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In autophagic processes a variety of 
cargos is delivered to the degradative 

compartment of cells. Recent progress in 
autophagy research has provided support 
for the notion that when autophagic pro-
cesses are operating in selective mode, 
a receptor protein complex will process 
the cargo. Here we present a concept of 
receptor protein complexes as compris-
ing a functional tetrad of components: a 
ligand, a receptor, a scaffold and an Atg8 
family protein. Our current understand-
ing of each of the four components and 
their interaction in the context of cargo 
selection are considered in turn.

Autophagy is a constellation of quality and 
quantity degradation pathways by which 
cells may nonselectively or selectively cap-
ture, deliver and, in most cases, digest 
their internal components in a homeo-
static function and in response to a diverse 
range of cellular emergencies. The cargos 
include nonspecific cytoplasmic substrates, 
as well as vacuolar hydrolase precursors, 
protein aggregates, unwanted or damaged 
organelles and invasive microorganisms.1-7 
The signature of such a sophisticated and 
tightly regulated autophagic degradation 
pathway, is that, in selective mode, almost 
all (if not all) autophagic cargos destined 
for degradation will be processed by a 
receptor protein complex.8-11 Therein lies 
a conundrum: How is a given autophagic 
cargo selected from many others, and what 
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parameters are required to guide it to its 
ultimate degradation and the subsequent 
reuse of the degradative products by the 
cell? We suggest that the choice of autoph-
agic cargo for selective macroautophagy 
(hereafter autophagy) is orchestrated by a 
functional tetrad of components: a ligand, 
a receptor, a scaffold and an Atg8 family 
protein (Fig. 1A).8-11

In autophagic terms, a ligand can be 
defined as a molecular entity on the sur-
face of a cargo recognized by a receptor. 
In order to be ultimately degraded, cargo 
with ligand must go through a cascade 
of sequentially regulated steps involv-
ing a cohort of molecular players (e.g., 
receptors and Atg proteins) and intricate 
membrane dynamic events (e.g., autopha-
gosome formation, and their subsequent 
fusion with the vacuole/lysosome mem-
brane).1,4,5,7,8,10-12 The specific ligands 
responsible for targeting various cargos for 
degradation by autophagy are just begin-
ning to be revealed, but ligands for some 
autophagy cargos have been identified. 
Examples include mitochondria [addition 
of ubiquitin (Ub) to one or more outer 
membrane proteins, including VDAC1, 
MFN1/2 and BNIP1, by the E3 Ub ligase 
PARK2/PARKIN in mammals],13-15 per-
oxisomes (Pex3 and Pex14 in yeasts)16-18 
or protein aggregates (Ub, mutant SOD1 
or STAT5A_ΔE18 in mammals)9,10,19-22 
(Table 1). However, the specific ligands 
responsible for selective targeting of 
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same microdomain, which is distinct from 
the microdomain bound by SQSTM1.34-36 
At this time we can only speculate as to the 
reason for involving multiple receptors, 
but it is possible that each one contributes 
a unique component or function to the 
autophagic process. The tissue-specificity 
and the distribution of receptor proteins 
have not been fully evaluated, but could 
be an important contributor to the differ-
ent observations that have been reported.

The next step in selective autophagy 
typically involves binding of the recep-
tor to a scaffold. In autophagic terms, a 
scaffold can be defined as an autophagic 
protein that connects a receptor with the 
rest of the autophagic machinery. Usually, 
a scaffold is a protein that organizes the 
autophagic machinery at the phagophore 
assembly site (PAS). For example, Atg11 
acts as a scaffold within the Cvt pathway, 
pexophagy and mitophagy in yeast (Fig. 
1B), binding Atg19/Atg34, Atg30 and 
Atg32, respectively.11,12,16-18,26,27,37-39 This 
interaction is necessary to recruit cargo 
into close proximity with the autophagy 
machinery, and in particular an Atg8 
family protein (see below). Atg11 might 
also act as a nonconventional tether for 
Atg9-containing membranes through its 
interaction with the GTP-bound form 
of the Ypt1 GTPase.40 Bridging between 
the prApe1-Atg19 complex and the Atg9-
containing membranes might constitute 
the earliest step in Cvt-specific PAS forma-
tion that is accomplished by Atg11. Atg19 
contains binding sites for both Atg11 and 
Atg8.12 prApe1 does not colocalize with 
Atg8 in the absence of either Atg19 or 
Atg11. Thus, Atg11 first contributes to 
the organization of the Cvt-specific PAS 
and brings prApe1-Atg19 into proximity 
of Atg8 at the PAS for subsequent inter-
action with the phagophore and selective 
sequestration of the prApe1-Atg19 com-
plex. Interaction of Atg19 with Atg8 is 
considered to be instrumental in achiev-
ing the selectivity of this sequestration.37,41 
Similarly, Atg32 does not localize to the 
PAS in the absence of Atg11, whereas in 
wild-type cells under conditions where 
mitophagy is induced, Atg32 binds Atg11 
and subsequently interacts with Atg8 
(Fig. 1B).11,12,28,29,42 In mammalian cells, 
WDFY3/ALFY functions as a scaffold 
(Fig. 1C), recruiting aggregated proteins 

