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The thinning dynamics of a liquid neck before break-up, as may
happenwhen a drop detaches from a faucet or a capillary, follows
different rules and dynamic scaling laws depending on the impor-
tance of inertia, viscous stresses, or capillary forces. If now the
thinning neck reaches dimensions comparable to the thermally ex-
cited interfacial fluctuations, as for nanojet break-up or the fragmen-
tation of thermally annealed nanowires, these fluctuations should
play a dominant role according to recent theory and observations.
Using near-critical interfaces, we here fully characterize the univer-
sal dynamics of this thermal fluctuation-dominated regime and
demonstrate that the cross-over from the classical two-fluid
pinch-off scenario of a liquid thread to the fluctuation-dominated
regime occurs at a well-defined neck radius proportional to the
thermal length scale. Investigating satellite drop formation, we
also show that at the level of the cross-over between these two
regimes it is more probable to produce monodisperse droplets
because fluctuation-dominated pinch-off may allow the unique
situation where satellite drop formation can be inhibited. None-
theless, the interplay between the evolution of the neck profiles
from the classical to the fluctuation-dominated regime and the
satellites’ production remains to be clarified.

critical fluids | singularity formation

For a drop to detach from a capillary or a faucet, the liquid
thread connecting them must thin and break. This break-up,

or pinch-off, is an example of a singularity with well-established
scaling laws and similarity solutions (1–5). Different regimes and
scaling laws have been predicted and observed. For small liquid
viscosities, the balance between inertia and capillarity leads to the
so-called inertial thinning regime, with the thread radius vanishing
as time to pinch-off to the power 2/3. When the radius of the
thinning thread becomes smaller than the so-called viscous
length scale Lη ∼ ηin

2=γρin (where γ, ηin, and ρin are respectively
the surface tension, the shear viscosity, and the density of the
fluid), viscous forces become important and the neck radius
decreases linearly vs. time (1) as RðtÞ = CVηðt*− tÞ, where
Vη ∼ γ=ηin is a capillary velocity, C is a constant, and t* is the
break-up time at neck pinch-off; a viscous time scale can be
defined as τη ∼Lη=Vη. Two thinning regimes have been pre-
dicted and observed in this case: the so-called viscocapillary
regime at low Reynolds numbers exhibiting symmetric necks
with C = 0:071 (6) and the viscocapillary-inertial regime
emerging when further thinning significantly increases the inner
fluid velocity and thus inertia (7). In this latter case, the constant is
C = 0:030 and the neck profiles are asymmetric. Note that more
recently, other symmetric break-up dynamics have been found for
a class of non-Newtonian fluids for which thinning is dictated by
the rheological properties of the fluids (8, 9).
When the viscosity of the outer fluid is no more negligible, as

in the present investigation, the thinning dynamics is dominated
by viscocapillary stresses when the radius of the rupturing neck
RðtÞ< ηout

ηin
Lη (1), where ηout is the shear viscosity of the fluid

outside the thread. The variation of the radius again obeys a
linear scaling law RðtÞ = HVηðt*− tÞ, where Hðηin=ηoutÞ is a
function that was experimentally (2) and theoretically evalu-
ated (10, 11). In this two-fluid viscocapillary regime, the
thinning neck is asymmetrical, eventually leading to the forma-
tion of satellite droplets.

Though these different regimes consider the interface as smooth
even at the smallest scales examined, recent simulations of nanojet
break-up (12, 13), as well as theoretical (14) and experimental
work (15), revealed that the interface roughness due to the in-
terfacial thermal fluctuations may play a dominant role in liquid
column break-up when RðtÞ<LT , where LT =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=γ

p
is the

so-called thermal length scale estimated by comparing the thermal
energy kBT to the surface tension γ. In this case, the thinning neck
is predicted to be symmetrical with respect to the break-up lo-
cation, thus minimizing the formation of satellite drops at pinch-
off (13, 14). Moreover, the thinning of the neck is predicted to
follow the scaling law RðtÞ∝ ðt*− tÞ0:42 (14), where the propor-
tionality factor remains to be determined theoretically and exper-
imentally (14, 15). Because the thermal length is classically in the
range of a few molecules, observation of this thinning regime in
a laboratory-scale experiment requires a significant increase of
LT . A route for fulfilling this condition is the use of near-critical
binary fluids with strongly fluctuating interfaces (16), which offer
the unique opportunity of reaching strongly fluctuating hydrody-
namic regimes.

