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Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imag-
ing, and improves the accuracy of target localization in image guided radiation therapy. However, the
clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged
imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative
4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced
imaging dose.
Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-
dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account
of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel
fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU
platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans
were acquired within 30 s, with a gantry rotation of 200◦; STF is also compared with a state-of-art
reconstruction method via spatiotemporal total variation regularization.
Results: Both the simulation and experimental results demonstrate that STF-based recon-
struction achieved superior image quality. The reconstruction of 20 respiratory phases took
less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at
https://sites.google.com/site/spatiotemporaltensorframelet.
Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among
different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the pro-
posed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.
© 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4762288]
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I. INTRODUCTION

On-board 4D cone beam CT (4DCBCT) offers respira-
tory phase-resolved volumetric imaging,1–4 and improves the
accuracy of target localization in image guided radiation
therapy.5 However, the clinical utility of 4DCBCT has been
greatly impeded by its degraded image quality, prolonged
imaging time, and increased imaging dose. Conventional ap-
proaches for respiration-correlated or 4DCBCT imaging re-
construct each respiratory phase independently, and thus of-
ten have a very limited amount of projection data available for
image reconstruction. Although some progress has been made
to improve the 4DCBCT image quality,6–8 there is clearly
an unmet need for improving the current 4DCBCT imaging
technique.

Considering the fact that the patient anatomy during res-
piration is highly correlated and redundant, the efficient
4DCBCT reconstruction should utilize the spatiotemporal co-
herence of the patient anatomy among different respiratory
phases,9–13 which is inherently superior to the conventional
phase-independent reconstructions. In this letter, we present
a novel method that effectively utilizes such spatiotemporal
coherence in a multilevel fashion with multibasis sparsifying
transform, with the attempt for fast and low-dose 4DCBCT
with improved image quality.

II. METHODS

Specifically, a new sparse representation method–the
spatiotemporal tensor framelet (STF)—is proposed to
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characterize the spatiotemporal coherence of the 4D images.
This new method goes as follows. Let us consider a 4D im-
age as a tensor X = {xijkm, i ≤ Nx, j ≤ Ny, k ≤ Nz, m ≤ Nt}
and define Xx, Xy, Xz, Xt as the unfolded matrices of X along
x, y, z, t dimension, respectively. For example, Xy is a Ny by
Nx×Nz×Nt matrix with each column Xy

ikm = {xikm, j ≤ Ny}.
Let W 1 be the standard 1D framelet transform (see the Ap-
pendix). Then the STF transform W and its adjoint W T are
defined by

Y=WX = {
W1X

x
jkm,W1X

y

ikm,W1X
z
ijm,W1X

t
ijk, i ≤ Nx,

j ≤ Ny, k ≤ Nz,m ≤ Nt

}
, (1)
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The STF via Eqs. (1) and (2) is a natural generalization of
1D framelet to the high-dimensional space through the tensor
approach and it is easy to verify that many nice features of
the framelet are kept, such as W T(WX) = X. STF has mainly
two advantages: STF takes into account the temporal simi-
larity of the 4D images by the 1D framelet operator along
the temporal dimension (e.g., W 1Xt) in addition to the spa-
tial sparsity (e.g., W 1Xx); in terms of the required memory,
STF (e.g., ∼4 nN) is more feasible for high-dimensional prob-
lems (e.g., 4DCBCT) than the framelet (e.g., ∼n4N). Here
n is the number of framelet bases (refinement masks) and
N = Nx × Ny × Nz × Nt.

With STF, 4DCBCT is formulated as a L1 minimization
problem

X = arg min
X

‖AX − Y‖2
2 + λ‖WX‖1. (3)

In Eq. (3), AX is the x-ray transform of X with the scan
geometry specified later, Y represents the 4DCBCT data, and
‖WX‖1 is the L1 norm of the STF of X, i.e.,

‖WX‖1 =
∑
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The detail of ‖W 1 · ‖1 is in the Appendix, which clearly in-
dicates that STF is a generalization of the first-order differenc-
ing operator, i.e., spatiotemporal total variation (STV),12, 13

which will be compared with STF next as a state-of-art re-
construction method.

