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Abstract The stochastic firing patterns are simulated near

saddle-node bifurcation on an invariant cycle correspond-

ing to type I excitability in stochastic Morris–Lecar model.

In absence of external periodic signal, the stochastic firing

manifests continuous distribution in ISI histogram (ISIH),

whose amplitude at first increases sharply and then

decreases exponentially. In presence of the external peri-

odic signal, stochastic firing patterns appear as two cases of

integer multiple firing with multiple discrete peaks in ISIH.

One manifests perfect exponential decay in all peaks and

the other imperfect exponential decay except a lower first

peak. These stochastic firing patterns simulated with or

without external periodic signal can be demonstrated in the

experiments on rat hippocampal CA1 pyramidal neurons.

The exponential decay laws in the multiple peaks are also

acquired using probability analysis method. The perfect

decay law is determined by the independent characteristic

within the firing while the imperfect decay law is from the

inhibitory effect. In addition, the stochastic firing patterns

corresponding to type I excitability are compared to those

of type II excitability. The results not only reveal the

dynamics of stochastic firing patterns with or without

external signal corresponding to type I excitability, but also

provide practical indicators to availably identify type I

excitability.

Keywords Neural firing pattern � Excitability � Type I

excitability � Stochastic process � Integer multiple firing �
Saddle-node bifurcation on an invariant cycle

Introduction

Excitability that can induce rest condition to firing is a

fundamental characteristic in the nerve system (Hodgkin

1948; Izhikevich 2000). Two classes of neural excitability,

type I and type II, were proposed by Hodgkin according to

the experimental results (Hodgkin 1948). The firing fre-

quency varied smoothly over a large range as stimulus

intensity that could induce firing varied in type I excitability,

while the firing frequency were relatively insensitive to

stimulus intensity in type II excitability. Two types of

excitability were interpreted using concept of nonlinear

dynamics. Type I excitability is related to saddle-node

bifurcation, while type II is associated to Andronov–Hopf

bifurcation (Rinzel and Ermentrout 1989). Except the firing

frequency (Hodgkin 1948; Rinzel and Ermentrout 1989;

Izhikevich 2000; Tateno et al. 2004), the two types of

excitability exhibit different characteristics in many aspects,

such as phase response curve (PRC) (Ermentrout 1996;

Gutkin et al. 2005; Galán et al. 2005; Tateno and Robinson

2006; Tateno et al. 2007; Tsubo et al. 2007; Prescott et al.

2008b; Stiefel et al. 2009; Phoka et al. 2010), critical

amplitude of a sinusoidal stimulus that can induce firing

(Xie et al. 2004b), coefficient of variation (CV) in interspike

intervals (ISIs) (Gutkin and Ermentrout 1998), synchrony in

network (Ermentrout 1996; Galán et al. 2007; Bogaard

et al. 2009) and other indicators (Prescott et al. 2008a).

The high CV values such as those observed in cortical

spike trains were suggested as an intrinsic characteristic of

type I excitability driven by ‘‘random’’ inputs (Gutkin and
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Ermentrout 1998). In contrast, neural oscillators or neurons

exhibiting type II excitability should produce relatively

regular spike trains. Regular spiking (RS) pyramidal neu-

rons in layer 2/3 of slices of young rat somatosensory

cortex show a continuous firing frequency vs. stimulus

current (f - I) relationship, corresponding to type I excit-

ability (Tateno et al. 2004). In fast-spiking (FS) inhibitory

interneurons, there is a clear discontinuity in their f - I

relationship, corresponding to type II excitability. Type I and

II excitability is also examined by f - I relationship in

mesencephalic V neurons (Liu et al. 2008). Except the f - I

relationship, the PRC, a measure of the spike time shift

caused by perturbations of the membrane potential as a

function of the phase of the spike cycle of a neuron, is

employed to distinguish two types of the excitability (Er-

mentrout 1996; Gutkin et al. 2005); Galán et al. 2005; Tateno

and Robinson 2006; Tateno et al. 2007; Tsubo et al. 2007;

Prescott et al. 2008b; Stiefel et al. 2009; Phoka et al. 2010).

