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Abstract

The search for the global minimum energy conformation (GMEC) of protein side chains is an
important computational challenge in protein structure prediction and design. Using rotamer
models, the problem is formulated as a NP-hard optimization problem. Dead-end elimination
(DEE) methods combined with systematic A* search (DEE/A*) has proven useful, but may not be
strong enough as we attempt to solve protein design problems where a large number of similar
rotamers is eligible and the network of interactions between residues is dense. In this work, we
present an exact solution method, named BroMAP (branch-and-bound rotamer optimization using
MAP estimation), for such protein design problems. The design goal of BroMAP is to be able to
expand smaller search trees than conventional branch-and-bound methods while performing only a
moderate amount of computation in each node, thereby reducing the total running time. To
achieve that, BroMAP attempts reduction of the problem size within each node through DEE and
elimination by lower bounds from approximate /maximum-a-posteriori (MAP) estimation. The
lower bounds are also exploited in branching and subproblem selection for fast discovery of strong
upper bounds. Our computational results show that BroMAP tends to be faster than DEE/A* for
large protein design cases. BroMAP also solved cases that were not solved by DEE/A* within the
maximum allowed time, and did not incur significant disadvantage for cases where DEE/A*
performed well. Therefore, BroMAP is particularly applicable to large protein design problems
where DEE/A* struggles and can also substitute for DEE/A* in general GMEC search.

Introduction

Determining low-energy placements for side chains on a fixed backbone is an important
problem in both protein structure prediction and protein design. A typical approach to the
protein structure prediction is homology modeling2:3 followed by refinement of the model
through determination of the side-chain conformations. Determining the side-chain
conformation for a given backbone structure and an amino acid sequence is called “side-
chain placement” and is solved through finding the minimum energy conformation. In
addition, in protein design problems, also referred as the “inverse folding problem”45:6, an
amino acid sequence that will stably fold to the target backbone structure is to be found.

4Current address: Codon Devices, Inc., One Kendall Square, Building 300, Cambridge, Massachusetts 02139
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Given a backbone structure and energy functions, the protein design problem is also solved
as a generalized side-chain placement problem, that is, by finding the minimum energy
conformation of side chains, drawing from a range of amino acid types at each residue
position’:8. If the backbone structure is not assumed to be fixed, one can still design with a
flexible backbone by using iterative steps, where a side-chain placement problem is solved
for each perturbed fixed backbone structure®. The search for the minimum energy
conformation is, therefore, one of the most important computational challenges in
computational protein design.

In finding the minimum energy conformation, the search space can be simplified by
allowing only some finite number of fixed side-chain conformations, called rotamers10:11,
With the rotamer model, the energy function of a protein sequence folded onto a specific
backbone template can be described in terms of12:

1. the self-energy of the backbone template from the interactions within the backbone
(denoted as Ezempyate);

2. the singleton interaction energy between the backbone and rotamer conformation r
at position 7 of the sequence (denoted as £(/));

3. the pairwise interaction energy between rotamer conformation rat position 7and
rotamer conformation s at position j, /# j(denoted as E(/y /J)).

Then, the energy of a protein sequence of length 77in a specific backbone template structure
and conformation C= {Cy, ..., C,| C;is the conformation of position /} can be written in a
functional form as

n n-1 n
E(C)=Eempac+ ) E(C)+Y Y E(Ci,.C)). )
i=1

i=1 j=i+1

Energy terms £(/,) and £(J, f) can be computed for a given backbone template and the set
of allowed rotamers using coordinates of atoms and specified molecular force fields, such as
AMBERI1415 CHARMM?6:17 MMFF18, or OPLS1®. The conformation C that minimizes
the energy function £(C) is often called the global minimum energy conformation (GMEC).
In this work, we consider the problem of finding the GMEC when given a backbone
conformation, a set of rotamers, and energy terms, and call such a problem “the GMEC
problem™. Note that Eepp/aze is constant by definition and can be ignored when we minimize

£(0).

The GMEC problem is a strongly NMP-hard optimization problem as one can readily show by
reduction from the satisfiability problem?20. Despite the theoretical hardness, one finds that
many instances of the GMEC problem are easily solved by the exact method of dead-end
elimination (DEE)2. Elimination procedures such as Goldstein’s conditions and
unification?!, logical singles-pairs elimination?2, the magic bullet pairs heuristic23,
splitting24, generalized elimination conditions2°, hybrid optimization through scheduling of
various elimination conditions26, and more recently divide-and-conquer enhancement to
DEE?2 are often able to reduce the problem size dramatically, while demanding only
reasonable computational power.

Other than DEE, there exist various approaches to solve the GMEC problem exactly. Leach
and Lemon?8, Gordon and Mayo?®, and Wernisch et al.3? describe a branch-and-bound
method. Eriksson et al.31, Althaus et al.32, and Kingsford et al.33 present integer linear
programming approaches. Leaver-Fay et al.34 describe a dynamic programming approach
based on tree-decomposition. Xu3® describes another method based on tree-decomposition
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and presents a tree-decomposition algorithm for protein backbone structures. Xie and
Sahinidis®® describe a method that combines several residue-reduction and rotamer-
reduction techniques. Yanover et al.37 use a tree-reweighted belief propagation algorithm as
a linear-program solver with better scalability, and Weiss et al.38 extend this approach by
suggesting a search scheme for an integral solution when the solution of the linear program
is fractional. Each exact approach may have some advantages over others depending on the
characteristics of the problem being considered. For example, for a simplified version of the
problem where the number of rotamers per position is limited or interactions between
residue positions are sparse, even deterministic algorithms with guaranteed time bounds
exist. However, it is known that protein structures and stabilities can be predicted better with
more side-chain flexibility, that is, by using a larger rotamer library3%40, In addition, the
network of interactions between residue positions can be dense as is often observed in
protein cores. Therefore, we are interested in protein design problems where all possible
pairs of positions are assumed to interact and a large number of similar rotamers is offered at
each position. To our knowledge, only DEE-like methods or DEE followed by branch-and-
bound methods have shown success in solving such hard protein design cases exactly.

There also exist approximate approaches for the GMEC problem. Koehl and Delarue®!
present the self-consistent mean field theory. Desjarlais and Handel*2 and Jones*3 use
genetic algorithms. Jiang et al.** use simulated annealing and Monte Carlo sampling.
Wernisch et al.30 describe a heuristic for protein design. Yanover and Weiss*® use belief-
propagation methods. However, inaccuracy during GMEC search may introduce uncertainty
in the analysis step where correction of energy functions or modification of the design
protocol is to be made. Therefore, we are primarily interested in finding the exact GMEC
and will not further consider approximate methods in this work.

Enhanced DEE28 performs well for some of the hard protein design cases of interest to us.
However, finding dead-ends using the known elimination conditions does not always
eliminate as many rotamers or rotamer pairs as necessary. In case the remaining
conformational space after DEE application is too large to literally enumerate, a systematic
search method such as A* algorithm#6:28 is often followed to find the GMEC (call the
combined method DEE/A*). However, such a combined scheme will not be useful unless
DEE reduces the size of conformational space to the point where a systematic search is
applicable.

Here we describe a new exact solution method for the GMEC problem that can substitute for
DEE/A*, especially in solving hard design cases. Our method, named BroMAP (branch-
and-bound rotamer optimization using MAP estimation), is based on the branch-and-bound
(BnB) framework and a new subproblem-pruning method. We present lower-bounding
methods and problem-size reduction techniques, organized into a BnB framework so that
BroMAP is guaranteed to find an optimal solution.

Our numerical experiments confirm the utility of BroMAP in GMEC search for large protein
design problems, including ones that are challenging for DEE/A*. In our experiments, all
cases solved by DEE/A* were also solved by BroMAP, and using BroMAP did not incur
significant disadvantage over DEE/A*. Moreover, BroMAP excelled on the cases where
DEE/A* did not perform well; for each case that took longer than one hour but was
eventually solved by DEE/A*, BroMAP took at most 33% of the DEE/A* running time.
Among 68 test cases of various types and sizes, we found BroMAP failed to solve three
cases within the 7-day allowed time whereas DEE/A* failed to solve 17 of them.

Compared to DEE, BroMAP has an advantage that it can attack smaller subproblems
separately using various problem-size reduction or lower-bounding techniques instead of
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having to keep the problem as a whole. Meanwhile, the use of DEE as one of the problem-
size reduction techniques in BroMAP allows the strengths of DEE for protein design
problems to be transferred to BroMAP.

BroMAP has the advantage of reducing the search trees over conventional BnB approaches
in two ways. First, it uses problem-size reduction techniques within each node so that the
effect of problem-size reduction from branching is often larger than that of a conventional
BnB method. Hence, the depth of the resulting search tree is also smaller. Second, it quickly
finds a strong upper-bound (at the end of the first depth-first dive) with the help of informed
branching and subproblem selection. This facilitates effective pruning of nodes that follow,
and therefore often results in sparse search trees growing mostly in one direction. BroMAP
achieves these advantages without excessive computation by using new inexpensive lower-
bounding methods and limiting the effort spent by bounding or problem-size reduction.

Followings are the contributions made in this work:

1. Development of lower-bounding methods for minimum conformation energy of
individual rotamers and rotamer pairs using a maximum-a-posteriori estimation
method called tree-reweighted max-product algorithm*/;

2. Adoption of problem-size reduction techniques (DEE and elimination by lower-
bounds) within the BnB framework;

3. Use of rotamer lower-bounds in branching and subproblem selection for fast
discovery of strong upper-bounds;

4. Extensive evaluation of BroMAP and DEE/A* on various types and sizes of
protein design problems.

Overview of the method

In this section, we present an overview of BroMAP in a top-down manner. We start with a
brief description of the branch-and-bound method as the framework of BroMAP. Then, the
pruning scheme used by BroMAP is discussed in more detail.