This typical nondifferentiable L1 problem (3) can be
solved through the split Bregman method.14, 15 Here, we im-
plement a GPU-based parallel solver based on our prior
algorithms10, 11 for both STF and STV, in which the recently
proposed fast and highly parallelizable algorithms16 are used
to accelerate the x-ray transform AX and its adjoint ATX that
are two most time-consuming components. Here l is scaled

with the L1 norm of A and the data are scaled so that the im-
age intensity is roughly between 0 and 1, for which l = 0.1
serves as a good choice for image reconstruction. Please note
that STF is slightly faster than STV due to the left-inverse
property W TW = 1, since otherwise W TW needs to be com-
puted repeatedly for STV.

III. MATERIALS

The 4DCBCT reconstruction was evaluated first using a
digital NCAT phantom,17 and then with experimental data.
To generate the 30-s simulation data for the NCAT phantom,
40 respiratory phases were utilized, which corresponded to
the maximal temporal resolution (100 ms) that was allowed
by the simulation setting. For physical experiments, the CIRS
dynamic thorax phantom was used, which provides known,
accurate (<0.1 mm), and reproducible target motion inside
a tissue equivalent phantom.18 The phantom body represents
an average human thorax in shape, proportion, and composi-
tion. A lung equivalent rod containing a spherical target was
inserted into the phantom. The TrueBeamTM LINAC (Varian
Medical Systems, Palo Alto, CA) equipped with an on-board
kV imaging system was used to scan the phantom. The kV de-
tector has a physical size of 39.7 × 29.8 cm2. The kV imaging
parameters were set to be 100 kVp, 80 mA, and 10 ms pulse
width.

In both cases, the distance from source to the isocenter was
100 cm, the distance from the isocenter to the detector plane
was 50 cm. The projection dataset was a 256 × 64 array (cen-
tral slices of the measurement data) with the pixel size 0.16
× 0.16 cm2. The respiratory signal during scanning was a si-
nusoidal curve with a period of 4 s. The full-fan scan was
performed with a single 200◦ gantry rotation that takes ∼30 s.
The total number of projections was 400 and 372 for the dig-
ital and physical phantom, respectively.

For reconstruction, the field of view was 33 × 33 × 8 cm3.
The reconstructed image had the spatial dimension 256 × 256
× 64 with the spatial resolution 0.13 × 0.13 × 0.13 cm3. A
total of 20 respiratory phases were reconstructed to provide
a temporal resolution of ∼200 ms. The stopping criterions
for both STF and STV were based on the minimal data fi-
delity discrepancy. There were 18–20 projections of data cor-
responding to each reconstructed phase.

FIG. 1. Simulation results (the exhale phase). Sagittal view: (a) Phantom;
(b) STV; (c) STF. Coronal view: (d) Phantom; (e) STV; (f) STF. Transverse
view: (g) Phantom; (h) STV; (i) STF.
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FIG. 2. Simulation results (the inhale phase). Sagittal view: (a) Phantom;
(b) STV; (c) STF. Coronal view: (d) Phantom; (e) STV; (f) STF. Transverse
view: (g) Phantom; (h) STV; (i) STF.

IV. RESULTS

With the simulation data, the phantom images, the STV
results, and the STF results are displayed in Fig. 1 (the ex-
hale phase) and Fig. 2 (the inhale phase). The relative dif-
ferences between the reconstructed image X and the phantom
image X0 through

∑
ijkm|X-X0|/

∑
ijkm|X0|, were 8.0% for STV

and 3.5% for STF. With the experimental data, the STV re-
sults and the STF results are displayed in Fig. 3 (Phase 8)
and Fig. 4 (Phase 16). Both the simulation and experimental
results (Fig. 1–4) suggest that STF enables the 30-s 200◦ full-
fan 4DCBCT scan, and it offers the superior image quality
than STV.

