a polyp. For
estimating sensitivity and specificity, cutpoints of 6 and 51, respectively, were used to
define a positive test result.

The primary measure of test accuracy for both studies was the area under the receiver
operating characteristic (ROC) curve, but both sensitivity (lesion-level) and specificity
(patient-level) were also estimated. There are several possible statistical methods available
for analyzing ROC data where both detection and correct localization of the suspicious
lesion are required for the lesion to be considered a true-positive [6–10]. For the two studies
discussed here, a region-of-interest (ROI) approach was used [9, 10]. In the lung CAD
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study, the lung was divided a priori into five lung lobes (i.e., five ROIs per patient); in the
colon CAD study, the colon was divided a priori into six colonic segments (i.e., six ROIs per
patient).

The statistical analysis was based on the findings from the multiple ROIs per patient. This
approach was used for two reasons: First, it characterizes a reader’s ability both to detect
and to correctly locate the abnormality; and, second, sample size computations, based on
conjectured parameter values, that account for within-ROI or within-lesion correlation can
be derived using previously established statistical results.

Sample Size Estimation for Multireader, Multicase Studies With Multiple
Findings—We used the general approach to multireader, multicase sample size estimation
outlined by Hillis et al. [11]. Hillis et al. described sample size estimation for multireader,
multicase studies in two general situations: when there is a pilot study and we want to scale
it up for a pivotal trial, and when there are no pilot study data. In this article, we assume that
there was no pilot study, which is the more common scenario and is the most difficult to
compute sample size for.

For a specified total number of study patients, Ntotal, and a specified number of study
readers, Hillis et al. [11] outlined four steps to computing the power for a multireader,
multicase study: First, specify the effect size; second, conjecture parameter values; third,
compute the noncentrality parameter and denominator degrees of freedom; and, fourth,
compute the power. The four steps are further detailed in Appendix 1.

For estimating the ROI-level area under the ROC curve and lesion-level sensitivity, the
correlation between lung lobes or colonic segments or between true lesions from the same
patient must be accounted for in the sample size calculation. We refer to these data as
“clustered data.” Clustered data affect the calculation of σ2

ε (step 2) in the sample size
calculation. Formulae for estimating σ2

c are given in Appendix 1 (equations 1–3); these
formulae need to be modified for clustered data. The modifications to these formulae, as
well as the estimation of parameter values from the two CAD studies, are described in
Appendix 2.

The two most popular reading formats for multireader, multicase CAD studies are sequential
and crossover readings. In the sequential format, a reader interprets an image without CAD
and records his or her result, then immediately is shown the CAD marks for that image and
asked to reinterpret and record the result again. In contrast, in the crossover design, a reader
interprets images without CAD in a session where CAD is not available. At another reading
session, often separated from the first reading by at least 1 month, readers interpret the same
image with CAD. Sample size calculation is similar for these two reading formats (see
Appendix 2). In the sample size tables we present results for both of these reading formats.

Results
Tables 1 and 2 provide sample size estimates for CAD studies using either a crossover or
sequential design. For both tables, we used the ballpark values for various parameters;
however, we note that when investigators have reliable parameter estimates available from
pilot work, then those data should be used in the formulae in Appendix 2 instead of the
ballpark estimates provided here.

In Table 1, for a given estimate of readers’ average lesion-level sensitivity without CAD
(first column), an estimate of the improvement in sensitivity with CAD (second column),
and an estimate of the number of true lesions per patient among patients with lesions
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(column 3), the table provides several combinations of reader size and number of patients
with true lesions needed for a crossover study (column 4) and sequential study (column 5).