Branch-and-bound framework

Figure 1 shows an overview of BroMAP. It is organized at the top level as a branch-and-
bound method (BnB), a general problem-solving technique particularly effective for
combinatorial problems*8, The basic idea of BnB is to partition the original problem
recursively and solve these smaller subproblems. In the resulting search tree, each
subproblem is another instance of the GMEC problem, with a different number of rotamers
or residue positions from the original problem at the root node.

BnB solves the GMEC problem as a kind of tree search problem. It maintains a global
upper-bound U, which is the energy of the best conformation found so far. The initial value
of Uis set to the energy of an arbitrary conformation. BroMAP can be recursively described
as follows:

1. Select a subproblem from the queue.

2. Can the subproblem be fully solved within limited time and memory? If so, (a)
compute the minimum energy; (b) set Uto the minimum energy if it is less than U:
(c) return to step 1.

3. Compute a lower bound and an upper bound on the minimum energy for this
subproblem. If the upper bound is less than U, set Uto the upper bound.

J Comput Chem. Author manuscript; available in PMC 2012 November 10.
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4. If the lower bound exceeds the current global upper-bound U, then discard (prune)
this subproblem and return to step 1.

5. When possible, exclude ineligible conformations from the search space.

6. Pick one residue and split its rotamers into two groups; define two child
subproblems based on this split (see Figure 2).

7. Add the child subproblems to the queue and return to step 1.

A node is said to be “expanded” (i.e. processed) by steps 2 to 7. This description leaves
many details unspecified: how to attempt solutions, how to obtain bounds, how to identify
ineligible conformations, how to choose the residue and rotamers for the node split, and
what order to solve the subproblems. We provide these details in the subsequent sections.

The key advantage of BnB over naive enumeration-based methods comes from being able to
approximately solve subproblems, that is, to obtain bounds on the answer that allow many
subproblems to be pruned, thus avoiding exploration of the entire solution space. If the
bounds are weak, BnB may end up generating too many subproblems to be effective. The
purpose of branching in a BnB method is to reduce the size of the subproblems so that they
can be either solved or pruned effectively with limited resources.

In our BnB formulation, the branching rule (splitting the rotamers of a residue) only brings
about a modest reduction in the search space of each child subproblem compared to its
parent subproblem. Furthermore, there is no net reduction in the total search space when one
considers both children. A critical component of our approach is to reduce the size of the
total search space, by eliminating ineligible conformations, before splitting. This is in the
spirit of the dead-end elimination algorithm or “branch-and-terminate”2° but employing
additional elimination by our new lower bounds.

Solving subproblems

There are two well-known approaches to solving the GMEC problem exactly. One is
DEE1221:24 and the other is integer linear programming (ILP)*8. Both of these methods are
guaranteed to solve the GMEC problem given unbounded resources but have unpredictable
running times as a function of the problem size.

DEE is an iterative method that eliminates a non-GMEC rotamer by comparing its
energetics with those of other rotamers at the same position. The same rules are also applied
to eliminate rotamer pairs. When a rotamer can be eliminated from consideration, this can be
represented by reducing the set of rotamers at a residue position. Eliminated rotamer pairs,
on the other hand, are tracked via “pair flags”, which indicate ineligible assignments for
pairs of positions. When the numerical properties of the energy terms are favorable or when
the problem size is relatively small, DEE successfully eliminates many non-GMEC rotamers
or rotamer pairs so that the GMEC can be easily found from the remaining small
conformational space. In general, we will need to perform a systematic search of the
remaining conformational space; the A* heuristic search algorithm?6 is usually used for this
purpose. However, DEE may fail to reduce the size of the conformational space to the point
where it is practical to search for the GMEC using A*. This is what motivates our BnB
approach.

ILP is a popular approach to solving combinatorial optimization problems but we have
found that direct application of general ILP solvers to protein design problems is generally
impractical (see Appendix B). Furthermore, as we discuss below, DEE has the additional
advantage of reducing the size of the conformational space at each subproblem, even when it

J Comput Chem. Author manuscript; available in PMC 2012 November 10.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Page 6

fails to completely solve the subproblem. Therefore, we have used a DEE-based solver as
our method for solving subproblems.

Bounding subproblems

In addition to completely solving subproblems, we also need a way of obtaining lower
bounds to prune nodes more efficiently. The classical approach for obtaining bounds for a
combinatorial optimization problem is via the relaxation to linear programming (LP) after
formulating the problem as ILP. For example, we obtain LP by treating the integer-valued
variables in the ILP formulation of the GMEC problem, i.e. (25) — (29) of Appendix B, as
real. Although LP problems are solvable in polynomial time, it is still the case that the LP
problems resulting from the relaxation of typical protein design problems are often too large
and thus require impractical amounts of computing time and memory.

The less expensive lower-bounding method that we use in this work is the tree-reweighted
max-product algorithm (TRMP)#’, which will be introduced later in this paper. TRMP lower
bounds are known to be no better than the LP lower bounds, and there are no guarantees of
how close to the LP bound a TRMP bound will be. However, the relatively low
computational cost and its good performance in practice makes TRMP an excellent lower-
bounding tool.

Another key advantage of TRMP is that, like DEE, it can be used to compute lower-bounds
for parts of the conformational space efficiently and to eliminate them as discussed below.

On the other hand, the upper bounds are also obtained by TRMP for the subproblems that
are not exactly solved. This is based on a heuristic use of TRMP, but often produces
stronger upper bounds than random sampling of conformations. We present the details on
upper-bounding by TRMP later in the paper.

Reducing subproblem size

As we mentioned above, a critical component of our BnB methodology is that we attempt to
reduce the size of the search space for each subproblem by removing ineligible
conformations. Smaller subproblems are easier to solve and to bound. We use two
techniques to accomplish this: DEE discussed above and elimination by lower bounds. The
latter is illustrated in Figure 3 and discussed below.

For each rotamer rat an arbitrary position / we can think of an assignment of rotamers in
other positions such that no other assignment can give a lower conformational energy when
position 7is fixed to 7. We call the energy corresponding to such an assignment the
minimum conformational energy of /. Similarly, we can define the minimum
conformational energy for an arbitrary pair of rotamers (7, f5) such that 7 # j.

Suppose we know a lower-bound L(7,) of the minimum conformational energy of /.and a
global upper-bound Usuch that L(7;) > U. Then, rotamer J.can be eliminated from the
subproblem without affecting whether the subproblem is prunable or not. Similarly, if we
have a lower bound of the minimum conformational energy of a rotamer pair greater than U
the rotamer pair can also be eliminated. Figure 4 illustrates the problem-size reduction by
elimination of rotamers and rotamer pairs.

The problem is obtaining useful lower bounds for each rotamer or rotamer pair. If we use LP
relaxation, we would need to solve LP problems as many times as the number of rotamers or
rotamer pairs, and each LP problem can be still very large. A more practical solution follows
from the theoretical properties of TRMP, which allow us to obtain the lower bounds for all
rotamers and rotamer pairs in one TRMP convergence plus post-processing time at most
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square of the problem size. We will discuss how we can obtain these lower bounds using
TRMP later in the paper.

When a rotamer pair is eliminated by a TRMP lower bound, we mark the rotamer pair with a
pair flag, as done in DEE. However, such a pair flag is more general than the pair flags used
in conventional DEE since the elimination is done relative to the current global upper-bound
U. Thus, it is possible for TRMP to flag rotamer pairs belonging to the minimum energy
conformation of the subproblem in case the optimal value of the subproblem is greater than
U. When this happens, the optimal value of the subproblem after the elimination can be
greaterthan before the elimination. However, if the optimal value is less than or equal to U,
elimination by lower bounds is guaranteed to produce reduced subproblems with unchanged
optimal value.

If enough pairs are eliminated by TRMP lower bounding, it may be that some positions may
not have any remaining valid assignments. In this situation, the whole subproblem is
infeasible and can be pruned.

Conventional DEE never flags rotamer pairs that belong to the minimum energy
conformation. Therefore, the interaction of DEE with these general pair flags should be
carefully considered to avoid illegal elimination by DEE. In our work, this is done by
numerically enforcing the pair flags, that is, by replacing the pair flags with very large
(artificial) pairwise energies. This guarantees correct elimination by DEE conditions based
on energy comparison (e.g. Goldstein’s conditions). Meanwhile, when logical elimination is
attempted (e.g. logical singles-pairs elimination or unification), general pair flags are used as
if they are conventional pair flags.

Note that we use elimination by lower bounds together with the modified DEE in each node
of the search tree. In a previous work2?, lower bounds were used in the BnB framework to
“terminate” singles, but DEE is only used as a preprocessing procedure before applying the
BnB method. In another work?2, elimination by lower bounds was applied in conjunction
with DEE to the whole problem, but no branching was used. The lower bounds used there
were also computed differently, by fixing conformations for a subset of positions and
finding minimum values over decomposed sets of positions.

Subproblem splitting and selection

Our strategy of subproblem selection is depth-first search (DFS), where one selects the
deepest subproblem to expand, breaking ties by choosing the node with the smallest lower
bound. The goal is to first find a good upper-bound by following DFS through the children
with the lowest bounds, then to prune the remaining subproblems using that upper-bound.
To implement this strategy, we need to split subproblems so that they have substantially
different lower bounds.

As discussed above, we can compute inexpensive lower bounds for individual rotamers by
TRMP. Therefore, we can split a subproblem by dividing rotamers of a selected position
into two groups according to their rotamer lower bounds, so that the maximum rotamer
lower bound of one group is less than or equal to the minimum rotamer lower bound of the
other group. We call the child from the former group “the low child” and the other as “the
high child”. The low child is more likely to have an optimal value less than that of the high
child. A splitting position is selected so that difference between maximum and minimum
rotamer lower bounds is large. This splitting scheme will also tend to make the high child
easier to prune than the low child.

