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Introduction

Macroautophagy (in this report referred hereafter as autophagy) 
is one of the major cellular degradation processes, by which cyto-
plasmic material is degraded into a double-membrane compart-
ment.1 This process begins with a double membrane which closes 
to form a vesicle (i.e., autophagosome), sequestering cytoplasmic 
material such as protein aggregates, ribosomes or, in some cases, 
entire organelles. Subsequently, the autophagosome acquires 
degradative components by fusion with late endosomes and 
lysosomes, becoming an autophagolysosome where the seques-
tered material is degraded.2 In the last decade, numerous stud-
ies carried on in yeast have led to the identification of several 
of the proteins that orchestrate a series of steps implied in the 
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autophagic pathway. Most of these proteins have mammalian 
orthologs, which is evidence that autophagy is highly conserved 
through evolution.3 In mammals some of the main players are the 
Ulk1 kinase complex (consisting of ULK1, RB1CC1/FIP200, 
ATG13 and C12orf44/Atg101), the class III phosphatidylino-
sitol 3-kinase (composed by PIK3C3/Vps34, PIK3R4/Vps15, 
BECN1/Beclin1 and ATG14), the ATG12-ATG5-ATG16L1 
complex and the Atg8 mammalian-homolog MAP1LC3.4

Initially, autophagosome formation requires membrane 
remodeling to generate a vesicle. Afterwards, vesicles need to be 
transported in the cytoplasm and the maturation of these vesi-
cles involves fusion with other compartments.4,5 The actin cyto-
skeleton could potentially participate in each of these steps. For 
example, actin polymerization and subsequent depolymerization 
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of the Rho family of proteins, are involved in starvation-medi-
ated autophagy but with opposite roles: RHOA had an activatory 
role in the pathway and RAC1 an inhibitory one. Furthermore, 
we also show that the RHOA effector ROCK participates in the 
regulation of starvation-induced autophagy.

Results

Depolymerization of actin filaments affects autophagy activa-
tion induced by starvation or rapamycin treatment. In order to 
address whether the actin cytoskeleton participates in the autoph-
agic pathway, we tested the effect of the actin depolymerizing 
agent Latrunculin B on MAP1LC3 processing. It is known that 
conversion of cytosolic MAP1LC3 (MAP1LC3-I) to membrane-
bound phosphatidylethanolamine (PE)–conjugated MAP1LC3 
(MAP1LC3-II) occurs during autophagy induction, and that the 
amount of MAP1LC3-II correlates with the number of autopha-
gosomes.17 Likewise, the number of MAP1LC3-labeled dots rep-
resents autophagic vesicles in different stage of maturation. CHO 
cells stably expressing GFP-MAP1LC3 were incubated under 
full-nutrient or starvation conditions in the presence or absence 
of Latrunculin B and then, the number of autophagosomes (i.e., 
punctate MAP1LC3 structures) in each cell was analyzed. In 
full-nutrient conditions no differences in autophagosome num-
ber between cells incubated without (control condition, Fig. 1A, 
a) or with Latrunculin B (Fig. 1A, d) were observed. Starvation 
increased the autophagosome number in cells incubated in the 
absence of Latrunculin B (Fig. 1A, b); however, in cells treated 
with Latrunculin B, that increase was abolished (Fig. 1A, e; see 
also quantifications in Fig. 1B).

To confirm these results we also tested Cytochalasin B, another 
actin depolymerizing agent and similar to the results obtained 
with Latrunculin B, inhibition of MAP1LC3 puncta formation 
under starvation condition was observed (Fig. S1A and S1B).

Surprisingly, the stabilization of actin cytoskeleton by 
Jasplakinolide did not produce any inhibitory effect on autopha-
gosome formation induced by the starvation stimulus (Fig. S2A 
and S2B) indicating that actin depolymerization but not its sta-
bilization is critical for the process.

Another potent stimulus for autophagy is the treatment with 
rapamycin, which inhibits the kinase MTOR, releasing the 
repressing effect that this kinase has over the autophagic path-
way.18 As expected, when cells were incubated in control media in 
the presence of rapamycin the GFP-MAP1LC3 dots incremented 
(Fig. 1A, c). Similar to the results obtained in starved cells, 
such increment was abolished when cells were incubated with 
Latrunculin B (Fig. 1A, f ). The quantification of the Latrunculin 
B inhibitory effect on the accumulation of MAP1LC3 dots under 
starvation conditions or rapamycin treatment is shown in Figure 
1B. These results suggest that de novo polymerization is neces-
sary at certain steps during the autophagic process induced by 
starvation or rapamycin.

The actin cytoskeleton participates in the formation of auto-
phagosomes upon starvation induction. The inhibitory effect 
of Latrunculin B or Cytochalasin B on autophagy activation 
could be at different stages of the process such as formation or 

occurs at the plasma membrane during the phagocytic process.6 
It is also known that different motor proteins bind to the actin 
cytoskeleton to mediate vesicle transport.7 In addition, there is 
evidence showing actin participation in phagosome/lysosome 
fusion.8,9

The proteins of the Rho family are monomeric GTPases that 
regulate a wide diversity of cellular activities. Some of them are 
tightly related to the actin cytoskeleton remodeling (membrane 
protrusion, cell adhesion and motility) and others to the regu-
lation of the cell cycle and gene transcription.10 These proteins 
cycle between two states, inactive and active conformations. In 
the inactive state the small GTPase is mainly bound to GDP 
and it is sequestered in the cytoplasm by another protein called 
guanosine nucleotide dissociation inhibitors (GDI).11 In the 
active form the GTPase binds GTP and is translocated to the 
membrane. This activation occurs through the interaction with 
a guanine exchange factor (GEF) that exchanges the nucleotide 
GDP for GTP, increasing the affinity for the effectors up to 100 
folds.12 Due to the GTPase activity of the Rho proteins, GTP is 
hydrolyzed and turns into GDP, an activity that is enhanced by 
the interaction with a protein called GTPase activating protein 
(GAP).12