The PRC can be classified into two categories, type 1 (the

spike is always advanced) and type 2 (the spike is advanced

or delayed depending on the stimulus phase), corresponding

to type I and type II excitability, respectively. The pyramidal

neurons in layer 2/3 tend to display type 2 whereas those in

layer 5 tend to exhibit type 1. Within each cell type of non-

pyramidal regular-spiking (NPRS), low-threshold spiking

(LTS), and fast-spiking (FS) cells in rat somatosensory

cortex, both types of PRCs were observed, but the propor-

tions and sensitivities to perturbation amplitude were clearly

correlated to cell type (Tsubo et al. 2007). In addition, the

transition between two types of excitability has also been

discovered in the experiment (Stiefel et al. 2009; Prescott

et al. 2008b; Liu et al. 2008). For example, in recordings

from layer 2/3 pyramidal neurons in visual cortical slices,

cholinergic action, consistent with down-regulation of slow

voltage-dependent potassium currents such as the M-current,

switched the PRC from type II to type I (Prescott et al.

2008b).

Among these studies, to acquire PRC curve or the f - I

relationship is very complex because many trials of the

experiment should be performed (Tateno and Robinson

2006; Tateno et al. 2007; Tsubo et al. 2007; Prescott et al.

2008b; Stiefel et al. 2009; Phoka et al. 2010). In addition, it

is well known that noise can induce stochastic firing pat-

terns near threshold from rest condition to firing via sto-

chastic resonance or coherence resonance (Tateno et al.

2004; Gu et al. 2011a, 2011b; Jia et al. 2011), for both type

I and II excitability. When the stochastic firing is evoked,

the f - I curve for type II excitability looks like the one for

type 1 excitability (Izhikevich 2007), showing that

f - I curve may cease to be effectiveness in distin-

guishing two types of excitability. Therefore, it is nec-

essary to identify the distinction of stochastic firing

between type I and type II excitability. Integer multiple

firing can be simulated near Hopf bifurcation point in

stochastic theoretical model, whether with or without

external periodic signal (Gu et al. 2001, 2011a). For

example, integer multiple firing pattern can be simulated

near Hopf bifurcation point in stochastic Chay model

without external periodic signal, employed to interpret the

spontaneous ones discovered in the experiments (Braun

et al. 1994; Gu et al. 2001, 2011a; Xing et al. 2001; Gong

et al. 2002). In the presence of external periodic signal

with low frequency, the integer multiple firing pattern

with multi-peaks in ISI histogram (ISIH), located at

integer multiples of the period of the external signal, were

observed in the experiment (Rose et al. 1967; Siegel

1990; Gu et al. 2011a) and simulated in theoretical model

(Longtin et al. 1991, 1994; Chialvo and Apkarian 1993;

Xie et al. 2004a; Gu et al. 2011a). The exponential decay

law and the value of the decay slope were also identified

using probability analysis method (Gu et al. 2011a). In

these studies, the integer multiple firings were often

related to type II excitability, seldom to type I excitability

(Xie et al. 2004a).

In this paper, we will study the dynamics of the noise

induced stochastic firing patterns corresponding to type I

excitability without or with external signal, compared to

those for type II excitability. The characteristic of ISIH

can be used as a simple and practical indicator to identify

type I excitability. A stochastic non-integer multiple firing

pattern near saddle-node bifurcation on an invariant cycle

is simulated in the stochastic ML model without external

signal, manifesting dynamics different to the spontaneous

integer multiple firing from type II excitability. Two cases

of integer multiple firings similar to those simulated with

type II excitability can be simulated near saddle-node

bifurcation on an invariant cycle in Morris–Lecar (ML)

model stimulated by both external signal and noise. To be

consistent with previous study (Gu et al. 2011a), the two

cases firings are labeled as case 1 and 3 integer multiple

firing, respectively. Case 1 exhibit perfect exponential

decay law in all peaks in ISIH, while case 3 manifest

exponential decay law with a lower first peak. The integer

multiple firing with a higher first peak, generated without

external periodic signal, is named as case 2. Firing pat-

terns simulated in ML model with or without external

signals were demonstrated in the experiment on the rat

hippocampal CA1 neurons. The two cases of integer

multiple firing patterns, whether simulated in ML model

or observed in the experiment, manifest exponential decay

laws identical to those simulated with type II excitability.