In terms of the temporal resolution, the reconstructed 4D
images had 20 phases, while the maximally allowed phases
for the setting were roughly 40. On the other hand, the
conventional 4DCBCT reconstruction often has roughly ten
phases. In this sense, STF is able to improve the temporal res-
olution of the reconstructed 4D image, or equivalently reduce
the number of projections for the same temporal resolution.
The further improvement of the 4D reconstruction with the
maximal phases or the minimal number of projections will be
explored.

FIG. 3. Experimental results (Phase 8). Sagittal view: (a) STV; (b) STF.
Coronal view: (c) STV; (d) STF. Transverse view: (e) STV; (f) STF.

FIG. 4. Experimental results (Phase 16). Sagittal view: (a) STV; (b) STF.
Coronal view: (c) STV; (d) STF. Transverse view: (e) STV; (f) STF.

The GPU-based reconstruction was implemented with a
NVIDIA Tesla C2070 GPU card (448 cores and 5.25 GB de-
vice memory). The required device memory was less than
1 GB, while the total computer memory was roughly 5 GB
(mainly due to STF). Two most time-consuming components
are the x-ray transform (∼2 s each) and its adjoint (∼13 s
each). Since the image reconstruction takes roughly 30 itera-
tions and each iteration involves one pair of the x-ray trans-
form and its adjoint, the total computational time for a 4D
reconstruction via STF is currently less than 10 min. Further
acceleration is possible with the GPU card with more cores or
the multi-GPU parallelization, since the computational cost of
the used x-ray transform and its adjoint per parallel thread is
O(1).16

V. CONCLUSION

We have proposed a novel 4DCBCT image reconstruction
technique based on STF, a high-dimensional tensor general-
ization of the 1D framelet that effectively utilizes the spa-
tiotemporal coherence of 4DCBCT images in a multilevel and
fashion with multibasis sparsifying transform. The proposed
STF method potentially enables fast- and low-dose 4DCBCT
with improved image quality. The STF codes are available
online.19
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APPENDIX: 1D FRAMELET TRANSFORM AND ITS
ADJOINT

In this study, W 1 is the 1D piecewise-linear framelet or
tight frame transform (TF) constructed by three following
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refinement masks:

w0 = 1

4
[ 1 2 1 ], w1=

√
2

4
[ 1 0 −1 ], w2=1

4
[− 1 2 −1 ].

(A1)

Please note that w0, w1, and w2 correspond to the aver-
aging operator, the first-order differencing operator, and the
second-order differencing operator, respectively. Therefore,
the TF transform contains the total variation (TV) transform
on multilevels.

Let x be a 1D vector. The multilevel 1D TF transform of x
up to L levels is

W1x =

⎡
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where the fine-to-coarse convolutions are defined by the fol-
lowing with x0 = x:

xl = wl
0 ∗ xl−1, [W1x]l0 = wl

0 ∗ xl, [W1x]l1 = wl
1 ∗ xl,

[W1x]l2 = wl
2 ∗ xl, 1 ≤ l ≤ L. (A3)

Here for the efficient multilevel decomposition, instead of
downsampling xl, we dilute the masks (A1) to wl

i, e.g.,

wl
0 = 1

4
[ 1 0 · · · 0︸ ︷︷ ︸
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1]. (A4)

And its transpose W 1
T is defined as

WT
1 (W1x) = xL +

L∑
l=1

(
[W1x]l0 + [W1x]l1 + [W1x]l2

)
. (A5)

Consequently, the 1D TF norm is the sum of the L1 norm
of the TF terms at multilevels with multifilters, i.e.,

‖W1x‖1=‖xL‖1+
L∑

l=1

{∥∥[W1x]l0
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1+[W1x]l1
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Also, it is worthy to mention that, in terms of the computa-
tion speed, the algorithm with TF regularization is in general

faster than using the transform without left inverse, such as
TV, since it would require additional computation of W TW

otherwise.
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