RHOA, RAC1 and CDC42 are the three better characterized 
members of the Rho family and each one governs different actin-
based processes.13 RAC1 and CDC42 regulate the formation of 
lamellipodia and filopodia, respectively, and promote protrusive 
activities, whereas RHOA regulates stress fibers and contractile 
rings formation.13 Both the stress fibers and the contractile ring 
are formed by actomyosin bundles with antiparallel actin fila-
ments cross-linked by myosin. RHOA regulates these structures 
through stimulation of actin polymerization and activation of 
myosin. The Rho effectors involved in this function are mainly 
two: ROCK and DIAPH1/hDia1.14 Whereas DIAPH1 catalyzes 
actin nucleation and polymerization, the Ser/Thr protein kinase 
ROCK increases myosin light chain phosphorylation stimulating 
cross-linking between actin and myosin, which enhance acto-
myosin contractility.14

Autophagy occurs at a basal level in the majority of the cells, 
but different stimulus, like starvation, markedly increases the 
level of autophagosome formation.15 It has been postulated that 
the main function of basal autophagy is to enforce intracellular 
quality control by eliminating toxic proteins aggregates or dam-
aged organelles, a process that has been called quality control 
autophagy.16 On the other hand, starvation-mediated autophagy 
supplies essential macromolecules to cells subjected to different 
stress conditions, by a nonselective degradation of cytosolic con-
tents and organelles.16

A large number of factors involved in autophagosome forma-
tion have been identified, but the process is not yet fully dissected 
at the molecular level. In this study we show that actin filaments 
and regulatory molecules are required for starvation-mediated 
autophagy. When actin polymerization was abolished, the typi-
cal increase in the autophagosome number due to a starvation 
stimulus was impaired, and this effect was a consequence of a 
defect in the formation of autophagosomes at a very early stage. 
In addition, we show that RHOA and RAC1, two small GTPases 
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differentiate whether a reduced level of MAP1LC3-II is due to 
a inhibition of MAP1LC3 processing or to a high degradation 
rate.20 In Figure 3B we observed by western blot MAP1LC3-II 
accumulation when starved cells were treated with bafilomycin A

1
 

(compare lines 1 and 2), but this accumulation was prevented by 
Latrunculin B addition (compare lines 2 and 4). A similar inhib-
itory effect in MAP1LC3-II accumulation was observed when 
cells were treated with Cytochalasin B (Fig. S1C). In agreement 
with the previous observations on the MAP1LC3 dots number, 
cell treatment with Jasplakinolide caused no alterations in the 
accumulation of MAP1LC3-II (Fig. S2C). These results indicate 
that actin depolymerization but not its stabilization is affecting 

maturation of the autophagosomes (i.e., acidification 
and fusion with lysosomes). To differentiate between 
these possibilities we analyzed both, the acidification 
of autophagosomes, identified as MAP1LC3-positive 
dots, and fusion of these vesicles with later compart-
ments of the endocytic pathway. When the acidifica-
tion state of autophagosomes with the lysosomotropic 
probe Lysotracker was analyzed, a similar proportion 
of acidic GFP-MAP1LC3 positive dots near to 80% 
(Fig. 2B) in both, control (Fig. 2A, a, b and inset) and 
Latrunculin B treated cells (Fig. 2A, c, d and inset) 
was observed.

Next, we analyzed the role of the actin cytoskel-
eton in the fusion of autophagosomes with later com-
partments of the endocytic pathway. To address this 
issue, HeLa cells were incubated for 2 h at 37°C with 
dextran-Texas Red. Subsequently, cells were washed 
and the probe was chased for additional 2 h in order 
to allow the arrival of dextran to later compartments 
(i.e., late endosomes/lysosomes). Afterwards, cells 
were subjected to starvation in the presence or absence 
of Latrunculin B and colocalization between GFP-
MAP1LC3 and dextran-Texas Red was analyzed. As 
depicted in Figure 2C (a–d) and in the quantifica-
tion shown in Figure 2D, no differences between 
cells treated or untreated with Latrunculin B were 
observed. This result suggests that actin depolymer-
ization does not seem to affect the maturation step of 
autophagosomes.

As another approach, we used bafilomycin A
1
, an 

inhibitor of the proton ATPase that hampers the acid-
ification of autophagosomes and causes an increase in 
autophagosome number due to a block of the auto-
phagic flux.19 As expected, when bafilomycin A

1
 was 

added to starved cells, the MAP1LC3-positive dots 
increased four times compared with starved cells 
incubated without the drug (Fig. 3A). In contrast, in 
cells treated with bafilomycin A

1
 in the presence of 

Latrunculin B this increase was dramatically reduced 
(Fig. 3A). These results suggest that Latrunculin 
B blocks autophagosome formation rather than 
maturation.