Similarly, in Table 2, for a given estimate of readers’ average ROI-level area under the ROC
curve without CAD (first column), an estimate of the improvement in ROC area with CAD
(second column), the number of segments per patient (e.g., six colonic segments, two
breasts) to be used in the analysis (third column), and an estimate of the number of true
lesions per patient among patients with lesions (column 4), the table provides several
combinations of reader size and the total number of patients with true lesions needed for a
crossover study (column 5) and sequential study (column 6). Note that in the sample size
calculations for Table 2, we considered a design with equal numbers of patients with and
without true lesions. Thus, the total patient sample size from Table 2 is twice the number of
patients listed in the table.

The sample size tables are based on the ballpark estimates of the parameter values derived
from the two CAD studies. They may not be applicable for all CAD studies. The estimates
can be affected by the disease, the technology, the relevant reader population, the accuracy
endpoint, and the study design. For example, we found that the estimated correlation
between lesions or between ROIs (i.e., RHODD and RHONN; see Appendix 2) differed
between the two studies, often larger in the colon study. Fortunately, the values of these
correlations used in the sample size formulae have very little effect on sample size. In
contrast, the value of the variance for the interaction between readers and modality has a
large effect on sample size. For the two CAD studies analyzed here, the estimate of this
variance ranged from values near zero to values of 0.0014. We used a ballpark estimate of
0.0014 for Tables 1 and 2; thus, we might consider the sample size estimates in these tables
to be conservative (i.e., larger than necessary) for many CAD studies. For studies in which
the value of the variance of the interaction is expected to be smaller than 0.0014 (i.e., based
on previous studies or pilot work), we have generated figures that provide an estimate of the
percentage reduction in the number of readers required. Figures 1 and 2 illustrate the
estimated percent reduction in the required reader sample size for endpoints of sensitivity
(Fig. 1) and ROC area (Fig. 2) for different values of the variance of the interaction term.
The figures also show the maximum, as well as median, value of the variance observed in
the two CAD studies. At the median variance value for the sensitivity endpoint, 19 readers
would be needed instead of the 25 required with the maximum value observed; for the ROC
area endpoint, nine readers would be needed instead of the 21 required with the maximum
value.

For illustration of the use of the tables and figures, consider a study in which the primary
endpoint is sensitivity. Suppose that readers’ average sensitivity without CAD is 0.5 and we
expect an improvement in sensitivity with CAD of 0.04. If 50% of patients have two lesions,
then a conservative estimate of sample size (from Table 1) would include 25 readers and 90
patients with the disease with a crossover design or 20 readers and 100 patients with disease
with a sequential design. Now suppose that we conjecture that readers’ sensitivities might
range from 0.4 to 0.6, and we roughly estimate that this range represents 4 SDs; thus, our
best estimate of the between-reader variance (σb

2) is 0.0025. With an estimate of the
between-reader variability, we can then estimate the variance for the interaction between
reader and test [12]. An estimate of the variance of the interaction between reader and test is

where rb is the correlation between the accuracies when the same readers evaluate patients
using different tests [12]. Rockette et al. [13] have recommended a value of 0.8 for rb by
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estimating this correlation over many studies. Our estimate of the variance of the interaction
between reader and test is then 0.0005. Using Figure 1, we estimate that we need about 30%
fewer readers with σ2

τ × R = 0.0005 than with the ballpark estimate of 0.0014 used in the
tables. So, a rough estimate of the sample size required for this study is 90 patients with
disease and 18 readers for a crossover design or 100 patients with disease and 14 readers
with a sequential design.

Discussion
We have generated tables that allow an investigator to determine a rough estimate, and in
many cases an upper bound, for the number of readers and patients needed for a CAD study.
The tables provide several combinations of reader sample size and patient sample size to
consider. We also provide two figures that can be used to estimate the reader sample size for
different values of variance for the interaction between reader and test. The tables and
figures are particularly useful in determining whether a proposed study is feasible with
available resources.