J Comput Chem. Author manuscript; available in PMC 2012 November 10.
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The leftmost diagram in Figure 1 illustrates our subproblem selection strategy. We can see
that the tree first grows along the line of low-subproblems then the high-subproblems are
traversed. We call the DFS along all low-branches until the first leaf node is reached as “the
first depth-first dive”. If the splitting is successful and non-optimal nodes are pruned
effectively, the search tree should be highly skewed toward low-branches.

Bounding the GMEC energy through MAP estimation

In this section, we formulate the GMEC problem as a maximum-a-posteriori (MAP)
estimation problem and introduce the MAP estimation method, particularly TRMP, as a
lower-bounding tool for the GMEC energy.

Problem Formulation

Probabilistic inference problems#?, including the MAP estimation problem, involve a
random vector X = (X1, Xo, ..., X;) characterized by a probability distribution that maps a
sample x € X to a probability p(x). The MAP estimation problem asks to find a MAP
assignment x* such that x* € arg maxye x p(X), where X is the sample space for x. In the
GMEC problem, we number the sequence positions by /=1, ..., n, and associate with each
position /7a discrete random variable x;that ranges over R; a set of allowed rotamers at
position 7 Then, we can define a probability distribution p(x) over ¥ = Ry X ... x R, as

P=expl-et), @)

n n—1 n
for a normalization constant Zand e(X)ZZi:]ei(xi)+Z[:1 ijmei,-(xi, X}), where e{/) =
E(ip) for r€ Rj and ej{r, s) = E(iys) for (, s) € R;x R;. Therefore, the GMEC problem for
minimizing &(X) is equivalent to the MAP estimation problem for p(x), that is, the
assignment that maximizes the probability minimizes the energy. Note that the value of Zis
conventionally determined so that Zye .+ p(X) = 1. However, computing the exact value of Z
that satisfies this condition is not necessary in finding the MAP assignment of p(x) because
1/Zsimply scales the exponential function of (2). We will see later that our algorithm does
not depend on the value of Z

A probability distribution over a random vector can be related to a graphical model“®. An
undirected graphical model ¢ = ( v, €) consists of a set of vertices V that represent random
variables and a set of edges € connecting some pairs of vertices. The structure of a graphical
model is determined by conditional independencies among the random variables. That is, a
probability distribution p(x) can be represented by an undirected graphical model ¢ if p(x)
can be factorized into non-negative functions (called compatibility functions), each of which
is defined over variables in a clique of 6. The typical motivation for using the graphical
model is finding as simple a model as possible that captures conditional independencies
among variables. However, we generally consider a complete graph with 77 vertices as the
graphical model for the GMEC problem, that is, the protein design problems we are
interested in have molecular interactions between every pair of positions.

In what follows, we will often describe distributions by their associated graphical model; for
example, a “tree distribution” refers to a distribution represented by a tree graphical model.

J Comput Chem. Author manuscript; available in PMC 2012 November 10.
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Max-marginals and max-product algorithm

Wainwright et al.%0 define (singleton) max-marginals z;as the maximum of p(x) when one
of the variables x;is constrained to a specific value, i.e. #i(x)=kimax;y,/_,p(X), Similarly,

pairwise max-marginals ;7are defined as M (X Xp)=KijmaX e o) POC), the maximum
of p(x) when a pair of the variables are constrained to a specific pair of values. Note that «;
and «x;are constants that can vary depending on /7and /. In what follows, we will simply
denote all the constants as «. It is known that any tree distribution p(x) can be factorized in

ll,j(\, )

terms of its max-marginals as P(X) l_L ﬂ,(x,)l_[ e ﬁmw,n 9, If we knew the max-
marginals of a tree distribution p(x), we could easny compute the maximum value of p(x).

Example 1 (Max-marginals)®0—Let x € {0, 1}3 be a random vector defined by a
graphical model of Figure 5 and compatibility functions y such that

Yi(x)=1, forall x; € {0, 1} andi € {1,2,3}. (3)

and

1 iinZXj
4 otherwise

Yij(xi, xj)= { forall (i, j) € {(1,2),(2,3)}. (1)

Thatis, p(x)= L (x) Wa (X)W (X3 12(x1, X223 (x2, X3).1

. _ N
Then, it is easy to verify MaXy ¢ -.,;P(X)=4"/50 for all x; € {0, 1}. Therefore, we can

define max-marginals p1(x;) = 1 for all x; € {0, 1}, i.e. maxy ¢ :mp(X/)=%H1(X1) and
Kk1=%. Since p(xp) and p3(x3) can be defined similarly, we obtain s..(x)) = 1 for all x; € {0,
1}and 7€ {1, 2, 3}.

Likewise, we can verify MaXp i )~ o) PX )is 4/50 if xq = x,, and 42/50 otherwise.
Since we obtain the same result when maximizing under fixed (x>, x3) values, we can define

pifi ) 8

1 ifx,:xj

4 otherwise forall(i, j) € (1,2),(2,3). (5)

Hij(xi, xj)= {

f.e. MaxXpr ,.\‘;.)=(x,-,,\‘j)}p(x )=351ij(xix Xj) and Kij= -

In this example, we realize p(x) = w{X) and p{x; X)) = yi{x; x) forall / j and also
KilXi X) = wifXi X) wAx) yAx). This makes us easily verify that p(x) is factorized by max-
marginals:

W12ty X))y (e )2 (x2) Yoz (X2, 23 02 (X2 )3 (x3)
Y1(x)a(x2) Yo (x2)r3(x3)

1
p(X)= %l//l (e (x2)r3(x3)
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H12(x1, x2)  pa3(x2, X3)
w1 (x)p2(x2) pra(x2)ua(x3)”

1
= %#1()61 o (x2)p3(x3) Q]

Now, assume that we are given p(x) and the max-marginals {z, w}. We illustrate how
max-marginals can be used to compute maxy p(x). We know

p(x):'Y,ul(xl)y2(x2)y3(x3)“ﬂlg_§f;u12§1)Hgg_g‘;g-*i;) for some Y. The value of Y'can be easily
computed by comparing both sides of the equation for some specific assignment, e.g. (0, O,
0). In this example, we obtain Y= 50 as shown in (7). Assuming x* is a MAP assignment,

we have

Hi(x], x5)  p23(xg, x3)
i (p2(x3) (s (x3)

1 .
maxp(x)=p(x)= %M(XT 2 ()3 (x3)

Since we know x} and ( x;, Xj) should be a maximizer of . {x;) and p;{x;, X)), respectively,
the maximum value of p(x) can be obtained simply by finding the maximum value of each
wAx) and w{x;, X)) without needing to find the actual assignment x*. Therefore, max,(x) =
42/50.

Max-marginals are also useful in finding a MAP assignment for a tree distribution®0. We
can easily determine a MAP assignment value for the root node of the tree by finding a
value that maximizes the singleton max-marginals of the root. Then, the MAP assignment is
determined for the rest of the nodes in the order of tree traversal from the root to leaves; for
each pair of parent and child nodes and a given assignment for the parent node, the child
node assignment is a value that maximizes the corresponding pairwise max-marginals.

For a distribution over a non-tree (cyclic) graphical model, knowing the exact max-
marginals does not necessarily imply a MAP assignment or the maximum value of p(x) can
be easily found. There are special cases that allow efficient computation of MAP
assignments for cyclic distributions using max-marginals. For example, when each singleton
max-marginals factor has a unique maximizer, the assignment consisting of these
maximizers is the unique MAP assignment. More generally, an assignment that maximizes
every max-marginals factor of the distribution is a MAP assignment*’. Such an assignment
can be more efficiently found by restricting the search to a subgraph derived from singleton
factors that have multiple maximizers38. However, this search is still very large in case there
are many maximizers of each singleton max-marginals factor and the subgraph is densely
connected.

The ordinary max-product (also known as max-plus or min-sum) algorithm*® is an iterative
algorithm that estimates a MAP assignment by propagating a series of messages along the
edges of the graphical model. The algorithm exactly computes a MAP assignment for tree
distributions, but it does not guarantee finding one for cyclic distributions. It is known that
the ordinary max-product algorithm applied to a tree distribution can be interpreted as
computing max-marginals exactly and efficiently®°. For general cyclic distributions, there is
no known method that efficiently computes max-marginals; it can be as expensive as the
original MAP estimation problem.

Pseudo-max-marginals

Instead of attempting to compute max-marginals, Wainwright et al.4’ use the notion of
pseudo-max-marginals in their tree-reweighted max-product (message-passing) algorithm.
Pseudo-max-marginals are defined so that they become max-marginals for each tree
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distribution used in the algorithm, and the original distribution is represented as a convex
combination of these tree distributions.

The basic idea of the tree-reweighted max-product algorithm is to express a cyclic
distribution as a convex combination of distributions over a set of spanning trees. This
convex combination of tree distributions is used to upper bound the MAP probability, that
is, to lower bound the energy. It can be shown that the upper bound is tight if and only if
every tree distribution shares a common MAP configuration, i.e. tree agreement*’. The tree-
reweighted max-product algorithm tries to induce this tree agreement by factorizing each
tree distribution with factors called pseudo-max-marginals and having pseudo-max-
marginals converge to the max-marginals of each tree distribution.

Let us assume we use the tree-reweighted max-product algorithm with 7, a set of spanning
trees of ¢, and some non-negative constant o(7) for each 7€ 7 such that Z = 7 po(7) = 1.
The tree-reweighted max-product algorithm requires that every vertex and edge of ¢ be
covered by 7, i.e. each vertex and edge in ¢ is in some tree 7'in 7 such that po(7) > 0. Then,
by construction, pseudo-max-marginals v = {v;, v;} from the tree-reweighted max-product
algorithm satisfy “p-reparameterization”, that is described as:

o(T)
Vij(xia xj) Vlj(xta xj) i
p(X) o l_[ 1_[ vi(x;) 1_[ W} IEVVz(X:)p 1_[ v,(x,)vj(x])} , (9

TeT | ieV(T) (i, ))e&(T) @, )e&

where pj;is an edge coefficient such that p;;i= Z e 7. e (7 p(7) defined for all (4, /) € ¢,
and pjis a vertex coefficient such that p;= Z7e 7./ v(7) p(7) defined for all /€ V. Note
that, if 7 is a set of spanning trees, then p;is 1 for all 7€ V.