As indicated above, one of the hallmarks of the 
autophagic pathway is the processing of MAP1LC3-I 
to MAP1LC3-II.17 A diminution in MAP1LC3-II levels may 
suggest that autophagy has not been induced. However, since 
MAP1LC3-II is present in the autophagosome both in the outer 
and inner membrane, MAP1LC3-II is in part degraded after 
autophagosome-lysosome fusion. Thus, a very high degrada-
tion capacity leads to a quick disappearance of MAP1LC3-II, 
which might be misinterpreted as a defect in autophagosome 
synthesis.20 On the other hand, increased MAP1LC3-II levels 
may represent enhanced autophagosome formation or a block 
in MAP1LC3-II degradation.21 The inhibition of lysosomal 
degradation using a protease inhibitor (pepstatin or E64) or the 
vacuolar proton ATPase inhibitor bafilomycin A

1
 is useful to 

Figure 1. Actin filament disruption prevented the autophagic response upon starva-
tion or rapamycin treatment. (A) CHO cells stable expressing EGFP-MAP1LC3 were 
incubated for 2 h at 37°C in full nutrient medium (Ctrl) (a, d, c and f) or starvation  
medium (Stv) (b and e); in the presence (d–f) or absence (a–c) of the actin depoly-
merizing agent Latrunculin B (LatB) (10 μM), and/or 100 μM of Rapamycin (Rap)  
(b and e). Subsequently, cells were fixed in 3% paraformaldehyde and processed 
for immunofluorescence. (B) The EGFP-MAP1LC3 dots were quantified from max 
intensity projection of a confocal z-stack and the mean+SEM of the number of dots 
per cell is shown. Data evaluated correspond to three independent experiments. 
Scale bars: 10 μm.



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Autophagy	 1593

(Fig. S3A, a and b) that may represent aberrant phagophores 
or isolation membranes (Fig. S3A, c and d). Our quantification 
data indicate that these structures were present in 60% of the 
cells treated with Latrunculin B (Fig. S3B). The idea that this 
curved membranous structures are autophagic-related structures 
is supported by the fact that wortmannin treatment decreased 
the percentage of cells depicting this kind of structures (please 
see quantification in Fig. S3B).

These results suggest that actin depolymerization is affect-
ing very early steps of autophagosome formation. To address 
this hypothesis, we performed a colocalization analysis between 
actin fibers (using phallodin-rhodamine, a probe that marks only 
F-actin) and a set of proteins that participate in different steps of 
the autophagic pathway. Particularly, to test early steps of auto-
phagosome formation, we used the proteins ULK1 and ULK2, 
members of ULK1 complex and the protein ATG14 and BECN1, 
which are components of the class III phosphatidylinositol 

the generation of MAP1LC3-II (i.e., autophagosome formation) 
rather than increasing autophagosome degradation rate.

Taken together, these results allow us to conclude that depo-
lymerization of actin has an inhibitory effect on autophagosome 
formation, without affecting subsequent maturation steps.

Actin polymerization is involved in early steps of auto-
phagosome formation. In recent years, cumulative evidence has 
indicated that the formation of an autophagosome involves the 
recruitment of several protein complexes to specialized areas of 
the endoplasmic reticulum. This leads to a membrane deforma-
tion generating a protrusion called omegasome that develops 
a phagophore or isolation membrane, which finally closes and 
forms a vesicle.22,23 Since proper functional actin filaments are 
required for autophagosome formation in response to starvation, 
we analyzed the ultrastructure of starved cells incubated in the 
presence or absence of Latrunculin B (Fig. S1A). Surprisingly, 
we found an accumulation of curved membranous structures 

Figure 2. Latrunculin B-treatment does not affect autophagosome maturation. (A) HeLa cells overexpressing GFP-MAP1LC3 (a and c) were incubated 
in starvation media in the presence (c and d) or absence of 10 μM Latrunculin B (LatB) (a and b). After 1.5 h incubation, LysoTracker (b and d) was added 
to the medium and the cells were incubated for additional 15 min. Then cells were washed twice with PBS, and starvation media with or without 
Latrunculin B was added. Confocal images of cells in vivo were acquired and the number of MAP1LC3-positive dots showing LysoTracker staining was 
quantified (B). (C) HeLa cells overexpressing GFP-MAP1LC3 (a and c) were incubated for 2 h at 37°C with dextran-Texas Red (b and d), washed, and the 
internalized probe was chased for additional 2 h. Afterwards, cells were subjected to starvation for 1.5 h in the presence (c and d) or absence of 10 μM 
Latrunculin B (LatB) (a and b). Confocal images of cells in vivo were acquired and the number of MAP1LC3-positive dots showing dextran-Texas Red 
staining was quantified (D). The graph shows the mean+SEM of the percentage of colocalization corresponding to three independent experiments. 
Scale bars: 10 μm.
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vector EGFP showed a significantly increase in autophagosome 
number in response to the starvation stimuli (Fig. 5A, a–d and 
Fig. 5B). When either EGFP-RHOA WT (Fig. 5A, e–h) or 
EGFP-RHOA V14 (Fig. 5A, i–l) were overexpressed, the auto-
phagosome number increased at the same level that in starved 
conditions even in the control cells incubated in full-nutrient 
medium (Fig. 5B). Interestingly, the overexpression of the 

3-kinase complex, present at the omegasome and in the phago-
phore.24,25 This kinase is responsible for generating phosphati-
dyl inositol 3 phosphate (PtdIns3P), a lipid that is recognized 
by different proteins involved in membrane deformation such 
as ZFYVE1 and WIPI2.25 The presence of PtdIns3P can be 
also monitored using a specific probe (i.e., 2xFYVE) which is 
useful to identify areas of autophagosome formation.23 A sub-
sequent step in the autophagosome biogenesis is the elongation 
of the phagophore that implies the recruitment of several pro-
teins. The complex formed by ATG5, ATG12 and ATG16L is 
recruited to the phagophore membrane at this stage.24,25 Thus, to 
analyze this intermediate step in autophagosome formation we 
used the protein ATG5 that is an excellent phagophore marker 
since the ATG5-ATG12-ATG16L1 complex is released before the 
phagophore closure and it is not present in the autophagosome.25 
Finally, we used the protein MAP1LC3 that is involved in the last 
steps of autophagosome formation and it remains partly associ-
ated to vesicles, even when the autophagosomes mature.25

As shown in Figure S4 actin fibers labeled with phallodin-
rhodamine sporadically colocalized with EGFP-MAP1LC3 (Fig. 
S4, a–d), and even though ATG5-positive structures frequently 
appear near to the actin fibers, no colocalization was observed 
between these two kind of structures (Fig. 4, e–h). In contrast, 
we found a strong colocalization between ATG14 and actin 
fibers, in reticular-like structures in the cytoplasm and in some 
punctate structures close to the plasma membrane (Fig. 4, a–d). 
Also, a comparable colocalization with BECN1 was observed, in 
similar type of structures (Fig. 4, e–h).