autophagic elimination of ubiquitinated 
protein aggregates, organelles and bacte-
ria, recently it was found that SQSTM1 
can directly recognize some protein aggre-
gates, bactericidal factors and viruses, like 
a yeast receptor, strengthening the pos-
sibility of its common origin with Atg19 
(Table 1).5,7,10 In contrast to the recep-
tors of the Cvt pathway and pexophagy, 
the mitophagy receptors, Atg32 (yeasts), 
BNIP3, BNIP3L/NIX and FUNDC1 
(mammals), are integral components 
of the mitochondrial outer membrane. 
However, ligand proteins recognized by 
Atg32, BNIP3, BNIP3L and FUNDC1 
in the mitochondrial outer membrane, if 
they exist, have not been identified (Fig. 
1B and C).3,8,11-14,28-33

It is interesting to briefly consider 
the evolution of the receptor mecha-
nism with regard to bacteria. SQSTM1, 
CALCOCO2/NDP52 and OPTN are 
all required for efficient xenophagy, and 
they appear to bind the same bacteria 
at various microdomains. Specifically, 
CALCOCO2 and OPTN bind to the 

certain types of autophagic cargo, such as 
the endoplasmic reticulum or lipid drop-
lets, have not yet been identified.4

In general, components of the autopha-
gic cargo may be either recognized directly 
by a receptor, or first modified with Ub 
by an E3 Ub ligase and then recognized 
by a Ub-binding receptor. Ubiquitination 
of cargo proteins often triggers selective 
autophagy in mammalian cells. However, 
this regulatory mechanism is not found in 
yeast (Table 1). In yeast, the best-charac-
terized ligand is the propeptide of precur-
sor aminopeptidase I (prApe1). This ligand 
is recognized by a soluble receptor, Atg19, 
as the first step of import of the prApe1 
oligomer to the vacuole through the cyto-
plasm-to-vacuole targeting (Cvt) pathway 
(Fig. 1B).23-27 Similarly, pexophagy in 
Pichia pastoris requires the Atg30 recep-
tor that interacts with the peroxisomal 
membrane proteins Pex3 and Pex14.16,17 
Atg19 has some structural similarities to 
SQSTM1/p62 and NBR1 in mammalian 
cells.9 Although SQSTM1 and NBR1 
function as Ub-binding receptors for the 

Figure 1. Receptor protein complexes in macroautophagy. (A) A general model of the receptor 
protein complex. (B) The Cvt pathway (left) and mitophagy (right) in yeast with their respec-
tive cargos (prApe1 complex, mitochondrion), ligand (prApe1 propeptide), receptors (Atg19 and 
Atg32), scaffold (Atg11) and Atg8 family protein (Atg8). (C) Aggrephagy (left) and mitophagy 
(right) in mammalian cells and their receptor protein complexes. BNIP3L might act as a “mammali-
an Atg32” being integral to the mitochondrial outer membrane and interacting with LC3. SQSTM1 
binds to ubiquitin (Ub) conjugated to aggregated proteins and mediates their interaction with 
the autophagic scaffold (WDFY3) and Atg8 family protein (LC3); SQSTM1 might play a similar role 
during pexophagy, mitophagy and xenophagy. Note that SQSTM1 might also directly recognize 
several ligands for aggrephagy and xenophagy in a Ub-independent manner (Table 1).
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scaffold is that a scaffold can specifically 
organize the autophagic machinery on 
the receptor-tagged cargos. The possibil-
ity exists that under different conditions 
a scaffold can be mono- or multi-specific, 
meaning that it could be recognized by 
either a single autophagy receptor (e.g., 
WDFY3 recognized by SQSTM1) or 
multiple receptors (e.g., Atg11 recognized 
by Atg19, Atg30, Atg32 and Atg34). 
Accordingly, it is feasible that the same 
scaffold could be recruited by multiple 
receptors at the same time (e.g., under 
starvation conditions). Moreover, the 
receptors may recruit multiple scaffolds 
(e.g., Atg30 recognizes both Atg11 and 
Atg17). The receptors can be soluble or 
membrane-bound, yet must be able to 
interact with their cognate scaffolds and/
or Atg8 family members as well as retain 
the potential to form an aggregated struc-
ture under appropriate conditions (e.g., 
SQSTM1 involvement in the selective 
autophagy of bacteria, xenophagy7,10).