In calculating sample size for any study, when there is uncertainty about a parameter’s
value, it is important to be conservative in choosing values so that the study is not
underpowered. For example, if the area under the ROC curve is unknown, a conservative
approach would be to use a low value for the area, with 0.5 being the most conservative
value. Similarly, it is important not to overestimate the average number of true lesions that
each patient with lesions may have. A conservative approach is to assume one lesion per
patient; this might be appropriate for some studies in which the prevalence of disease is very
low, as in screening mammography. For colonoscopy studies, however, this assumption is
probably too conservative because asymptomatic patients often have more than one polyp.
Clearly, choosing values for parameters in sample size estimation requires some balance;
conservative values yield larger studies with greater expense, more resources, and often a
lengthier study. On the other hand, overly optimistic values can lead to underpowered
studies with wasted costs, resources, and time and misleading conclusions.

In deciding on a reasonable combination of reader sample size and patient sample size for a
study, it is important to consider planned secondary analyses. For example, if we plan to
estimate the sensitivity of CAD for different lesion types (e.g., by pathology, morphology,
size, or location), then having a representative sample of patients is important and one might
choose a sample size combination with a larger number of patients and fewer readers. If the
study plans to investigate the effect of CAD on readers with different experience levels, then
having a representative sample of readers is important and one might choose a sample size
combination with more readers and fewer patients.

Once a multireader, multicase CAD study is completed, several statistical methods are
available to analyze the clustered data from a single reader [14–20], and there are several
statistical approaches to multireader, multicase studies that handle clustered data or can be
modified to handle clustered data [7–12, 21–28].

Last, we note that our study has several limitations. First, we estimated several study
parameters on the basis of values from only two large CAD studies. A larger number of
CAD studies would have provided more reliable estimates and a broader range for the
values of these study parameters. This is of particular importance because some parameters
have large effects on sample size. Although the estimated correlation between lesions or
between ROIs has a small effect on sample size, the variance associated with the interaction
between readers and test has a large effect on sample size. Second, we considered just two
values for the effect size; actual studies may conjecture effect sizes smaller than 0.04 or
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between 0.04 and 0.06. For these reasons, it is important that investigators compute sample
size for their particular study using any available pilot data and not rely on the tables
presented here.
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APPENDIX 1

Steps in Determining Sample Size for Multireader, Multicase Studies [11]
Based on Multireader, Multicase Statistical Methods [21–23]
Step 1: Specify the Effect Size, d

Specify the absolute difference (d) in performance with computer-aided detection (CAD)
versus without CAD that you want to detect with sufficient power.
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Step 2: Conjecture Parameter Values
There are four parameters that must be conjectured:

• the correlation between modalities for the same reader (r1);

• the difference between the correlations of different readers for the same and
different modalities (r2 − r3) (See Appendix 2);

• an estimate of σ2
τ × R, which is the variance of the interaction between modality

and reader; and

• an estimate of σ2
ε, which is the variance of a reader’s estimated accuracy due to

both intrareader variability (σ2
w) and patient sample variability (σ2

c). Note that σ2
ε

= σ2
w + σ2

c.

When there are no pilot data, σ2
c for the receiver operating characteristic (ROC) curve area

measure is often estimated from the following formula, which assumes that the underlying
test scores follow a normal distribution [29]:

(equation 1)

where A = Ф−1 (AUC) × 1.414. AUC is the conjectured area under the ROC curve, Ф−1 is
the inverse of the cumulative normal distribution function, ND is the number of patients with
true lesions, and k is the ratio of the number of patients without lesions (NN) to the number
of patients with lesions (ND).

Alternatively, Blume [30] recommends the estimate of σ2
c in equation 2, which does not

make any assumptions about the distribution of the test results, for the ROC area measure:

(equation 2)

where the denominator, N, is the smaller of NN and ND.

For sensitivity, σ2
c is often estimated as follows:

(equation 3)

where p is the conjectured sensitivity and ND is the number of patients with true lesions in
the study sample. For specificity, equation 3 can be used with p defined as the conjectured
specificity and with ND replaced by NN, the number of patients without lesions.

The intrareader variability, σ2
w, is often conjectured or estimated from other studies.