We next used GFP-2xFYVE, a probe that labels PtdIns3P, 
the PtdIns-3 kinase product, and the colocalization with actin 
fibers was assessed. Similar to the results obtained with ATG14, 
we found in all cells analyzed FYVE punctated structures that 
colocalized with actin (Fig. 4, i–l). Surprisingly, we also found 
actin associated with donut-shaped structures and unclosed 
rings colocalizing with the FYVE signal (Fig. 4, m–p). These 
kinds of structures known as omegasomes have been previously 
described,23 and correspond to early steps in the formation pro-
cess of some autophagosomes. To confirm that the structures that 
colocalized are autophagic structures we also used the protein 
ZFYVE1, a FYVE domain-containing protein that is present at 
the omegasomes.23 Similar to the FYVE probe, ZFYVE1 also 
colocalized with actin fibers (Fig. 4, q–t).

On the other hand no colocalization was found with the 
early autophagic markers ULK1 (Fig. S4, i–l) or ULK2 (Fig. 
S4, m–p). These results reinforce the idea that actin is involved 
in very early steps of autophagosome formation related to the 
PtdIns3P generation.

RHOA is able to activate the autophagic pathway. GTPases 
of the Rho family are important proteins that regulate actin 
dynamics.26 The most studied proteins of this family are RHOA, 
CDC42 and RAC1. We first examined the role of RHOA in auto-
phagosome formation. HeLa cells coexpressing RFP-MAP1LC3 
and the vector EGFP, EGFP-RHOA wt or the mutants -RHOA 
V14 (a constitutive active mutant) or -RHOA N19 (a constitutive 
inactive mutant) were incubated for 2 h at 37°C either in control 
or starvation medium. As expected HeLa cells overexpressing the 

Figure 3. Actin filaments are required for autophagosome formation. 
(A) HeLa cells overexpressing RFP-MAP1LC3 were incubated 2 h at 37°C 
in starvation medium in the presence or absence of 10 μM Latrunculin 
B (LatB), with or without 100 nM bafilomycin A1 (BafA). Then, cells were 
fixed in 3% paraformaldehyde and processed for immunofluorescence. 
The EGFP-MAP1LC3 dots were quantified from max intensity projection 
of a confocal z-stack, and the mean+SEM of the number of dots per cell 
is shown. (B) HeLa cells were incubated in starvation medium in the 
presence or absence of 10 μM Latrunculin B (LatB), with or without 100 
nM bafilomycin A1 (BafA) for 2 h at 37°C. Afterwards, cells were lysed in 
RIPA buffer and the samples were subjected to western blot analysis 
using a rabbit anti-MAP1LC3 and a mouse anti-TUB/Tubulin antibody 
and the corresponding HRP-labeled secondary antibodies, and subse-
quently developed with an enhanced chemiluminescence detection kit. 
The bands intensity was quantified with ImageJ software (gel analyzer 
plugin), and the MAP1LC3-II/TUB ratio was calculated. Western blot 
shown is representative of three independent experiments. Data evalu-
ated in (A and B) corresponds to three independent experiments.
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used an alternative approach. Cells subjected to starvation were 
incubated with a cell permeable variant C3 toxin of Clostridium 
botulinum that inhibits RHOA, B and C.27,28 As shown in Figure 
5C, treatment of starved cells with the C3 toxin produced a dim-
inution in the MAP1LC3-II levels, supporting the requirement 
of active RHOA in the autophagic pathway.

To confirm the role of RHOA in the autophagic process we 
depleted the protein using a siRNA approach. Similar to the 

dominant negative mutant EGFP-RHOA N19 (Fig. 5A, m–p) 
did not affect the autophagosome number in cells incubated in 
control medium, but it was able to abolish the increase produced 
by the starvation stimulus (Fig. 5B).

One of the major problems of analyzing transfected cells is 
that, in general, only a fraction of the cells are actually transfected 
and express the protein of interest. Thus, in order to analyze the 
role of RHOA in the processing of MAP1LC3 by western blot we 

Figure 4. The actin participation in the autophagic pathway is at the early steps of the pathway. HeLa cell overexpressing GFP-ATG14 (a–d), Flag-
BECN1 (e–h), GFP-FYVE (i–p) or GFP-ZFYVE1 (q–t) were incubated in starvation medium for 2 h at 37°C. Subsequently, cells were fixed in 3% parafor-
maldehyde and processed for immunofluorescence and actin filaments were stained using Phalloidin-Rhodamine. To stain FLAG-BECN1, a mouse 
anti-flag antibody and a secondary anti-mouse Alexa Fluor 488 antibody were used. Scale bars: 10 μm. Arrowheads indicate colocalization sites.
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or knockdown of RHOA we hypothesized that this protein 
is involved in the same step that the actin filaments. To test 
this, we analyzed the colocalization between RHOA and pro-
teins involved in different steps of autophagosome formation. 
We have found that RHOA, similar to the actin fibers, colo-
calized with BECN1 (Fig. S5) but not with MAP1LC3, ULK1 
or ULK2 (data not shown). Taken together, our results suggest 
that the actin regulator RHOA is involved in starvation-induced 
autophagy.

effects obtained with the overexpression of the dominant neg-
ative mutant RHOA N19 and with the C3 toxin, the RHOA 
knockdown (Fig. 5D) prevented MAP1LC3 dots accumulation 
due to the starvation stimulus (Fig. 5E, compare lines 2 and 
4). The silencing of RHOA also abolished the accumulation of 
MAP1LC3 II in starved cells treated with BafA (Fig. 5F, com-
pare lines 2 and 4).