Results
The experiment is performed in a near-critical phase-separated
water-in-oil micellar phase of a microemulsion whose mass
composition is adjusted to be critical at a temperature TC = 308K.
The fluid preparation and properties are detailed in SI Text. For
a temperature T >TC, the mixture separates in two coexisting
phases of different micellar concentrations separated by an in-
terface that has large thermally induced interfacial fluctuations
near TC. Two main reasons motivated this choice of system. (i)
Due to the supramolecular nature of the micelles, the bulk cor-

relation length of density fluctuations ξ − = ξ−0

�
T −TC
TC

�−0:63
is in-

trinsically large, allowing interfacial fluctuations to be observable

optically. (ii) It follows from the universal ratioℜ− = γðξ−Þ2
kBTC

= 0:108

(17) that the interfacial tension γ = γ0

�
T −TC
TC

�1:26
is extremely weak

compared with that of usual liquid mixtures. For ðT −TCÞ = 0:1K,
one finds Lη ∼ 46 cm and τη ∼ 1:5 105 s on the one hand, and
LT ≈ 1 μm as LT = ξ−=

ffiffiffiffiffiffiffi
ℜ−p

= 3ξ− on the other. Moreover,
considering ξ− as the relevant length scale, the corresponding

relaxation time scale τξ− = 6πηoutðξ−Þ3
kBT

≈ 0:2 s is orders of magnitude
larger than in usual molecular liquids. Neck thinning driven by
thermal fluctuations thus becomes experimentally accessible.
The second key point of the experiment requires starting with

an initially stable and well-controlled liquid column to properly
fix initial conditions and boundary effects before further de-
stabilization. Though large-aspect-ratio liquid columns are
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known to be unstable due to the Rayleigh–Plateau instability (3),
it is briefly shown in SI Text that this fundamental limitation can
be circumvented using the radiation pressure of a continuous
laser beam to deform the meniscus separating the coexisting
phases (18), which is located in the middle of the sample due to
near criticality. For a sufficient beam power, the surface de-
formation ends up connected to the bottom glass face of the cell,
thus forming a large-aspect-ratio liquid column whose diameter is
controlled by the incident beam power. Hydrodynamic stabiliza-
tion is provided through the radiation pressure exerted by the
beam propagation inside the column (19). Fig. 1A illustrates the
regularity of such a laser-sustained liquid column.
Once formed, the column is left to relax after turning off the

laser beam, as illustrated in Fig. 1 B and C. To avoid boundary
effects, we focus on a midcolumn rupture event, as that indicated
by the horizontal arrow in Fig. 1C. We record the neck-thinning
dynamics with a 50×Olympus microscope objective (N.A. = 0.45)
coupled to a video camera (2; 560× 1; 600 pixels) operating at
variable frame rates. Fig. 1 D–F illustrates a typical thinning
morphology with particular emphasis on the observed neck
symmetry and the inhibition of satellite drop formation in this
case. Note, however, the occurrence of a more-elongated neck
below the one selected for a close-up; such a neck may lead to
satellite drop formation because it may break at more than one
location. Fig. 2 presents the thinning dynamics of a column for
ðT −TCÞ = 0:23K. The determination of the neck radius is

detailed in Materials and Methods. After the first stages of the
Rayleigh–Plateau instability, the neck radius Rðt*− tÞ starts to
decrease linearly in time, as expected for two-fluid viscocapillary
thinning (Fig. 2, Inset). Beyond a cross-over at ðt*− tÞ ≈ 0:34 s and
Rðt*− tÞ ≈ 0:8 μm, i.e., ðt*− tÞ=τξ− ≈ 8 and Rðt*− tÞ=ξ− ≈ 4, the
thinning dynamics switches to a power law behavior, well approx-
imated by R∼ ðt*− tÞ0:42, up to break-up; a power law fit gives 0:43.
To confirm the robustness of the observed thinning dynamics,

we first investigate the two-fluid viscocapillary behavior. The
variation of Rðt*− tÞ measured for each ðT −TCÞ is fit linearly to
extract the break-up time tη* expected for pure two-fluid visco-
capillary thinning. Data are then reanalyzed in terms of reduced
length and time scales, respectively R=Lη and ðtη*− tÞ=τη, to focus
on this regime. Note that we should have used the length scale
ηout
ηin