A tree distribution p7(x; v) for some 7€ 7 and given pseudo-max-marginals can be defined
as

vij(xi, Xj)

vi(xi)vi(x))’

pram= [ | vitw)

i€V (T) I,)He&(T)

(10)

Then, we have g(x) & M7= 7{p7(x; V)}*(D from (9). The pseudo-max-marginals v* at
convergence of the tree-reweighted max-product algorithm satisfy the “tree-consistency
condition” with respect to every tree 7€ 7. That is, the pseudo-max-marginals converge to
the max-marginals of each tree distribution.

Example 2 (Pseudo-max-marginals)*’—Let x € {0, 1} be a random vector on a
graphical model illustrated in Figure 6(a). Let

P(X)= g1 (e1)Wra ()3 (X312 (1, X223 (2, X331 (3, X1 ) where y(x)) and y(x; X)) are
defined same as in Example 1. We define pseudo-max-marginals v as follows:

Vi(x))=1, forall x; € {0, 1}and i € {1,2,3}, (11)

— 1 if xi=x; ..
vij<x,-,x,,->={ o T forai e ((1,2,29.GD) . a2

Figure 6(b) — (d) illustrates the trees used for the convex combination and pseudo-max-
marginals on each tree. It can be easily verified that pseudo-max-marginals on each tree are
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in fact max-marginals. Thus, the pseudo-max-marginals are tree-consistent. The distribution
for each tree is given by (10). For example, the distribution for Figure 6(b) is

Lo o e Vi2(x1,x2)  V23(x2, x3)
P (X:V)—Vl(xl)V2(~’C2)V3(x3)?l v ety @

Then, by letting po( 7) = 1/3 for all three trees, we obtain

1
9—8171(X;’V)”3p2(X;’V)1/SP3(x;’V3”3 (14)

1
:9_8% )2 ()3 (312 (1, X223 (X2, X3)Yr31 (X3, X1)=p(X), (15)

from y(x) = vix) 3 and y(x; X) = vi{x; x)?°. This verifies the pseudo-max-
marginals satisfy p-reparameterization as well.

Algorithm 1 in Appendix A describes “edge-based reparameterization updates™*’ defining 7
as a set of (not necessarily spanning) trees in ¢, as used by Kolmogorov®?. In what follows,
we will call this algorithm TRMP in short. Note that, although we define 7 as a set of
general trees covering all vertices and edges of ¢, it can be easily verified that all the
analyses done by Wainwright et al. can be applied to TRMP in exactly the same way, to
show TRMP has the same properties owned by the original edge-based reparameterization
updates.

TRMP can sometimes guarantee the optimality of an assignment found at convergence for
cyclic distributions. Even if TRMP does not find the exact MAP assignment, we can easily
compute the exact maximum value for each tree distribution at TRMP convergence since
pseudo-max-marginals converge to max-marginals for each tree distribution. Then, we can
combine these to get an upper bound for the original, cyclic distribution (thereby obtaining a
lower bound on the energy).

We are free to choose any set of trees 7 and p(-) as long as each vertex and edge is covered
by some 7€ 7 with p(7) > 0. In this work, we consistently use a set of maximal stars s in
place of 7 for the convenience of implementation and the simplicity in computing rotamer-
pair lower bounds. A star is a tree where at most one vertex is not a leaf. We denote the
center of star Sas »(S). A maximal star is a star that is not a subset of another star. Figure 7
illustrates covering a graph by a set of maximal stars; all vertices and edges of graph (a) are
covered by S consisting of three maximal stars. In general, covering dense graphs such as
complete graphs requires @ () maximal stars. As explained in Lemma 3, computing a
rotamer-pair lower bound involves solving a constrained maximization problem for each
tree distribution. Therefore, using s allows us to address only © () maximization problems
in computing a rotamer-pair lower bound. In addition, due to the structure of a star,
maximization of each tree (i.e. star) distribution can be simplified to one of the four cases of
(22).

Following the terminology of Kolmogorov®l, we say vis in a normal form if it satisfies
max,er; v{n) =1forall /€ v, and MaX (.)€ RixR) vijj(r, s) = 1forall (4 ) € £. In what
follows, we assume v of Algorithm 1 is always in a normal form. Then, from (2) and (9),
and by introducing a positive constant v,, we obtain the following equation:
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o(S)

exp—e(}=ve [ [P )™ 4

Se.

The value of v, can be computed by comparing both sides of (16) for any assignment x € X
Equivalently, p(x) can be expressed as follows:

Ve S . P(S)
P(X)gl |{P xnf . 17
Se.s

Bounding the GMEC energy with TRMP

We also make heuristic use of TRMP to obtain upper bounds for the GMEC energy. At
convergence of TRMP, we occasionally find an exact MAP configuration. TRMP provides
an easy evaluation condition called optimum specification (OS) criterion such that an
assignment is guaranteed to be a MAP configuration if it satisfies the OS criterion.
However, such an assignment may not exist for a given reparameterization or it could be
computationally expensive to find. Therefore, in our upper bounding, instead of trying to
find an assignment that satisfies the OS criterion, we simply find an assignment that
maximizes the tree distribution for some star S€ s at TRMP convergence, using dynamic
programming®C. Another possible upper-bounding method is to randomly pick a maximizer
for each singleton max-marginals at TRMP convergence regardless of the trees. Although
neither of these procedures guarantees the quality of the upper bounds, the resulting upper
bounds are empirically close to the optimal values. The procedures can be repeated for
different trees or different random selection of maximizers to improve the upper bounds.

A lower bound for the GMEC energy miny &x) can be easily obtained at the convergence of
TRMP with the following lemma:

Lemma 1—When vand v, of (17) in a normal form satisfy the tree-consistency condition,
the MAP probability is upper bounded by

Ve
m)?xp(X) < - (1)

Therefore, the GMEC energy miny &x) is lower bounded by miny &) = - In v, from (2).
This lower bound of the GMEC energy is independent of the normalization constant 2
because, in (16), the product TTg s p3(x; v) purely depends on the normalized pseudo-max-
marginals, that are generated without any reference to Z Note that Lemma 1 is true not only
for star covers but for general tree covers.

Example 3—To upper bound maxy p(X) using Lemma 1 and the pseudo-max-marginals
given in Example 2, we first need to normalize pairwise pseudo-max-marginals. Since the
maximum value of v;{x; x)) for all ( j) are 8, normalized pairwise pseudo-max-marginals
are as follows:

1/8 ifx,:xj

vij(xi, xj)= { : forall(i, j) €{(1,2),(2,3),(3,1)}. (19

otherwise
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Singleton pseudo-max-marginals are already in a normal form. Given the normalized
pseudo-max-marginals, and p(x), we can compute v,/Z = 64/98 from (17). Note that v/Zis
computed instead of v, in this example because we are given p(x), but not &x). Then, by
Lemma 1, the upper bound of the MAP probability is 64/98. It is easy to see maxy p(X) is
equal to 16/98 attained by any of (x1, X2, x3) = (0, 0, 1), (0, 1, 0), etc. The upper bound of
the MAP probability (thereby the resulting lower bound of the GMEC energy) is not tight in
this example, but the quality of bounds from Lemma 1 can be stronger depending on
pseudo-max-marginals from TRMP. In this example, on the other hand, a tight lower-bound
of p(x) (therefore a tight upper-bound of the GMEC energy) is easily obtained by finding a
MAP assignment for any of the trees in 7. For instance, (x1, X2, X3) = (0, 1, 0) is a MAP
assignment for tree distribution £4(x; v), and also for p(x).

Elimination by TRMP lower bounds

We can exploit the tree-consistency of vat TRMP convergence in computing various lower
bounds for a set of conformations. If a lower bound greater than a global upper-bound U'is
obtained, we can eliminate corresponding conformations from the subproblem while
conserving the inequality relation between the minimum energy of the subproblem and U.
We make a more precise argument for what we call rotamer-pair elimination and rotamer
elimination as follows. Let P be the set of flagged rotamer pairs in the subproblem of our
interest. Then, given conformational space ', we define £( X, A) as the set of all legal
conformations containing no flagged rotamer pairs.

1. rotamer-pair elimination. suppose we have a lower-bound LB((,, ns) of the minimum
conformational energy for {X|(x¢, x;) = (7, 5)}, the set of all conformations including (¢,
ns), such that mingy e xn)=(r93 &X) = LB(C,, ns) > U. Elimination of (¢, ny) can be
represented by the set of pair-flags # = £U {,; 7). We know minye c( x 5y &(x) is
prunable if and only if minye ~( v A &) is prunable. Therefore, we use P’ as the updated
set of pair flags.

2. rotamer eliminatior. suppose we have a lower-bound LB(¢)) of the minimum
conformational energy for {x|x; = 7}, the set of all conformations including ¢}, such that
m~in{)ﬂX§:,} ex) = LB(¢,) > U. Elimination of ¢,can be represented by the set of pair-flags
P=PU{({, J)Is€E Rj, JE€V, j# ¢}, which includes all rotamer pairs sttmming from (.
Again, we know min e ¢( v 5y &X) is prunable if and only if minye (v 5 &X) is
prunable. Therefore, we use 7 as the updated set of pair flags. In both cases, the optimal
value of minye £ ( x 5 &) does not change if minye - ( v 5 &x) < U.