Due to the similarities observed between the results obtained 
with the actin depolymerizing agent and with the inhibition 

Figure 5. For figure legend, see page 1597.
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RFP-MAP1LC3 and EGFP, EGFP-RAC1 wt or the mutants 
V12 or N17 were incubated for 2 h either in control full-nutrient 
or starvation medium. As shown in Figure 7A, the behavior of 
cells coexpressing RAC1 wt (Fig. 7A, e–h) both, in control or in 
the starved situation, showed no significant differences (Fig. 7B) 
compared with cells coexpressing the vector EGFP (Fig. 7A, a–d). 
In contrast, in cells coexpressing RFP-MAP1LC3 and the consti-
tutive active mutant EGFP-RAC1 V12 the starvation stimulus 
was not able to increase de RFP-MAP1LC3 positive dots (in Fig. 
7A, compare j with l) showing a statistically significant difference 
with cells expressing EGFP subjected to starvation (Fig. 7B).

Interestingly, the sole overexpression of the constitutive inac-
tive mutant RAC1 N17 in cells incubated in control media was 
enough to augment the number of MAP1LC3-positive dots (Fig. 
7A, m and p). Quantification of the MAP1LC3-positive dots 
indicates that the levels in control and starvation cells express-
ing RAC1 N17 were similar to that observed in cells expressing 
EGFP alone in the starved situation (Fig. 7B).

As another approach to demonstrate the role of RAC1 in the 
autophagic pathway we used siRNA-mediated silencing of RAC1 
(Fig. 7C). Similar to the results obtained with the overexpres-
sion of the negative mutant RAC1N17, the knockdown of RAC1, 
caused an increase in the number of autophagosomes in cells 
incubated in completed medium at a similar level to the starva-
tion stimulus (Fig. 7D).

On the other hand, when we overexpressed different variants 
of CDC42 (wild type, and the constitutive active mutant V14 
or the constitutive inactive mutant N17) no effect was observed 
in either full-nutrient or starvation conditions (data not shown).

Taken together, these results allow us to conclude that RAC1 
in its active form is able to inhibit the starvation-induced auto-
phagic response and that inhibition or depletion of this protein 
can moderately activate the autophagic pathway.

Discussion

The cytoskeleton has been associated with different roles in 
the autophagic pathway. Particularly, microtubules and their 

The activity of the kinase ROCK is required for starva-
tion-mediated autophagy. One of the most studied effectors of 
RHOA is the kinase ROCK.14 Thus, we decided to study if this 
kinase has a role in starvation-activated autophagy. We assayed 
Y-27632, a compound that has been extensively used to inhibit 
ROCK activity.29 When HeLa cells were incubated in starvation 
medium, in the presence of the ROCK inhibitor we observed 
a decrease in the number of RFP-MAP1LC3-positive dots (Fig. 
6A, compare a and d). Quantification of the number of dots indi-
cates a significantly diminution of the RFP-MAP1LC3-positive 
dots, that reached a level comparable to the basal condition of 
autophagy (Fig. 6B). This result suggests that ROCK is likely 
a downstream RHOA effector whose activity is required for 
autophagy.

The data obtained in the previous section indicate that under 
full-nutrient conditions the sole overexpression of the constitu-
tive active mutant RHOA V14 increased the number of auto-
phagosomes at a similar level than the starvation stimulus (Fig. 
5A). Thus, we next analyzed the effect of ROCK inhibition in cells 
overexpressing the active mutant RHOAV14. Interestingly, treat-
ment of transfected cells with Y-27632 had no effect in the number 
of RFP-MAP1LC3-positive dots (Fig. 6A, b and e; Fig. 6B).

We also tested a siRNA against the kinase ROCK. siRNA-
mediated knockdown of ROCK (Fig. 6C) caused an impairment 
of the typical increase in autophagosome numbers due to the 
starvation stimulus (please see Fig. 6D) as well as in MAP1LC3 
II accumulation determined by western blot analysis (Fig. 6E).

Taken together, our results indicate that the kinase ROCK is 
participating in the activation of autophagy by starvation, but its 
inhibition is not able to inhibit the signal triggered by the overex-
pression of the active mutant RHOA V14, suggesting that other 
downstream effectors are also activated by this GTPase.

RAC1 has an inhibitory effect in the induction of auto-
phagy by starvation. Other important proteins implied in actin 
dynamics regulations are CDC42 and RAC1.10 We tested if the 
overexpression of different variants of RAC1, wild type, the con-
stitutive active mutant V12 or the constitutive inactive mutant 
N17 altered autophagosome formation. HeLa cells coexpressing 