Step 3: Estimate the Noncentrality Parameter and Denominator Degrees of Freedom
An estimate of the noncentrality parameter, Δ, is

(equation 4)

where R is the number of readers.

An estimate of the denominator degrees of freedom is

(equation

5)
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Step 4: Compute the Power for R Readers

(equation 6)

where Prob indicates probability, F1,df2;Δ denotes a random variable having a noncentral F
distribution with 1 and df2 degrees of freedom (1,df2) and noncentrality parameter Δ, and
F1 − α; 1,df2 denotes the 100(1 − α) percentile of a central F distribution with 1 and df2
degrees of freedom.

APPENDIX 2

Formulae for Computing the Power for a Multireader, Multicase Study
Modified for Clustered Data and Estimation of Parameter Values From the
Two Computer-Aided Detection Studies Described in the Text

For both the area under the receiver operating characteristic (ROC) curve and sensitivity, the
correlation between lung lobes or colonic segments and the correlation between true lesions
from the same patient is accounted for by the correlated analysis-of-variance model
proposed by Obuchowski and Rockette [22]. This model is specified by the following
equation:

where θ̂ij is the outcome for the ith test and jth reader, μ is the mean, τi is the fixed effect of
the ith test, Rj is the random reader effect, (τR)ij is the random test-by-reader interaction,
and εij is the error term. The random effects are assumed to be normally distributed with
zero means and respective variances σ2

R, σ2
τR, and σ2

ε. The error terms are correlated, with
r1, r2, and r3 denoting correlations between errors corresponding to different tests and one
reader, one test and different readers, and different tests and readers, respectively.

For sample size estimation, we let ND and NN denote the number of patients with at least
one true lesion and the number of patients without any lesions, respectively. We denote the
total number of patients in the study as Ntotal (Ntotal = ND + NN). Patients with true lesions
may have more than one true lesion, so the total number of true lesions will often exceed
ND.

Obuchowski and McClish [29] recommended that to estimate σ2
ε, one should first estimate

σ2
c using equation 1, 2, or 3, and then add an estimate of σ2

w; however, no data were
presented to assess the validity of this estimate of σ2

ε. Using the data from the two CAD
examples, we compared the observed values of σ2

ε with the estimate of σ2
c from equations

1–3. In all scenarios, the estimate of σ2
c from equations 1–3 was greater than the observed

value of σ2
ε. The estimate of σ2

c from equation 1 overestimated the observed value of σ2
ε

by an average of 26%, the estimate from equation 2 overestimated by 83%, and the estimate
from equation 3 overestimated by 5%. These results suggest that, when available, pilot data
should be used to estimate σ2

ε.

The denominators of formulae 1–3 (i.e., ND and N) need modification to account for
clustered data. First, we consider lesion-level sensitivity. To modify equation 3, we need to
estimate the average number of true lesions among patients with true lesions (we denote this
fD) and the average intraclass correlation—that is, the correlation of lesion-level assessments
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between lesions in the same patient (we denote this RHODD). Formula 3 can then be
modified as follows:

(equation 3′)

where p is the conjectured sensitivity, MD = ND × fD / DEFF; DEFF is the design effect
[31]; and MD is the effective number of lesions in the sample. By “effective” we mean the
number of lesions after accounting for the fact that lesions from the same patient are
correlated.

The design effect is defined as the variance when the clustered data are appropriately
accounted for divided by the variance when it is incorrectly assumed that multiple
observations from the same patient are independent [31]:

Kish [31] and Obuchowski [14] show that under some simplifying assumptions, the design
effect can be rewritten for sample size calculations as follows:

When there is no correlation between lesions from the same patient (i.e., RHODD = 0), then
MD = fD × ND; when there is perfect correlation between lesions from the same patient (i.e.,
RHODD = 1), then MD = ND. If we do not expect many study patients to have multiple true
lesions, then setting MD = ND is a reasonable approach; however, even when fD is only
slightly greater than 1, the power of the study can be improved by using equation 3′ instead
of equation 3.