Lη, but close to the critical point ηin ∼ ηout ∼ ηC, the viscosity at
criticality. As shown in Fig. 3, the measurements all fall onto
a single master straight line over more than one order of mag-
nitude in rescaled length and time scales. We extractHðηin=ηout =
1Þ≈ ð2:9± 1Þ 10−2 from the fit of the whole data set exhibiting
a linear regime, illustrated in Fig. 3 Inset, which is in agreement
with previous measurements Hðηin=ηout = 1Þ≈ ð3:3± 1Þ 10−2 (2).
Note that this rescaling requires confidence in the value of the
interfacial tension γðT −TCÞ, which is here deduced fromℜ− and
the set value of ðT −TCÞ. However, weak temperature variations
around the set point as well as minor deviations from the set
composition of the sample can produce large relative variations
of γ for temperatures close to TC. Consequently, some experi-
ments were preceded by in situ contactless measurements of the
interfacial tension from the meniscus deformation by the optical
radiation pressure at a very low beam power. As briefly discussed
in SI Text, this method leads to a relative uncertainty ≤ 20% for γ,
which de facto has an incidence on the determination of
Hðηin=ηout = 1Þ from the linear slope γHð1Þ=ηin expected for the
viscocapillary regime.

Fig. 1. (A) Initial large-aspect-ratio column (L=R0 = 50) formed in a 1-mm-
thick cell at ðT − TCÞ= 0:28K and stabilized optically between the near-critical
meniscus on the top and bottom face of the cell. The vertical arrow indicates
incidence of the frequency-doubled Nd3+ −YAG continuous-wave laser beam
(wavelength in vacuum λ0 = 532nm) of waist ω0 = 2:5 μm and power
P = 200mW used to produce the column. The picture is captured just before
laser interruption. (B) Column destabilization 4 s after laser interruption; note
the fast pinch-off at the boundaries. (C) Column 8 s after laser interruption;
the horizontal arrow indicates the neck under study taken near the middle
of the liquid column. (D–F) Close-up view of the neck thinning 2 s, 0.2 s, and
0.02 s before break-up. Note the roughness of the interface, which is a direct
signature of the thermal fluctuations close to a critical point.

Fig. 2. Log-log plot of the time variation of the neck thinning up to break-
up at ðT − TCÞ = 0:23K. (Inset) A linear plot with duration of the linear re-
gime, which has been deliberately reduced to highlight the transition
toward a power law behavior. The viscocapillary and the fluctuation-domi-
nated regimes are fit respectively to a linear function and a power law with
exponent forced at 0.42. The error bars correspond to a measurement error
of 0:2 μm on the diameter.
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Eventually, the neck thinning deviates from the linear visco-
capillary behavior and accelerates during the last instants, in-
dicating the presence of an additional more-efficient mechanism
operating at small length scales and expected when interfacial
fluctuations play a role. Although small scales may be difficult to
determine (Materials and Methods), the fact that this deviation
appears systematically for a wide range of conditions signals the
onset of a different rupture regime. To further investigate this
regime, the data set for all ðT −TCÞ examined is now rescaled
with the correlation length and time scales R=ξ− and ðt*− tÞ=τξ− .
Fig. 4 shows that data rescaling leads to a single behavior up to
the cross-over with the viscocapillary dynamics. The fit of the
whole data set belonging to this regime is illustrated in Fig. 4

Upper Inset and gives R = Aξ−ξ
−�t*− t

τξ−

�0:42
, with Aξ− = 1:61, when

forcing the exponent to its predicted value 0:42. A free-param-
eter nonlinear fit leads to Aξ− = 1:71 and an exponent 0.37. The
existence of a universal thermal fluctuation-dominated regime is
thus firmly demonstrated by finding, over two orders of magni-
tude in rescaled time, a robust exponent close to the numerically
calculated one, 0.42. Our data also allow a measurement of the
amplitude Aξ− over a wide range of conditions, and show that the
relevant length and time scales for this pinching regime are in-
deed the correlation length and its relaxation time.
Fig. 4 also shows that the cross-over from the viscocapillary to

the thermal fluctuation-dominated regime appears as an in-
flection point at a well-defined range in rescaled time and radius,
centered around ðt*−tÞcross‐over=τξ− ≈ 6 and Rcross‐over=ξ

− ≈ 3, i.e.,
Rcross‐over ≈LT . The cross-over to the fluctuation-dominated re-
gime therefore occurs at scales comparable to the height fluc-
tuations of the interface, which in this case are simply
proportional to the bulk correlation length ξ−. Again and despite
the difficulty of extracting such small values of the neck radii,
a systematic variation in ξ− of the cross-over radius is observed.
One may argue that this cross-over originates from a balance

between the driving capillary pressure and the additional pres-
sure in the neck due to the fluctuating interface. Neglecting the
axial curvature, the Laplace pressure inside the neck is γ=R.
Besides, the thermal energy density in an elementary cylinder of
radius R and length ξ−k is given by kBT