The lower-bounds LB(¢,) and LB((,, 15 can be, for example, obtained by directly solving
an LP relaxation of the ILP given in Appendix B. However, solving LP may not be practical
when the problem size is large. In addition, solving LP for every rotamer or rotamer pair
will multiply the lower-bounding time by the number of rotamers or rotamer pairs. Here, we
use upper-bounding inequalities for the singleton and pairwise max-marginals to obtain
lower bounds for minimum conformational energies of rotamers and rotamer pairs. Such
lower bounds are at best as tight as the bounds from solving the LP discussed in Appendix
B*7, but requires computation time for one TRMP run until convergence (no guaranteed
time bound) plus post-processing time at most cubic of the problem size. The rest of this
section explains how we can efficiently compute the rotamer and rotamer-pair lower bounds.

We have the following lemma on upper-bounding the singleton max-marginals:

Lemma 2—When vand v, of (17) in a normal form satisfy the tree-consistency condition,
itis true for all 7€ R, (€ v that
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pmax p(x) < —Vg(r)” (20)
X Xy =r

Example 4—From Lemma 2 and the normalized pseudo-max-marginals given in Example
3, we find an upper bound for the maximum probability of p(x) when x; =0 as (v/
2)v1(0)*3 = 64/98 x 113, The bound is not tight because maxx|x,=oy AX) = 16/98, but the
tightness may change depending on the pseudo-max-marginals from TRMP. Even when the
resulting bound is not tight, it could be still strong enough to eliminate the corresponding
rotamer through comparison against a global upper-bound U.

Lemma 2 combined with (2) provide a rotamer lower-bound LB(¢)) for each r€ Rgand ¢ €
v as min{xp(g:,} ax) = LB(G) == 1In ve= pcIn v(h).

To upper bound the pairwise max-marginals, we use the general inequality
0(S)
max  p( < 2% n[ mx Pon| e
{X[xy =r,x= s} SE,/ {X|xy =r,x;=s}

The maximization problem MaX{x|x¢ =1.x,75} P5(x; V) can be easily solved using the
following lemma:

Lemma 3—When vand v, of (17) in a normal form satisfy the tree-consistency condition,

1 if¢&me V(S)
max S ny=d O if¢eV(S)andn ¢ ¥ (S)
i mreymstt VT ve(r.s) if .m) € E(S) (22)
max, , “CERENED  else (let £=Y(S))

Example 5—Let us bound maxgx|(x;,x)=(0,0)3 AX) using the normalized pseudo-max-
marginals given in Example 3. As discussed above, we have to solve maximization problem
for each star:

1. pi(x; v) and g3(x; v) (Figure 6(b) and 6(d)): this corresponds to the third case of
(22). Therefore,

MAX fx(x, )= (0.0} 2 (X3V)=MaXxi(x, .e)=(0.00 - (X;¥)=v12(0, 0)=1/8.

2. A(x; v) (Figure 6(c)): this corresponds to the fourth case of (22). Therefore,

3,0 0
max  pP(x;y)=max 2103232050 _ 1

XI(x1,2)=(0,0)} P (23)

By combining the above results in (21), we obtain

ma x) < (64/98) x (1/8)'/3 x (1/8)'/3 x 11/3=16/98.
X p(x) < (64/98) x (1/8)!17 x (1/8) 198. (20)
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This bound is tight from maxgy(x;, x)=(0,0)3 2(X) = 16/98 attained by x5 = 1. Note that the
same pseudo-max-marginals that yielded weak upper bounds in Examples 3 and 4, led to a
tight upper bound for the rotamer pair, a more constrained bounding problem.

LB(C, 1), a lower bound for the minimum conformation energy of rotamer-pair (5 74, is
givenby LB(C, ng) ==~ In ve=Zge s psin MaX{x|xg=r,x;7s} 0% V).

Note that there can be at most @ (1) stars that correspond to the fourth case of (22) for each
position pair (£, 7). If we let 71, be the average number of rotamers per position, the
maximization problem corresponding to the fourth case of (22) requires ©(1n,,,) operations.
Therefore, it will take © (1,547 post-processing operations to compute an upper bound for
each rotamer pair using Lemma 3.

In computing the rotamer lower bound for a rotamer £, we can also use pair-flags
information to obtain a lower bound, LB’ (¢,), for the constrained problem

Mingxe 2( X Alxc=r e(x). If we have LB'({) > U, then conformations, {x € £( ¥, /3)|X€=
7} can be excluded from the search space. This is equivalent to eliminating rotamer ¢,
because all conformations containing x = rare in effect excluded. Computing LB (¢) will
take additional polynomial time compared to LB((), but it is particularly advantageous to
leverage the pair flags when there exist a large number of flagged rotamer pairs. We used a
simple search-based method to compute LB’ () as follows; let p=

Mse s[MaXixe c( ¥ A1 po(x; V)P for tree-consistent v in a normal form. Then, it is
easy to see (v/2)pis an upper bound of maxgye ¢ x, Pix¢=rr p(x). If we use a naive search,
it will take &(n2,,n) post-processing comparison operations to compute

MaX{xe c( X, Bx=aL (%; V). Therefore, it takes & (n2 ,n2) post-processing time to exactly

rot

compute p. Finally, the rotamer lower bound is computed as LB () =—In v.—In p.

Results and Discussions

We performed computational experiments to evaluate the performance of BroMAP. We
used a set of various protein design cases to measure and compare the running times of
BroMAP and a fast implementation of DEE/A* that includes most of the state-of-art
techniques?8. In the following, to distinguish the modified version of DEE used in BroMAP
from the DEE used in DEE/A*, we will call the former as DEE-gp (DEE for general pair
flags). The two main questions we are interested in investigating with the experiments are
(1) whether BroMAP can solve design cases previously unsolved by DEE/A*, and (2)
whether we can use BroMAP generally as an alternative to DEE/A* without being restricted
to specific types of design cases. Although we are mainly interested in the overall
performance of BroMAP here, Hong and Lozano-Pérez>2 evaluate the effectiveness of our
pruning method by comparing it against linear programming.

DEE/A* implementation

We used an in-house implementation of DEE/A* written in the C programming language®3.
DEE/A* was performed with the following options and order:

1. Eliminate singles using Goldstein’s condition?l. Repeat until elimination is
unproductive.

2. Eliminate singles using split flags (s = 1)24. Repeat until elimination is
unproductive.

Do logical singles-pairs elimination?2.

4. Eliminate pairs using Goldstein’s condition with one magic bullet23.
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5. Do logical singles-pairs elimination.
6. If unification is possible, do unification?!, and go to (1).
7. Do A**S,

For unification, the pair of positions that has the largest fraction of flagged rotamer pairs is
picked. However, because the energy terms and pair flags must be stored in machine
memory, we capped the total number of rotamers that would result to be no greater than a
unification option C,,;. Therefore, any pair of positions that would create a larger number of
rotamers when unified than C,,;;was not considered, and the pair with the next-largest
fraction of flagged rotamer pairs was considered. We experimented with different values of
Cunir 1.€. 6,000, 8,000, 10,000, 12,000, and 14,000, to obtain the best running time for each
test case. Note that this gives DEE/A*, the competing method an advantage over BroMAP
in comparing their running times, because it will give better DEE/A* times than consistently
using one of the C,;;values. Increasing C,,;and thus the allowance for large unification can
facilitate solving otherwise difficult or unsolvable cases. However, for small to medium
cases, larger values of C,,;often result in slower solution times.

n

Our DEE implementation uses a full table of energies. That is, if there are 61=Zi:1|Ri|
rotamers in the problem, DEE allocates memory for ¢? floating point numbers.

When the DEE/A* procedure described above using various C,,;values failed to solve a test
case, we also tried singles-elimination using split flags with s= 2 instead of s= 1, or allowed
the number of magic bullets to increase up to the number of positions.

BroMAP implementation

BroMAP was implemented in C++. We used the PICO-library®* for the BnB framework.
The PICO-library provides the data structures and methods to create/delete nodes and to
search the tree. It also provides procedure skeletons, for instance, for upper/lower-bounding
methods.

In BroMAP, we restricted the amount of effort spent by DEE-gp instead of allowing it to
keep iterating singles/pairs-flagging and unification until it finally solved the subproblem.
This was done by limiting the maximum number of iterations of singles/pairs-flagging and
also by using a smaller fixed C,;;value for unification than those used by DEE/A*.

Other than performing DEE-gp and TRMP bounding for each subproblem, we also allowed
rotamer-contractions®2. Rotamer-contraction reduces the size of a subproblem by grouping
similar rotamers at a residue position as a cluster and replacing the cluster by a new single
rotamer. It also defines the pairwise energies for the new rotamer so that the optimal value
of the reduced subproblem is always a lower bound of the optimal value of the subproblem
before the rotamer-contraction. Rotamer-contraction was iteratively performed until we
obtained a lower bound greater than U or the number of executed rotamer-contractions
reached a pre-determined limit. We used a heuristic boundability index (BI) multiplied by a
positive integer P, as such limits. The Bl for a specific node is equal to the number of
‘high’ branches on the path from the root to the node. For example, in the search tree of
Figure 1, assuming the BI of the root node is equal to 0, BI’s are 0 for nodes 1, 3,5, 7, 9,
and 1 for nodes 2, 4, 6, 8, 11, and 2 for node 10. In these experiments, we let P, = 16 after
exploring the overall effect of different values of 2., on running times of BroMAP.

In case rotamer-contractions were performed multiple times in bounding a subproblem as
described above, we also performed additional DEE-gp and TRMP periodically on the
subproblem reduced by rotamer-contractions. After every Ppgeconsecutive rotamer-
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contractions, we applied DEE-gp to see if we could solve the reduced problem or only to
flag more rotamers or rotamer pairs. TRMP was also run until convergence after every
Prrap coOnsecutive rotamer-contractions to compute a lower bound for the subproblem or to
flag rotamers or rotamer-pairs using the TRMP lower bounds. In this experiment, we let
Ppee=38, and Prrymp = 16.