The value of fD depends on the clinical setting and the patient inclusion and exclusion
criteria. For example, in the lung CAD study there was an average of 7.3 nodules per
patient; in the colon CAD study there was an average of 1.4 polyps per patient. The numbers
differ greatly because the lung CAD study involved high-risk patients undergoing diagnostic
or follow-up testing, whereas the colon CAD study involved asymptomatic patients.

The correlation RHODD can be more difficult to conjecture. In the colon CAD study, the
value of RHODD was 0.53 (intraclass correlation coefficient [17]); in the lung CAD study,
RHODD equaled 0.27. For sample size estimation it is important not to underestimate
RHODD; a ballpark estimate of 0.5 was used in the sample size tables.

The modification required when the ROI-level ROC area is the endpoint is similar but
involves both patients with and those without true lesions [14]. We first need to define the
subunits, or ROIs, from which the ROC area will be estimated. These subunits might be
colon segments, lung lobes, or breasts. Next, we conjecture the correlation of subunit-level
confidence scores between the subunits in the same patient. Let RHODD denote the
intraclass correlation between subunits from the same patient where each subunit has a true
lesion; let RHONN denote the intraclass correlation between subunits from the same patient
where each subunit does not have a true lesion; and let RHOND denote the intraclass
correlation between subunits from the same patient where one subunit does not have a true
lesion and one does have a true lesion. In the lung CAD study, the estimated value of
RHODD was 0.22 [17], and in the colon CAD study, the estimated value of RHODD was
0.51. (Note that these intraclass correlations are computed from the confidence scores.) A
ballpark estimate of 0.5 for RHODD was used in the sample size tables.
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In the lung CAD study, the estimated value of RHONN was 0.14 and in the colon CAD study
it was 0.04. So, in both studies RHONN was much smaller than RHODD. A ballpark estimate
of 0.2 for RHONN was used in the sample size tables. In both studies the estimated value of
RHOND was near zero. For the sample size tables, a ballpark estimate of zero was used for
RHOND.

Using a similar strategy as derived and evaluated by Obuchowski [14], we propose the
following modification to equation 1:

(equation 1′)

where k′ is the ratio of the number of effective subunits without lesions (MN) to the
effective number of subunits with lesions (MD). MD = ND × fD / DEFFD, with fD being the
average number of subunits with lesions among patients with lesions and DEFFD = 1 + (fD −
1) × RHODD. Similarly, MN = (H) × fN / DEFFN, with fN being the average number of
subunits without lesions among patients with at least one subunit without a lesion, H is the
number of study patients that have at least one subunit without a true lesion, and DEFFN = 1
+ (fN − 1) × RHONN. Note that H is often all the patients in the study (i.e., NN + ND).
(Equation 1′ assumes that RHOND is negligible.)

Similarly, equation 2 can be modified as follows:

(equation 2′)

where M is the smaller of MN and MD, which are defined in equation 1′.

Determining sample size for sequential and crossover designs is similar except that the
correlation, r1 (i.e., the correlation between two reader-level outcomes [e.g., AUC or
sensitivity] for the same reader), is usually greater in a sequential design than a crossover
design [32–35]. Rockette et al. [13] reported an average value of 0.47 for r1 over multiple
studies completed at their institution where a crossover design was used and the area under
the ROC curve was the measure of accuracy. In the colon CAD study, the average value of
r1 from the crossover design was 0.62 for the ROC area and 0.65 for sensitivity. The larger
value of r1 observed in the colon CAD study is perhaps not surprising because the two
“modalities” in a CAD study are the same images, differing only by the presence of CAD
marks. One might expect higher correlation between readers’ estimated accuracies with and
without CAD as compared with the correlation between readers’ estimated accuracies for
two modalities that provide very different images. For the sample size tables, we use a
ballpark estimate for r1 of 0.60 for a CAD crossover study with sensitivity or the ROC area
as the measure of accuracy. (We note that lower values of r1 result in more conservative
sample size estimates.)