Figure 5 (See opposite page). RHOA is able to modulate autophagy. (A) HeLa cells were cotransfected with pRFP-MAP1LC3 and pEGFP alone (a and 
c), pEGFP-RHOA WT (e and g), pEGFP-RHOA V14 (i and k), or pEGFP-RHOA N19 (m and o). Afterwards, cells were incubated in control full-nutrient or 
starvation medium for 2 h at 37°C. Then, cells were fixed and processed for immunofluorescence. (B) The RFP-MAP1LC3 dots were quantified from max  
intensity projection of a confocal z-stack and the mean+SEM of the number of dots per cell is shown. (C) HeLa cells were pre-incubated with the C3 
toxin or the toxin vehicle alone for 4 h at 37°C. Cells were washed twice with PBS and incubated in starvation medium in the presence or absence of 
the C3 toxin for additional 2 h at 37°C. Afterwards, cells were lysed in RIPA buffer and the samples were subjected to western blot analysis using a rab-
bit anti-MAP1LC3 and a mouse anti-TUB antibodies and the corresponding HRP-labeled secondary antibodies the corresponding HRP-labeled second-
ary antibody, and subsequently developed with an enhanced chemiluminescence detection kit. The bands’ intensity was quantified with ImageJ soft-
ware (gel analyzer plugin), and the MAP1LC3-II/TUB ratio was calculated. (D) HeLa cells were transfected with a siRNA against RHOA according to the 
manufacturer indication. Afterwards, cells were lysed in RIPA buffer and the samples were subjected to western blot analysis using a mouse anti-RHOA 
and a mouse anti-TUB antibodies and the corresponding HRP-labeled secondary antibody, and subsequently developed with an enhanced chemilu-
minescence detection kit. The bands’ intensity was quantified with ImageJ software (gel analyzer plugin), and the RHOA/TUB ratio was calculated. (E) 
HeLa cells were transfected with RFP-MAP1LC3 alone or cotransfected with a siRNA against RHOA. After 48 h transfection, cells were incubated in con-
trol full-nutrient or starvation medium for 2 h at 37°C. Subsequently, cells were fixed and processed for immunofluorescence. The RFP-MAP1LC3 dots 
were quantified from max intensity projection of a confocal z-stack and the mean+SEM of the number of dots per cell is depicted. (F) HeLa cells were 
transfected with a siRNA against RHOA. Untransfected cells or cells transfected with the siRNA were incubated in starvation medium in the presence 
or absence of 100 nM bafilomycin A1 (BafA) for 2 h at 37°C. Afterwards, cells were lysed in RIPA buffer and the samples were subjected to western blot 
analysis using a rabbit anti-MAP1LC3 or mouse anti-TUB and the corresponding HRP-labeled secondary antibody, and subsequently developed with 
an enhanced chemiluminescence detection kit. The bands’ intensity was quantified with ImageJ software (gel analyzer plugin), and the MAP1LC3-II/
TUB ratio was calculated. The data evaluated and western blots shown are representative of three independent experiments. Scale bars: (A) 5 μm.
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necessary to mediate the microtubule-depending movement of 
autophagosomes.33

In the present report we have analyzed the role of actin in 
autophagy. Treatment of CHO and HeLa cells with the actin 
depolymerizing agent Latrunculin B or Cytochalasin B abolished 
the rapamycin- and starvation-dependent increase of MAP1LC3-
positive dots and the MAP1LC3-II levels, without affecting 
basal autophagy. In addition, the same effects of Latrunculin 
B-treatment were observed in starved cells incubated with bafilo-
mycin A

1
, indicating that the actin cytoskeleton is involved in 

associated motors have been studied in mammalian cells. It has 
been shown that autophagosome movement in the cytoplasm 
is dependent on microtubules,30,31 through an association of 
the autophagosome with the motor complex dynein-dinactin.32 
This type of movement is required to direct autophagosomes 
to the centrosome region, where the autophagosomes fuse 
with lysosomes.32 More recently other proteins that collabo-
rate in the relationship between autophagosomes and microtu-
bules have been described. One example is FYCO1, a protein 
that forms a complex with MAP1LC3 and RAB7, and it is 

Figure 6. For figure legend, see page 1599.
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postulated that ATG9 is involved in the regulation of auto-
phagosome size at an early stage of the autophagosome formation 
process.42 These data are in agreement with our observations that 
actin filaments colocalized with ATG14 and BECN1, two mem-
bers of PI3Kinase complex, which has an important function at 
the initial steps of autophagosome formation.25

In addition we also found actin fibers associated to omegas-
omes (evidenced by the colocalization between actin filaments 
and the 2xFYVE domain and ZFYVE1), a membranous 
structure enriched in PtdIns3P, that has been identified as an 
autophagosome precursor.23 In contrast, actin showed no colocal-
ization with markers of later steps of autophagosome formation 
like ATG5 or MAP1LC3 confirming a very early requirement 
of actin in autophagosome biogenesis particularly linked to the 
PtdIns3P formation step, since no colocalization was found 
between actin and ULK1/2.

Several signaling molecules drive actin polymerization/depo-
lymerization cycles depending on the particular process in which 
microfilaments are involved. In the process of autophagosome 
formation induced by starvation, we have established the par-
ticipation of RHOA and one of its effectors, the kinase ROCK. 
It has been previously described that RHOA triggers a series of 
signals, with the participation of ROCK, leading to actin polym-
erization and MYO2 activation. Interestingly, even though our 
results indicate that ROCK is a component of the signaling 
pathway involved in autophagy, inactivation of this kinase was 
unable to prevent the effect of a permanently activated RHOA, 
suggesting that other downstream effectors are also activated by 
this GTPase.14

On the other hand, we have found that RAC1 but not CDC42 
is also involved in the regulation of the autophagic pathway, but 
it has an inhibitory role. Consistently, in a paper recently pub-
lished by Zhu and collaborators43 it has been demonstrated, using 
a siRNA approach, that RAC3 but not the RAC1 or RAC2 iso-
forms, has an inhibitory effect on autophagy. These differences 
in isoform requirement are likely due to the cell lines used. In 
the publication by Zhu et al. the siRNA against RAC1 was used 
in HCT116, a cell line that has a low level of expression of this 
protein compared with RAC2 and RAC3, whereas in the HeLa 
cells used in our work, RAC1 is the main expressed isoform. 

the formation of autophagosomes rather than in the maturation 
steps. Indeed, we confirmed that maturation was not impaired 
using two assays, the acidification of the autophagosome and the 
fusion with late endocytic/lysosomal compartments. When we 
compared cells incubated with or without Latrunculin B, both 
showed a similar percentage of acidic EGFP-MAP1LC3 dots, 
positive for LysoTracker; and the colocalization between EGFP-
MAP1LC3 and TexasRed-Dextran incorporated by endocitosis 
was not altered.