Along the first depth-first dive, that is, until we exactly solve a subproblem for the first time,
we performed only DEE-gp, TRMP bounding, and subproblem splitting, once respectively,
but did not use any rotamer-contraction. As with DEE/A*, BroMAP also used the A* search
algorithm when DEE-gp could not eliminate any more rotamers or rotamer pairs and the
subproblem was considered small, i.e. contained less than 200,000 rotamer pairs.

The BroMAP implementation needs to hold TRMP data, whose size is of the order of the

n—1 n
number of rotamer pairs. This corresponds to Zi:l Zj=i+l|Ri”Rf| floating point numbers,
and is roughly half the memory required by DEE/A*. Since BroMAP also performs DEE-

n 2
gp, it requires additional memory of (Zi:] IRil) floating point numbers for the full DEE
energy table. Therefore, the maximum memory requirement of BroMAP is

n 2 n—1 n
(Zi:1|Ri|) "‘Z[:I Zj=i+1|Rf||R.i| floating point numbers, which is roughly 1.5 times larger
than that of DEE/A*.

We used a Linux workstation with two dual-core 2 GHz AMD Opteron 246 processors and
2 Gbytes of memory for the experiment. The C/C++ codes for BroMAP and DEE/A* were
compiled using Intel C/C++ Compiler Version 9.1 for Linux. During compile, OpenMP
directives were enabled to parallelize the execution of DEE, DEE-gp, and TRMP over two
CPU cores. All other procedures, including A*, were executed over a single core. Note that
BroMAP or DEE/A* was allowed to use the whole system memory but only one processor
at a time.

We used 68 test cases whose energy files are smaller than 300 Mbytes. An energy file
contains floating point numbers representing singleton and pairwise energies. We found
energy files larger than 300 Mbytes are not handled well with the current implementation of
BroMAP on our workstation due to the memory requirement of BroMAP.

We used three different model systems in obtaining test cases:

1. FN3: derived from protein 19 Fn3, the tenth human fibronectin type 111 domain®. It
is a 94-residue S-sheet protein with an immunoglobulin-like fold. Besides its
natural /n vivorole, the protein has been engineered as an antibody mimic to bind
with high affinity and specificity to arbitrary protein targets.

2. D44.1%6 and D1.3°": antibodies that bind to hen egg-white lysozyme (HEL), though
they bind different HEL epitopes. Each has low nanomolar binding affinity, and
was originally isolated after murine immunization. For the D1.3 core designs, we
redesigned the core of the lysozyme protein, absent of the antibody.

3. EPO: human erythropoietin (Epo) protein complexed to its receptor (EpoR)%8. One
Epo binds to two EpoR with one high-affinity and one low-affinity binding sites.
Our EPO interface designs addressed the high-affinity binding site while our core
designs addressed the core of the EpoR from the high-affinity site.
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Each case corresponds to one of three types of protein regions:
1. INT: protein—protein binding interface.
2. CORE: protein core, i.e. side chains that are not solvent-exposed.

3. CORE++: protein core plus boundary positions that are partially exposed to
solvent.

We varied the types of amino acids offered at design positions of each case as follows:
1. H: hydrophobic amino acids (A, F, G, I, L, M, W, V).
2. HP: hydrophobic plus polar amino acids (A, F, G, I, L, M, W, V, H, N, Q, S, T, Y).
3. A:all type of amino acids, excluding proline and cysteine.

For CORE, we used both H and HP, and for CORE++, we used HP (with both neutral
tautomers of histidine allowed in each case). For INT, we used A, and allowed both neutral
tautomers and the protonated form of histidine. For all designs, if the wild-type amino acid
was not part of the library, it was added at that position. For some test cases, the total
number of positions in the search was greater than the number of design positions. At these
other positions, the native amino-acid type was retained and its conformation was varied.

Each case was made using one of two different rotamer libraries:

1. REG: standard rotamer library. This is based on the backbone-independent May
2002 library®®. This library was supplemented with three histidine rotamers for an
unsampled ring flip, and two asparagine rotamers to increase sampling of the final
dihedral angle rotation.

2. EXP: expanded rotamer library. This was created by expanding both y7 and y» of
rotamers in REG by £10°. The hydroxyls of serine, threonine, and tyrosine were
sampled every 30 degrees. For some INT cases of D1.3, D44.1, and EPO,
crystallographic water molecules were allowed conformational freedom. The
oxygen atom location was fixed to that of the crystal structure and the hydrogen
atoms were placed to create 60 symmetric water molecule rotations.

For all libraries and cases, each crystallographic wild-type rotamer was added in a position-
specific manner to the library, using the complete Cartesian representation of the side chain,
rather than just the dihedral angles.

The singleton/pairwise energies of rotamers were computed using the energy function of
CHARMM PARAM22 all-atom parameter set with no cut-offs for non-bonded interactions
and a 4rdistance-dependent dielectric constant. All energy terms were used (bond, angle,
Urey-Bradley, dihedral, improper, Lennard-Jones, and electrostatic). Rotamers that clashed
with the fixed protein regions were eliminated during case generation if their singleton
energies were greater than the smallest singleton energy at that position by at least 50 kcal/
mol. éiourther details on design methods and test case construction can be found from Lippow
etal.

Table I lists composition and problem-size information of each test case. Its last column also
summarizes the experimental results presented in the following.

Running time comparison

Among the 68 cases, BroMAP solved 65 cases within the 7-days allowed time whereas
DEE/A* solved 51 cases for the same allowed time. There were no cases DEE/A* solved
but BroMAP was not able to solve. The 14 cases solved by BroMAP but not by DEE/A*
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suggest that BroMAP can be an alternative to DEE/A* for hard design cases where DEE/A*
performs poorly.

Among the 51 cases solved by both BroMAP and DEE/A*, solving 23 cases by BroMAP
required only the DEE-gp part of BroMAP. Since BroMAP only acted as a light DEE for
these cases, comparing the running times of BroMAP and DEE/A* on them is not
meaningful. After eliminating these 23 cases, we are left with 28 cases for which we are
interested in comparing the running times of BroMAP and DEE/A*. The running times for
these 28 cases are shown in Table Il. Additionally, the table lists results for 14 cases that
only BroMAP solved.

Figure 8 plots the ratio of BroMAP running time to DEE/A* running time vs. DEE/A*
running time. Note that the plotted ratios for cases solved only by BroMAP are upper
bounds on actual ratios because actual DEE/A* running times should be more than 7 days.
Overall, the plot suggests BroMAP gains advantage for cases as DEE/A* takes longer. For
all cases that DEE/A* took more than one hour to solve, the maximum ratio was 0.33.
Together with the 14 cases solved by BroMAP only, the experiment supports that BroMAP
can be an alternative to DEE/A* for hard design cases. There are 5 cases for which the
BroMAP solution time is at least 10% longer than DEE/A* solution time. Considering four
of them (cases 45, 58, 65, and 66) were almost ideally solved by BroMAP (the GMEC was
found at the end of the first depth-first dive and there was no branching after the first depth-
first dive), we find more aggressive DEE conditions such as larger C,,;were critical in
obtaining shorter running times on them. In terms of the total running time, however, none
of these five cases needed more than 130 minutes to be solved by BroMAP. Therefore, using
BroMAP did not impractically slow down the solution time for cases in Table I.

For large hard cases, the system memory can be a limiting factor on the performance of
DEE/A* because the performance of DEE/A* often greatly depends on the unification
procedure that requires a large amount of memory. While this implies larger system memory
could have given advantage to DEE/A* over BroMAP in terms of running time, our results
suggests that the memory constraints experienced by DEE/A* can be alleviated through the
use of BroMAP.

Table 11 lists the percentage of time used for each component of BroMAP. In most cases,
DEE-gp, A*, and TRMP turned out to be major contributors to the running time. If we sum
running times of BroMAP for all cases, it is found that 42% of the total time was spent on
DEE-gpand A*, and 45% on TRMP. On the other hand, considering the proportion between
the total running time of BroMAP and A* time, a great amount of time was spent on A* for
cases 11 and 12. This could be avoided by further restricting the size of the subproblem for
which A* is allowed to run.

Among cases in Table I, BroMAP was able to solve six cases at the root node without
splitting. All other cases required BroMAP to branch but many of them needed very little
branching other than those performed during the first depth-first dive. This trend is observed

through the skewness of the search tree, defined as tumberoflov-shorstiens o, The ratio varies
between 0 and 1 and is larger than 0.5 if there are more low-subproblems split than high-
subproblems. We computed skewness for 36 cases where BroMAP required more than one
split. The minimum skewness from these cases is 0.69 and 17 cases had skewness equal to 1,

that is, needed only low-subproblem splittings.

Figure 9 shows actual search trees generated by BroMAP during solution of three cases.
Box-shaped (shaded) nodes in each search tree represent the subproblems that were exactly
solved and resulted in an upper bound less than or equal to the current best upper bound.
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Therefore, the box-shaped node that is expanded latest is a node where the GMEC is found
in the search tree. Note that, for 27 cases out of 42 cases in Table I, an upper bound equal to
the GMEC energy was found at the end of the first depth-first dive. However, early
discovery of the GMEC did not necessarily lead to fast completion of BroMAP. For
example, in Figure 9(c), we can see the lower bounding was not effective for large
subproblems although they were expanded after the optimal upper-bound was found,
resulting in a large number of branchings.