The average value of r1 for specificity in the colon CAD study was 0.27. Note that Rockette
et al. [13] did not report on the value of r1 for specificity.

In a sequential design, several studies have reported strong correlation between readers’
findings without CAD versus with CAD [32–35]. In our two CAD examples, the observed
values of r1 ranged from 0.756 to 0.928 for the ROC area, 0.822–0.939 for sensitivity, and
0.533–0.860 for specificity. We note that in the lung CAD study, the estimate of 0.533 is
based on only a small number of observations. For the sample size tables, we use a ballpark
estimate of 0.80 for r1 for sequential designs.
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Fig. 1.
Estimated percentage reduction in required reader sample size as function of variance of
interaction between reader and test for studies using sensitivity as endpoint. Two points
represent maximum (0.0014) and median (0.000704) values of variance observed over two
studies described in text.
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Fig. 2.
Estimated percentage reduction in required reader sample size as function of variance of
interaction between reader and test for studies using area of receiver operating characteristic
curve as endpoint. Two points represent maximum (0.0014) and median (0.000145) values
of variance observed over two studies described in text.
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Obuchowski and Hillis Page 14

TABLE 1

Sample Size Requirements for Study With Sensitivity as Endpoint

No. of Readers (R) and No. of Patients With Lesions (ND)

Sensitivity Effect Size No. of Lesions per Patient (fD) Crossover Design Sequential Design

0.5 0.04 All patients have 1 lesion (1.0) None 21 and 100; 24 and 60

25% of patients have 2 lesions (1.25) 25 and 100 21 and 90; 25 and 50

50% of patients have 2 lesions (1.5) 25 and 90 20 and 100; 24 and 50

0.5 0.06 All patients have 1 lesion (1.0) 13 and 100; 20 and 40 11 and 80; 16 and 30

25% of patients have 2 lesions (1.25) 13 and 90; 18 and 40 11 and 70; 15 and 30

50% of patients have 2 lesions (1.5) 12 and 100; 18 and 40 11 and 70; 15 and 30

0.7 0.04 All patients have 1 lesion (1.0) 24 and 100; 25 and 90 20 and 100; 24 and 50

25% of patients have 2 lesions (1.25) 24 and 100; 25 and 80 20 and 90; 25 and 40

50% of patients have 2 lesions (1.5) 24 and 90; 25 and 80 20 and 90; 25 and 40

0.7 0.06 All patients have 1 lesion (1.0) 13 and 80; 18 and 40 11 and 70; 15 and 30

25% of patients have 2 lesions (1.25) 12 and 90; 20 and 30 10 and 100; 14 and 30

50% of patients have 2 lesions (1.5) 12 and 80; 19 and 30 10 and 90; 14 and 30

0.9 0.04 All patients have 1 lesion (1.0) 20 and 90 18 and 80; 14 and 30

25% of patients have 2 lesions (1.25) 19 and 100; 20 and 80 18 and 70; 20 and 40

50% of patients have 2 lesions (1.5) 19 and 100; 20 and 70 18 and 70; 19 and 50

0.9 0.06 All patients have 1 lesion (1.0) 11 and 60; 14 and 30 9 and 100; 11 and 30

25% of patients have 2 lesions (1.25) 11 and 60; 12 and 40 9 and 90; 10 and 40

50% of patients have 2 lesions (1.5) 11 and 50; 13 and 30 9 and 90; 10 and 40

Note—Sample sizes are for a study with at least 80% power, 5% type 1 error rate (two-tailed test), and assuming that r1 = 0.6 for the crossover

design and 0.8 for the sequential design, RHODD = 0.5, RHONN = 0.2, (r2 − r3) = 0, and σ2τ × R = 0.0014.
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