In mammalian cells, evidence about the participation of actin 
in autophagy has been reported, but its role has been poorly char-
acterized. An accumulation of proteins was observed in the liver 
of rats treated with phalloidin, a toxin that binds to actin fila-
ments and blocks their depolymerization.34 In addition, the typi-
cal increase of autolysosome density produced by leupeptin/E64 
treatment was hindered by phallodin treatment. With these data 
the authors hypothesized that the stabilization of actin affects 
autophagosome formation. The apparent discrepancy with our 
results using Jasplakinolide, an actin stabilizing agent, could be 
due to that in contrast to Phalloidin, Jasplakinolide may also pro-
mote actin nucleation;35 reflecting the necessity of de novo actin 
polymerization. In another report it has been shown that the 
depolymerization of actin using Citochalasin B or D decreases 
the degradation of long-lived proteins and also prevents the accu-
mulation of autophagic related structures.36 Our findings about 
the role of actin in autophagosome formation are consistent with 
these previous observations and expand those results by determin-
ing in which stage of the autophagic pathway actin is involved.

In yeast, it has been noted that actin is required for the Cvt 
pathway and also pexophagy.37 Atg9, a transmembrane protein 
required for autophagosome formation, cycles between the struc-
ture called PAS and the mitochondria.38 Interestingly, it has 
been shown that actin participates in the transport of Atg9. This 
process is mediated by the interaction with Atg1139 and requires 
the activity of Arp 2/3, an actin nucleator.40 Similar to yeast, in 
mammals ATG9 has a cyclic behavior, but it cycles between the 
Golgi apparatus and the endosomes. Recently MYO2/myosin 
II, a motor associated to the actin filaments, has been related to 
the transport of ATG941 which represents an indirect evidence 
that actin participates in some steps of autophagy. It has been 

Figure 6  (See opposite page). Inhibition of ROCK abolished the autophagy induction mediated by starvation, but not by the overexpression of the 
constitutive active mutant RHOA V14. (A) HeLa cells were transfected with pRFP-MAP1LC3 (a and d) or cotransfected with pRFP-MAP1LC3 (b and e) and 
pEGFP-RHOA V14 (c and f). Afterwards, cells were incubated in starvation medium in the absence (a–c) or presence (d–f) of the ROCK inhibitor Y27632 
(10 μM) for 2 h at 37°C. Then, cells were fixed and processed for immunofluorescence. (B) The RFP-MAP1LC3 dots were quantified from max intensity 
projection of a confocal z-stack and the mean+SEM of the number of dots per cell is shown. The data evaluated correspond to three independent 
experiments. (C) HeLa cells were transfected with a siRNA against RHOA according to the manufacturer’s instructions. Afterwards, cells were lysed in 
RIPA buffer and the samples were subjected to western blot analysis using a mouse anti-ROCK1 and a mouse anti-TUB and the corresponding HRP-
labeled secondary antibody, and subsequently developed with an enhanced chemiluminescence detection kit. The bands’ intensity was quantified 
with ImageJ software (gel analyzer plugin), and the ROCK1/TUB ratio was calculated. (D) HeLa cells were transfected with RFP-MAP1LC3 alone or 
cotransfected with the siRNA against ROCK1. After 48 h transfection, cells were incubated in control full-nutrient or starvation medium for 2 h at 37°C. 
Then, cells were fixed and processed for immunofluorescence. The RFP-MAP1LC3 dots were quantified from max intensity projection of a confocal z-
stack and the mean+SEM of the number of dots per cell is shown. (E) HeLa cells were transfected with the siRNA against ROCK1. Untransfected cells or 
cells transfected with the siRNA were incubated in starvation medium in the presence or absence of 100 nM bafilomycin A1 (BafA) for 2 h at 37°C.  
Afterwards, cells were lysed in RIPA buffer and the samples were subjected to western blot analysis using a rabbit anti-MAP1LC3 or mouse anti-TUB 
and the corresponding HRP-labeled secondary antibody, and subsequently developed with an enhanced chemiluminescence detection kit. The 
bands’ intensity was quantified with ImageJ software (gel analyzer plugin), and the MAP1LC3-II/TUB ratio was calculated. The data evaluated and 
western blots shown are representative of three independent experiments. Scale bars: (A) 20 μm.
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increased rate of autophagosome formation, this kinetics could 
be enhanced taking advantage of the actin cytoskeleton that may 
actively participate in membrane remodeling. On the other hand, 
it is tempting to hypothesize that the opposite roles of RHOA 
and RAC1 in the starvation-mediated autophagy ensure a tight 
regulation of the process, depending on which of them are acti-
vated in a given situation. Further studies are necessary to unveil 
the participation of both actin modulatory proteins in keeping a 
precise regulation of the autophagic activity.

Materials and Methods

Materials. Dulbecco’s Modified Eagle Medium (D-MEM, 
12100), (α-MEM, 11900-024) fetal bovine serum (FBS, 

An interestingly observation comes from a paper showing that 
MAP1LC3 binds to SOS1, a GEF for RAC1, impairing RAC1 
activation due to inhibition of the GEF activity of SOS1.44 Taken 
together, those observations in conjunction with our results sug-
gest that signals involved in the autophagic pathway and the 
RAC signaling pathway are mutually regulated.