Table 11 suggests that the search trees of BroMAP have smaller depths than those from
conventional BnB methods would have. A simple branching without reduction within a node
would only reduce the problem size by a factor of two. That is, a child subproblem will have
2;logg |R] value smaller by logyg 2 ~ 0.30 than its parent subproblem. However, column
“Rdctn” shows the average reduction was far greater. Excluding the cases solved without
branching, the average of the average reduction of Z;logy| R, along the first depth-first dive
was 2.32, a factor of 7 speed-up over reduction by conventional BnB methods. It should be
noted that the reduction within a node can be even greater after a strong upper bound is
found. This is evidenced by highly skewed shapes of search trees. Overall, the reduced depth
and high skewness of BroMAP search trees suggest the number of nodes expanded by
BroMAP is exponentially smaller than that of conventional BnB methods using simple
branching. Meanwhile, the effect of smaller search trees will be transferred to shorter
running times as well; the experimental results presented by Hong and Lozano-Pérez>2 show
that the node processing time by DEE-gp and TRMP is similar to the bounding time for
solving a linear programming (LP) problem, a typical bounding method used in BnB
methods, but the LP produces weaker bounds.

The plots in Figure 10 provide interesting insights on the hardness of test cases. In Figure
10(a), categorizing all test cases by their solvability reveals cases with higher ratios of log
conformation to the number of design positions tend to be harder to solve. Figure 10(b) uses
gray scale to represent the running times of BroMAP. Although the performance of
BroMAP is not particularly dependent on protein regions, it is noted that INT cases are
smaller than CORE cases. This is because we excluded small CORE cases from the
experiment because they are often too easy for either BroMAP or DEE/A*, and also
excluded large INT cases for the opposite reason. There are two main reasons that INT cases
are harder than CORE. First, INT cases are offered more rotamers per position because we
allowed 8 to 14 amino acids for CORE cases whereas 18 amino acids including R, K, D and
E were allowed for INT cases. These four additional amino acids offer even more rotamers
per amino acid than average because of their long side chains. Second, whereas CORE cases
are constrained by side-chain/side-chain interactions as well as side-chain/backbone
interactions, INT cases are generally less constrained by side-chain/backbone interactions,
and therefore there exist a larger number of compatible conformations.

TRMP lower bounds

We present a numerical example to illustrate the utility of TRMP lower bounds in rotamer/
rotamer-pair elimination. For this purpose, we use subproblems of Case 17 at depth 2 to 11
(root node is at depth 1). These subproblems correspond to node numbers 2, 4, 6, ..., 20, and
are colored in light gray in Figure 9(c) (nodes in the search tree are numbered by the order
of creation using depth-first search). Table 1l lists the lower-bounding result.

In each node, we obtain more elimination using rot/b, (rotamer lower bound from using pair
flags) than using rot/b, (rotamer lower bound from not using pair flags). This is due to
massive flagging of rotamer pairs by rp/b (rotamer-pair lower bound). Figure 11 shows
rotamers ordered by the value of rof/b, on x-axis and their rot/by, rotlb, values on y-axis for
the subproblem of node 2. The difference between rot/by and rot/b, for the same rotamer
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shows pair-flags information can strengthen the lower bounds, thereby doubling the number
of eliminated rotamers in this example.

Large elimination obtained for subproblems at small depth are suspected to come from our
splitting scheme of dividing rotamers by their lower bounds. As we go deeper down the
search tree, we expect such distinction between rotamer lower bounds to become less clear.
The trend is observed by the median value of rot/b, and the percentage of eliminated
rotamers and rotamer pairs for nodes at different depths.

Computing rotlb, takes more time than rot/ty, but Table 111 shows that the difference is
relatively insignificant compared to the time for computing rp/b. The time for computing
rplb for every rotamer pair was typically at least double the time for TRMP convergence,
suggesting that an efficiency improvement of rotamer-pair lower-bound computation would
significantly contribute to reducing the running time of BroMAP.

Conclusions

In this work we presented an exact solution method (BroMAP) for the global minimum
energy conformation search. Particularly, BroMAP was designed to substitute the DEE/A*
approach for large protein design problems where a large number of rotamers is offered at
each position and there exist side-chain interactions between all pairs of residue positions.
BroMAP uses a branch-and-bound (BnB) framework and performs problem-size reduction
within each subproblem using DEE and elimination by TRMP lower bounds. BroMAP also
exploits TRMP lower bounds in branching and subproblem selection. We performed
computational experiments to evaluate BroMAP on various types and sizes of protein design
problems in comparison with DEE/A*. The experimental results show that BroMAP solved
hard protein design cases faster than DEE/A*, and that BroMAP also solved many cases that
DEE/A* failed to solve within allowed time and memory. In addition, using BroMAP on
cases where DEE/A* performed well did not incur significant disadvantage in running time.

The performance advantage of BroMAP over DEE/A* or conventional BnB methods can be
attributed to three factors. First, the search trees are radically smaller than those from
conventional BnB methods. Problem-size reduction performed within each node results in
reduced depths of search trees, and early discovery of suboptimal upper bounds allows
effective pruning of nodes that follow. Second, on top of fast reduction by DEE within each
node, BroMAP can perform additional elimination and informed branching using lower
bounds from inexpensive computation. Third, the general BnB framework of BroMAP
allows additional lower-bounding techniques such as rotamer-contraction to be easily
incorporated.

It could be argued that the performance comparison between BroMAP and DEE/A* was not
thorough or fair because DEE can be faster depending on what elimination conditions are
used, how they are combined2®, or how much memory is available for unification. However,
it should be noted that BroMAP also exploits DEE, and that BroMAP can be regarded as an
added structure to DEE/A* to allow a more effective use of it in a general framework. As a
result, if a better implementation of DEE/A* is given or a better system environment is
allowed, the performance of BroMAP is also expected to benefit from it.

In our experiment, using rotamer-contraction did not always improve the total running time
of BroMAP, although it tends to reduce the number of nodes expanded by BroMAP.
However, among the 14 test cases that were solved by BroMAP with rotamer-contraction
but not by DEE/A*, two could not be solved by BroMAP without rotamer-contraction
within the 7-day time limit. In addition, for the 51 test cases used for comparison of
BroMAP and DEE/A*, the total running time of BroMAP was reduced by 17% on average

J Comput Chem. Author manuscript; available in PMC 2012 November 10.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Hong et al.

Page 23

simply by using rotamer-contraction. Therefore, there is a question of how much effort
should be spent on rotamer-contraction to maximize the performance of BroMAP. On the
other hand, observing the behavior of BroMAP on many random instances to parameterize
its solution time by problem characteristics will be interesting and may help improve the
performance of BroMAP, because no direct correlation between the problem size and the
BroMAP solution time has been found. Finally, a substantial fraction of BroMAP’s running
time is spent on post-processing of TRMP to compute rotamer-pair lower bounds.
Therefore, a speed-up of BroMAP could be made through efficiency improvement of this
post-processing procedure. Our future investigation will address these problems to extend
the applicability of BroMAP to larger protein design cases.
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Appendix A. TRMP

Algorithm 1 describes “edge-based reparameterization updates™’ for a set of general trees

T.Inline 2, 3,5, and 6, ! and Kfj are constants that can be arbitrarily set as long as they are
positive. I'(J) is the set of vertices neighboring 7in ¢ for /€ v( ).

Table IV

Algorithm 1: TRMP (edge-based reparameterization updates®:°1)

Data: ¢ >0,G = (V,€), {p}, {e}

Result: tree-consistent pseudo-max-marginals {v}

1 begin
2 v9(z;) «— kY exp (—%), ieV
3 0 (.I JI) — K0 ex _eij(ziyry)  eilxi)  ej(xy) (Z ) ce
i (Tis T ij €XP pis o oi )0 \WJ
4 repeat update pseudo-max-marginals
Pij
e+l n+l. n maxg er; Vij(%i,%5)\ Pi .
5 v (i) — &R (@) [er ( aen , PEV
n n+1 n+1
n+1 . ) n+1 Vij (witwj)yi (Ii)l’j (z5) ..
6 l/ij (:E“ 13]) — ’%ij maxm’jeRj u{}(zi,x;)maxméem ufj(z;,zj)’ (Zaj) E.
7 until [v" T — v"| <€, update n —n+1
8 end

Appendix B. ILP formulation

The ILP formulation for the GMEC problem referred in this paper is as follows:

min | N EG)x+ Y > EGrjdxn,,| @5

Wi ks | i feR: (i, )EE (r,s)ERXR;

dx=1, VieV )

reR;

inrjs:xir’ V(l,]) € éa, Vre Ri’

27
SGRj ( )

x;, €{0,1}, Vie ¥, reR;, (28)

xij, €10,1), Vi, ) € &, () eRiXR;. (20)
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An LP relaxation can be obtained by simply dropping constraints (28)—(29). The resulting
LP is equivalent to the tree-relaxed LP47.

Appendix C. Proof of Lemma 1

From (17), we have

(S)
maxp(x) max— l—l{p x)) ®) < Z r[{mlepS (X;V)}l (30)

Se/ Ses

Since v is tree-consistent with every S€ s, we can easily find a MAP assignment x° such
that xS € arg maxy p°(x; v) using dynamic programming®0. Then, due to the assumption that
vis tree-consistent with Sand is in a normal form, we have the following properties:

yi(x‘l,s)zl, foralli e AI/(S), (31)
vij(x},x))=1,  forall (i, j) € £(S). (32)

Therefore,

,j(x x )

S o S oS N
maxp x;v)=p” (X" ;v)= l_[ Vl(x ) l_[ e )v(x‘g) T (33)

i€V (S) (i, )EE(S)

Since (33) is true for every S€ s and Zgc sp(S) = 1, we obtain maxy p(x) < v/ Zfrom (30).