πR2ξ−k
, where ξ−k represents the

axial correlation length of the interface fluctuations, which is
proportional to ξ− (20). Because kBTC=γ = ðξ−Þ2=ℜ− (17), this
balance occurs for R proportional to ξ−. We identify this radius
as the cross-over between the two regimes. Fig. 4 Lower Inset
shows that Rcross‐overðξ−Þ is indeed consistent with a linear varia-
tion Rcross‐over = 3:5ξ−.

Discussion
Besides being of importance as it tackles the difficult problem of
hydrodynamics of strongly fluctuating media (21), the thermal
fluctuation-dominated pinch-off regime is supposed to have clear
repercussions on the formation of satellite drops. To shed light
on this issue, we considered different ðT −TCÞ, to tune the am-
plitude of fluctuations, and different beam powers and waists to
modify the mean radius R0 of the initial light-sustained liquid
column. This column ends up breaking into a number of main
drops due to the Rayleigh–Plateau instability (4) when light is
turned off. Besides these main drops, smaller droplets may ap-
pear in between, which are referred to as satellite drops. Fig. 5
A–C shows that the number of satellites depends on the ratio
between the initial radius R0 and the correlation length ξ− : the
smaller this ratio the smaller the number of satellites. Satellite
droplets are basically absent in Fig. 5A, where only the main
drops are present, whereas farther away in temperature from the
critical point, they are systematically present. To quantify this

Fig. 3. Universal thinning dynamics in the viscocapillary regime. The mea-
sured breakup time t* is replaced by the breakup time tη* that would be
expected for pure viscocapillary break-up, and the dynamics is presented in
radius and time reduced with the viscous length Lη and characteristic time τη
over a sevenfold variation in ðT − TCÞ. (Inset) Fit of the whole set of data
belonging to the viscocapillary regime.

Fig. 4. Universal thinning dynamics in the thermal fluctuation-dominated
regime (same color convention as in Fig. 3). The dynamics is presented in
radius and time reduced with the correlation length ξ− and relaxation time
τξ− . (Upper Inset) Power law fit, with exponent forced to 0.42, of the whole
set of data belonging to the thermal fluctuation regime. (Lower Inset)
Variation of the neck radius at the thinning regime cross-over Rcross‐over vs.
ξ−; the error bars add the statistical determination by different methods
(best fits around the cross-over and largest temporal window) and the
measurement error.
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observation, we present in Fig. 5D the fraction of satellite drops,
defined as the ratio of the number of satellite drops to the
number of necks between main drops, vs. R0. This figure shows
that the mean satellite fraction is roughly unity for R0=ξ

− ∼ 50
(an example of an almost bidisperse situation can be seen in Fig.
5B), and strongly fluctuates in the range R0=ξ

− ∼ 60− 80 from
one experiment to another, and along the same liquid thread as
illustrated in Fig. 5C, where zero, one-, and two-satellite events
are present in the same snapshot.
Most important is that this satellite fraction is a decreasing

function of R0 and goes to zero when R0 becomes smaller than
a cutoff value Rξ− ≈ 10ξ− (a linear fit leads to Rξ−=ξ

− = 13). This
decrease and the fact that Rξ− is close to Rcross�over both point to
the major role of thermal fluctuations in preventing satellite drop
formation. Nonetheless, the exact details of the evolution of the
neck profile from asymmetric in the two-fluid viscocapillary re-
gime to symmetric in the fluctuation-dominated regime and its
link to the decrease of the satellite fraction in Fig. 5D remains to
be elucidated. In addition, as noted in Fig. 1C, elongated necks
may coexist with symmetric ones in the fluctuation-dominated

regime, leading to the presence of a small number of satellite drops
[as for ðT −TCÞ = 0:1K in Fig. 5D]. Though the fluctuation-
dominated regime does inhibit satellite drop formation, the subtle
interplay between the temporal evolution of the neck shape and
the production of these satellites in the presence of fluctuations
calls for additional theoretical and experimental work.
In conclusion, we have demonstrated the robustness of the

signature of thermal fluctuations on the thinning dynamics of
liquid necks, as well as the existence of a well-defined cross-over
to this regime. Our measurements bring a quantitative description
of this regime in a near-critical fluid. Because the existence of this
regime requires self-similar solutions, our results bring support to
their relevance even in strongly fluctuating systems. We have also
shown that the consequences of such fluctuation-dominated
thinning can be quite important for the production of satellite