In the present manuscript we have demonstrated a role for the 
actin cytoskeleton in autophagosome formation. Early steps in 
autophagosome formation, like membrane deformation to gen-
erate the omegasome and subsequent elongation of the phago-
phore, have a defined kinetic. It is likely that when an enhanced 
activity of autophagosome formation is needed, such as by starva-
tion or rapamycin stimulation, the whole autophagosome forma-
tion process needs to be activated. Thus, when cells require an 

Figure 7. RAC1 negatively modulates autophagy. (A) HeLa cells were cotransfected with pRFP-MAP1LC3 and pEGFP alone (a and c), pEGFP-RAC1A WT 
(e and g), pEGFP-RAC1 V12 (i and k), or pEGFP-RHOA N17 (m and o). Afterwards, cells were incubated for 2 h at 37°C in control full-nutrient or starva-
tion medium. Cells were fixed and processed for immunofluorescence. (B) The RFP-MAP1LC3 dots were quantified from max intensity projection of a 
confocal z-stack and the mean+SEM of the number of dots per cell is shown. (C) HeLa cells were transfected with a siRNA against RAC1 according to 
the manufacturer’s instructions. After 48 h transfection, cells were lysed in RIPA buffer and the samples were subjected to western blot analysis using 
a mouse anti-RAC1 and a mouse anti-TUB antibodies and the corresponding HRP-labeled secondary antibody, and subsequently developed with an 
enhanced chemiluminescence detection kit. The bands intensity was quantified with ImageJ software (gel analyzer plugin), and the RAC1/TUB ratio 
was calculated. (D) HeLa cells were transfected with RFP-MAP1LC3 alone or cotransfected with the siRNA against RAC1. After 48 h transfection, cells 
were incubated in control full-nutrient or starvation medium for 2 h at 37°C. Then, cells were fixed and processed for immunofluorescence. The RFP-
MAP1LC3 dots were quantified from max intensity projection of a confocal z-stack and the mean+SEM of the number of dots per cell is depicted. The 
data evaluated correspond of three independent experiments. Scale bars: (A) 20 μm.
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0.05% saponin and 0.2% bovine serum albumin for 15 min. 
The coverslips were mounted with Mowiol. Fixed cells were 
imaged using an Olympus Fluoview 1000 confocal microscope 
using objective 60× PlanApo oil, numerical aperture (NA) 
1.42.

Image processing. All the images were processed using 
ImageJ software (Wayne Rasband, National Institutes of 
Health). Briefly, the images were deconvolved with Parallelal 
Spectral Deconvolution plugin (Piotr Wendykier) using a the-
orical PSF generated by Diffraction PSF 3D plugin (Robert 
Dougherty). Background was eliminated using the Subtract 
Background plugin. For MAP1LC3 dots quantification, the 
sum of images from a z-stack was obtained using the Z Project 
plug-in. After the image binarization using a defined threshold, 
the dots number was quantified using the Particle Analyzer plu-
gin. For the colocalization analysis between GFP-MAP1LC3 
and LysoTracker or dextran-TexasRed a single plane image from 
each channel was acquired, processed as described before and 
then, the number of particles that have signals in both channels 
was quantified.

Western blot. The cells were lysed for 30 min at 4°C with 
RIPA buffer supplemented with the following inhibitors: 10 
μg/mL aprotinin, 10 μg/mL leupeptin, 5 μg/mL pepstatin 
A, 1 mM sodium orthovanadate and 1 mM sodium fluoride. 
The lysates were treated with Laemmli’s buffer and separated 
by electrophoresis in polyacrylamide. After electrophoresis, the 
proteins were transferred to nitrocellulose in a wet system at  
200 mAmp for 1 h. The protein bands were immunodetected 
with the adequate primary antibodies incubated for 1 h at room 
temperature. The primary antibodies were revealed with horse-
radish peroxidase (HRP)-conjugated secondary antibodies, visu-
alized by enhanced chemiluminescence (ECL) (General Electric, 
RPN2232) and analyzed with Fujifilm LAS-4000 equipment. 
Densitometric analysis of bands was performed using the ImageJ 
software.

Transmission electron microscopy. Cells were fixed with 
2% glutaraldehyde in PBS. After 1 h, the samples were scraped 
and centrifuged for 15 min at 500 x g, and the pellets were pro-
cessed for transmission electron microscopy using conventional 
techniques.

Statistical analysis. Results are presented as the mean ± SEM 
from at least two independent experiments. The comparisons 
were performed using ANOVA in conjunction with Tuckey and 
Dunnett tests. Significant differences: *p < 0.01; **p < 0.005; 
***p < 0.001.
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Autophagy was induced by amino acid and serum deprivation. 
Briefly, cells were washed three times with PBS and incubated in 
EBSS at 37°C for different periods of time in the presence or the 
absence of different drugs, as indicated in the figure legends.

For transient expression, Lipofectamine 2000 (Invitrogen, 
11668019) was used according to the manufacturer’s instructions.

Fluorescence staining. HeLa or CHO cells were fixed with 
3% paraformaldehyde solution in PBS for 10 min at 37°C, 
washed with PBS, and blocked with 50 mM NH

4
Cl in PBS. 

Subsequently, cells were permeabilized with 0.05% saponin 
(Sigma-Aldrich, S4521) in PBS containing 0.5% BSA (Sigma-
Aldrich, A2153) and mounted in MOWIOL (Sigma-Aldrich, 
10853).

Confocal microscopy. For immunofluorescence, cells were 
grown on coverslips overnight to 50–80% confluence. After 
incubation under different experimental conditions, cells were 
fixed with 3% paraformaldehyde in PBS for 15 min at room 
temperature, washed with PBS, blocked with 50 mM NH

4
Cl 

in PBS and subsequently permeabilized with PBS containing 
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