Appendix D. Proof of Lemma 2

From (17), we have

p(S)
x p0o= max 3 [T (p* I <% [ { max p5(xv)
{X|7c1 =r} (Xlx; =r}~ se.# Se. {xlxg =r} (34)

Ve

p(S) (S)
=5 I { max p® (X;V)} I1 { max_p* (X;V)}
Ses:rey (s) Xlx =r) ses: ey (s) Xl =r}

By the definition of max-marginals and the assumption that v is tree-consistent, for S€ s
such that ¢ € v(S), we have

vév(r):Kg{Xrlglai(r} o (%), (35)

for some constant xc We know there exists 7~ € R¢ such that

* N
=max =K; max X;V).
ve(r') x{eR(Vg(xéV) Kg{xm :r*}p () (36)

Then, since vis in a normal form, vr*) = 1. We know from (33) in the proof of Lemma 1,
that maxy X¢= ,*}p5(x; v) = maxy p°(x; v) = 1. Therefore, x¢=1, and
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max }ps (xX)=v (7). @7

{xlx; =r

On the other hand, for all S€ s such that ¢ & v(S), we know MaX{x|x¢= /4 P(X; V) = maxy
p5(x;_ V) = L. Plugging the obtained values of maxyx = 5 P06 V) and S g s e v(s) P(S)
= p¢into (34), we obtain maxgy| xc=1} PX) < (vd 2) v(NFS.

Appendix E. Proof of Lemma 3

L 1f ¢, n# V(S), we know maxyx = Xn:5p5(x; V) = maxy p°(X; V). Then, since vis
tree-consistent and in a normal form, max gy x¢=r, ans}ps(x; v) = 1 from (33).

2. IfCEV(S),and n& v(S), we know max{X|X§:,,X77=5}p9(x; V) = max{X|Xé:,}p5(x; V).
Then, from (37), max{x|X€:,,X77=5}p3(x; V) = ()

3. If (¢, n) € £(5), by the definition of max-marginals and the assumption that v is
tree-consistent with every S, we have v§,7(_r, S) = KepMaX{x|(x cxp=(r,9} 25X V), Ior
some constant x,,. We also know there exists (7, s') € B¢ x R, such that v, (7,
§)= max(XQXU)ER{X Ry Vg,](Xg, X,7) = Xy max{x|(X§,X”:(,*,s*)} ,Ug(X; V). Then,
since vis in'anormal form, i.e. v¢,(7, s°) = 1 and we have max{x|(X§Xn):(,*,s*)}
p5(x; v) = maxy p(x; v) = 1 from (33), we obtain x¢,, = 1. Therefore,

MaX {x|(x¢ X719} P06 V) = v (1 9).

4. 15 ¢ nv (Sand (g V) € £(5), let £= 1(S). Then,

Ver(Xg, 1)

veGevery

max ps (xX;v)=  max  ve(xg)ve(r)vy(s)
{x]xg, 2y =(r,5)} (Xlxgxy=(r,)} 7 77

Ven(Xe, 5) Ve j(Xe, X))

Ve x)v(S) VDS o)
EXEVNS) jey (syiem e VXV

(39)

Ver (X, 1)vep(Xe, 5) Ve j(xg, X;5)

Xl x)=(r9)) ve(xe) velxg) (0

JEV (SN &}

Ver(Xe, r)Vep(xe, s Vei(xg, X
inax ) e Ve (e, 9) max EE D) | a
g ve(xe) v ve(xg)

JEV ML)

From the tree-consistency of v, we have v(xg) = Bg;maXy; vej (Xg, X)) for some Bg;> 0.
We can also easily find x° such that x° € arg max, p>(x; v) using the tree-consistency of v.
Then, since vis in a normal form, we have Vg(xg)=1, and maX.ijgj(x;,Xj)=ng(x;, x§)=1.
Therefore, Bgi= 1, and vg (Xg) = maXy; vgj (Xg X). So the maximization over x;in the
parentheses of (41) is equal to 1 for all j€ V (S\{(, n,&}. Therefore,

Ver(Xe, P)Ven(Xg, 8)

ps (x;v)=max
X, VE()C‘::)

{xI(xz,x)=(r,5)}
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Subproblem processing

{ Direct solution by DEE
{ Upper-bounding / Lower-bounding
{ Problem-size reduction by:

> DEE

> Elimination by TRMP bounds

{ Pruning test

{ Splitting

U: suboptimal global upper-bound

Figurel.

Top branch-and-bound framework of BroMAP. In the search tree, node numbers (inside the
ellipses) correspond to the order of subproblem creation. Numbers shown next to ellipses
represent the order of node expansion. Labels “low” and “high” marked on the branches
indicate the types of child subproblems. As shown by the diagram in the middle, each
subproblem is another instance of the GMEC problem; the ellipses represent the residue
positions in the subproblem, and the filled dots represent available rotamer choices at each
position. The lines connecting rotamers at different positions represent possible interactions
between pairs of rotamers. The text box on the right side lists types of computations
executed when a node is expanded.
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Low Child

Position 1

Position 2

Position 1

Position\é\“@

Page 29

ion 3

High Child

Figure2.

/ e \ ! AN

ition 3 Position 2

Position 1

Splitting a subproblem. Rotamers at a position are divided into two groups and each child of
the subproblem takes only one group of rotamers.
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2 min conf. energy
\ 4

| .
A /A\ A ’A = A R
o ‘ ‘ U
lower-bound
&
————————————————————— Firoo e e - optimal value of the subproblem
N A
———————————————— Ao wA__x"____lower-bound of the subproblem
rotamer

position 1 position 2 position 3

Figure 3.

Elimination by rotamer lower bounds. The x-axis lists all rotamers of the subproblem in an
arbitrary order. The vertical dotted lines indicate division of rotamers by positions they
belong to. Two types of y~values are plotted for each rotamer 7 (1) minimum energy that a
conformation including 7-can have, (2) a lower bound of (1) obtained by a lower-bounding
method. Three horizontal lines are also depicted, each representing (a) an upper bound U,
(b) the optimal value of the subproblem, (c) a lower bound of (b) obtained from the same
lower-bounding method. Rotamers that can be eliminated by comparison against U are
indicated by filled triangles.
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17 12 131415 1o
I 3 4.(,(’!9}?\/

~

/N

(a) Original subproblem. (b) Rotamer-pair (c) Rotamer elimination.

elimination.

Figure 4.

Reduction by elimination of rotamers and rotamer pairs. While elimination of rotamers
brings explicit reduction of the problem size, elimination of rotamer pairs will be implicitly
represented by pair flags. Rotamer eliminations in (c) were made consistent with bounds of
Figure 3.

Figure (a). Original subproblem.

Figure (b). Rotamer-pair elimination.

Figure (c). Rotamer elimination.
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3

Figurebs.
The diagram shows the graphical model and pairwise compatibility functions y12(x1, Xo)
and y»3(xo, X3) of the distribution used in Example 3.
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Figure®6.

(d) p*(x;0); p* =

Wl

Page 33

Illustration of pseudo-max-marginals and p-reparameterization. (a) Original distribution. (b)
— (d) Pseudo-max-marginals on each tree used by convex combination.

Figure (a). p(X)

Figure (b). pH(x; v@); plx)p'=
Figure (c). P(X; v@); ,2(x7):0*
Figure (a). pg(X; v®); P3(X;%;,03—
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(d) §°

Page 34

Example of covering a graph by maximal stars: ¢ of (a) is completely covered by S, &, and

s

Figure (a). ¢
Figure (b). St
Figure (c). S$2
Figure (d). S3
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DEE/A* time (sec) No DEE/A* solution
Figure8.

Ratio of BroMAP time to DEE/A* time vs. DEE/A* time for 42 cases in Table II. Labels
next to data points are case numbers from Table I. The 14 cases solved by BroMAP only are
shown in the narrow pane on the right side. The running time ratios for these cases were
calculated by assuming the DEE/A* time for each of them is 7 days although they were not
solved by DEE/A* within 7 days. The trend line represents a robust fit for the 28 cases that
were solved by both BroMAP and DEE/A*. The horizontal dashed line represents the ratio
equal to 1. Different symbols are used to represent each case depending on the type of
protein region (CORE, CORE++, or INT) and the type of library used (REG or EXP): (1) O
= CORE, O = CORE++, A = INT, (2) empty = REG, filled = EXP.

J Comput Chem. Author manuscript; available in PMC 2012 November 10.



1X31-)lew1a1ems 1X3]-){Jewiaremsg

1Xa1-)lewarems

Hong et al.

Page 36

| Y |

(a) Case 65 (skew = 1.0) (b) Case 3 (skew = 0.93)

(c) Case 17 (skew = 0.84)

Figure9.

Search trees of BroMAP for three cases. For each branching, the low-subproblem is placed
on the right-hand side, and the high-subproblem on the left-hand side. Shaded box-shaped
nodes represent the subproblems that were exactly solved and resulted in an update of the
global upper bound.

Figure (a). Case 65 (skew = 1.0)

Figure (b). Case 3 (skew = 0.93)

Figure (c). Case 17 (skew = 0.84)
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Each case is plotted by the number of design positions and log number of conformations. In
both (a) and (b), different symbols were used for different protein regions: (1) A = INT, (2)
O = CORE, (3) O= CORE++. In (), cases were marked with different colors depending on
their solvability: (1) yellow = solved by limited DEE, (2) green = solved by BroMAP and

DEE/A*, (3) blue = solved by BroMAP only, (4) red = solved by none. In (b), the BroMAP
running time on each case was used to color the corresponding symbol. The color bar on the

right side shows mapping between a color and a running time in seconds.

Figure (a). Solvability

Figure (b). Protein region and BroMAP running time
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Figure11.

Plots of TRMP lower bound vs. rotamer, for all (4,504) rotamers in the subproblem of node
2 in solving Case 17 by BroMAP; rotlb, is represented by a dot and rot/b, by a *+’ symbol.
Rotamers are sorted on x-axis by the increasing order of rot/b,. All rotamers with lower
bounds greater than or equal to 0 were clipped at yy= 0. The horizontal line at y= -55.13
represents U. By comparing rotlb, against U, 497 rotamers (4, 008, to 4, 504y, in the order)
were eliminated. Using rot/b, instead increased the number of eliminated rotamers to 1,171.
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