The phosphorylation of autophagy 
receptors (e.g., Atg30, Atg32, and OPTN) 
might be a general mechanism for the reg-
ulation of selective autophagy.17,35,54 The 
Atg8/LC3 proteins themselves are also 
phosphorylated, and recent studies have 
identified specific phosphorylation sites 
for protein kinase A (PKA) and protein 
kinase C (PKC) in the N terminus of LC3. 
Interestingly, this part of LC3 is involved 
in its binding to autophagic receptors.55,56 
It is therefore tempting to speculate that 
phosphorylation at the PKA and PKC sites 
might facilitate or prevent the interaction 
of LC3 with autophagic receptors such as 
SQSTM1. Along these lines, phosphoryla-
tion of the PKA site, which is conserved in 
all mammalian LC3 isoforms, but not in 
GABARAP, inhibits recruitment of LC3 
into autophagosomes.55

Before concluding, we present some 
speculative musings that suggest the 
potential for biological complexity. One 
advantage of a receptor recruiting a 

tagged by Ub and recognized by SQSTM1 
to PtdIns3P-containing membranes, and 
facilitating the interaction of SQSTM1 
with mammalian Atg8 (LC3).7-10,43-52 At 
present, there are no known scaffolds that 
interact with other mammalian receptors 
(Table 1).

The last player in the process, then, is an 
Atg8 family protein (often LC3 in mam-
mals) recognized by the ligand-bound 
receptor on the phagophore membrane 
through a specific Atg8 family interacting 
motif (AIM) or LC3-interacting region 
(LIR). It should be noted that there are 
multiple Atg8 homologs in mammals, 
and these are grouped into two major 
subfamilies, LC3 and GABARAP. The in 
vivo binding specificities of the different 
family members still remains elusive but 
the LC3 proteins have been suggested to 
participate in an earlier stage of autophagy 
than GABARAP proteins.53 It should also 
be pointed out that not all LIR-containing 
proteins are autophagy receptors.

Table 1. Components of the receptor protein complexes involved in autophagy

Process Cargo Ligand Receptor Scaffold
Atg8 family 

protein
Refs.

Cvt pathway (yeasts)
prApe1 complex prApe1 propeptide Atg19 Atg11 Atg8 23, 24, 26, 27

Ams1 complex Ams1 Atg19, Atg34 Atg11 Atg8 38, 39

Glycophagy (mammals) Glycogen particles Glycogen STBD1 - GABARAP 58, 59

Aggrephagy (worms) PGL granules PGL-3 SEPA-1 EPG-2 LGG-1 60, 61

Aggrephagy (mammals)

Mutant SOD1 aggregates Mutant SOD1 SQSTM1 - LC3 20, 21

STAT5A_ΔE18 aggregates STAT5A_ΔE18 SQSTM1 - - 22

Ubiquitinated protein aggregates Ub SQSTM1, NBR1 WDFY3 LC3 43–52

Midbophagy (mammals) Midbodies
Ub SQSTM1 - LC3 62

CEP55 NBR1 - - 63

Pexophagy (yeasts) Peroxisomes Pex3, Pex14 Atg30
Atg11, 
Atg17

- 17, 18

Pexophagy (mammals) Peroxisomes
Pex14 - - LC3 64

Ub SQSTM1 - LC3 65

Mitophagy (yeasts) Mitochondria Outer membrane Atg32 Atg11 Atg8 28, 29

Mitophagy (mammals) Mitochondria
Outer membrane

BNIP3, BNIP3L, 
FUNDC1

-
LC3, 

GABARAP
30–33

Ub SQSTM1 - LC3 66–72

Xenophagy (mammals)

Viruses Viral capsid proteins SQSTM1 - LC3 73

Ubiquitinated bacteria Ub
SQSTM1, 

CALCOCO2, 
OPTN

- LC3 34–36, 74–76

Bactericidal factors FAU, Ub SQSTM1 - LC3 77

Membrane remnants, damaged 
vesicles

Ub, LGALS8
SQSTM1, 

CALCOCO2
- LC3 78, 79
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Rapid progress in autophagy research 
has strengthened the notion of the receptor 
protein complex and its role in the mecha-
nism of selective autophagy. We anticipate 
the results of further studies designed to 
identify and characterize more autophagic 
cargos, ligands, receptors, scaffolds and 
phagophore proteins, and their respective 
roles under both physiological and patho-
logical settings. Along these lines, a recent 
genome-wide siRNA screen aimed at iden-
tifying mammalian genes required for 
selective autophagy found 141 candidate 
genes that are required for viral autoph-
agy, and 96 of those were also required for 
PARK2-mediated mitophagy.57
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