Fig. 5. (A–C) Typical liquid thread before and after destabilization for dif-
ferent ðT − TCÞ. (A) ðT − TCÞ = 0:1K, and a laser beam of waist ω0 = 1:4 μm
and power P = 130mW to produce a liquid column of rescaled radius
R0=ξ

− = 15:8; note the absence of satellite drops. (B) ðT − TCÞ = 0:5K,
ω0 = 3:0 μm, and P = 200mW, leading to R0=ξ

− = 55:1; note the production
of an almost bidisperse drop distribution. (C) ðT − TCÞ = 1K, ω0 = 3:0 μm,
and P = 200mW, leading to P = 1134mW ; note the simultaneous presence
of zero, one-, and two-satellite events keeping a satellite fraction close to 1.
The interface roughness increase due to the interfacial thermal fluctuations
can also be noticed from C to A when the critical point is neared. (Scale
bars: A–C, 20 μm.) (D) Variation of the satellite fraction vs. rescaled radius of
the initially optically stabilized liquid column R0=ξ

−; the dashed linear fit is a
guide to the eye.

Fig. 6. (A–E) Photographs extracted from an experiment performed at
ðT − TC Þ = 0:3K show a close-up of the neck region to be analyzed to
measure the minimum neck diameter and therefore the minimum neck
radius used in this study. (Scale bar: A, 5 μm.) The images correspond to (A)
0.86 s, (B) 0.56 s, (C) 0.17 s, (D) 0.08 s, and (E ) 0.02 s before estimated
rupture time. The associated intensity profiles are obtained by averaging
along the direction perpendicular to the symmetry axis of the neck over the
few pixels of the window indicated in A. These profiles are fit to a Gaussian
whose minimum width is obtained by moving the window up and down. (F)
Illustration of fits, respectively, denoted a–e in correspondence to A–E and
arbitrarily shifted in intensity; the corresponding widths are (a) 19 pixels,
(b) 17 pixels, (c) 11 pixels, (d) 7.5 pixels, and (e) 6 pixels. The minimum di-
ameter, from which the minimum neck radius is obtained to plot the
thinning dynamics of the neck vs. time, is taken to be the width at half-
maximum of the Gaussian fit, i.e., the minimum width of the Gaussian is
multiplied by

ffiffiffiffiffiffiffi
ln4

p
.
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drops, as predicted (12, 14), even though how this works pre-
cisely remains to be addressed. This property may be useful to
produce monodisperse drops at very small scales, with exam-
ples ranging from nanojet devices such as carbon nanotube chan-
nels (22) to the fragmentation of nanowires by thermal annealing
(23) for creating chains (24) or patterns (25) of monodisperse
nanoparticles.

Materials and Methods
The minimum neck radius measurement is carried out using movies of the
break-up of the chosen liquid neck taken at frame rates between 100 and 500
frames per second. An example is given in Fig. 6 for ðT − TCÞ= 0:3K. First, and
as depicted by the rectangular window in Fig. 6A, the images are inspected
to visually delimit the region of minimal neck diameter. The intensity profile
in the direction perpendicular to the neck is then measured and averaged
over the few pixels of the depicted window along the direction of the neck.

This intensity profile is fit to a Gaussian up to the black stripes associated
with the interface. By translating the window along the neck over which the
intensity profile is measured and averaged, different Gaussian widths can be
measured, and we select the minimum width at half-maximum as the min-
imum neck diameter. The resulting intensity profile corresponding to Fig. 6A
is reported vs. distance in pixels in Fig. 6F, row a. At the used magnification,
each pixel corresponds to 0:1 μm. Intensity profiles are then measured at
successive times. Several images as well as their associated profiles are shown
in Fig. 6 at different times before rupture; rows a–e in Fig. 6F correspond to
snapshots A–E. As the diameter becomes smaller and smaller, this de-
termination becomes more and more difficult because the profiles become
less well-defined. Still, such a procedure remains quite reasonable down to
at least 0:6 μm in diameter, as shown in Fig. 6E. Diameters below 0:4 μm
become very difficult to measure, because the contrast between the neck
and the outer medium becomes very small. Further inspection of the rupture
region, nevertheless, allows estimating the final rupture time.
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