It shows that the external signal evoked integer multiple

firing can also generate when the nervous system is type I

excitability.

The rest of the present paper is organized as follows. In

Sect. 2, theoretical model, experimental model and time
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series analysis methods are introduced. Section 3 presents

type I excitability in deterministic ML model and firings in

stochastic ML model without and with external signal.

Section 4 is the firing patterns recorded in rat pyramidal

neurons of the hippocampal slice. The spontaneous non-

integer multiple firing pattern and two cases of external

periodic signal induced integer multiple firing patterns

were observed. Exponential decay laws within two cases of

integer multiple firings corresponding to type I excitability

are tested in Sect. 5. Section 6 is the discussion and

conclusion.

Theoretical model, experimental model and time series

analysis method

Theoretical model

Deterministic Morris–Lecar model

The Morris–Lecar model (Morris and Lecar 1981; Tateno

et al. 2004; Tsumoto et al. 2006; Liu et al. 2010) is con-

sidered as a canonical prototype for widely encountered

excitability classes of neuronal membranes and is as

follows:

C
dV

dt
¼ � gCam1ðV � VCaÞ � gKwðV � VKÞ

� gLðV � VLÞ þ I ð1Þ

dw

dt
¼ /

w1 � w

sw
ð2Þ

where t is the time (the independent variable). Dependent

variables are V (the membrane potential) and w (the acti-

vation of delayed rectifier K? current). Parameter I repre-

sents the direct current and the background ionic currents.

The explicit expressions for m1;w1 and sw are as follows,

m1 ¼ 0:5 1þ tanh V�V1

V2

� �h i
;w1 ¼ 0:5 1þ tanh V�V3

V4

� �h i
;

sw ¼ cosh V�V3

2V4

� ��1

.

The parameters in this paper are C ¼ 20:0 lF/cm2; gK ¼
8 mS/cm2; gL ¼ 2 mS/cm2;VCa ¼ 120 mV;VK ¼ �84 mV;

VL ¼�60 mV;V1 ¼�1:2 mV;V2 ¼ 18 mV; gCa ¼ 4:0 mS/

cm2;/ ¼ 1
15
;V3 ¼ 12 mV;V4 ¼ 17:4 mV (Tateno et al.

2004; Liu et al. 2010). The unit of I is lA/cm2. The unit of

time is millisecond.

When / ¼ 1
15
; gCa ¼ 4:0 mS/cm2;V3 ¼ 12 mV;V4 ¼

17:4 mV, the behavior of ML model is type I excitability

(Tateno et al. 2004). When / = 0.04, gCa = 4.4 mS/

cm2, V3 = 2 mV, V4 = 30 mV, the behavior is type II

excitability (Tateno et al. 2004).

Stochastic ML model without external signal

A Gaussian white noise n(t) is introduced to the first equation

to form the stochastic ML model without external signal. The

noise possesses statistical properties as hn(t)i = 0 and

\nðtÞnðt0Þ[ ¼ 2Ddðt � t0Þ, where D is the noise density

and d(•) is the Diract d-function.

Stochastic ML model with external signal

Both an external periodic signal Amp cos xt and a Gaussian

white noise n(t) are introduced to the first equation to form

the stochastic ML model with external signal. Where Amp

is the amplitude and x is the angle frequency of the

external periodic signal.

Deterministic and stochastic ML model are solved by

Mannella numerical integrate method (Mannella and

Palleschi 1990) with integration time step being 0.1 ms. An

action potential is said to occur when the voltage crossed a

value of 25.0 mV from below.

Experimental model

Sprague-Dawley (SD) rats (10–19 day-old) were anesthe-

tized with urethane (Gu et al. 2011a; Jia et al. 2011). The

brain were rapidly removed and placed in ice-cold dissecting

artificial cerebrospinal fluid (ACSF). Then 300 lm-thick

coronal slices were prepared using vibratome (NatureGene

Corp, USA) and placed in a holding chamber of incubating

ACSF and kept at room temperature for at least 1 h before

being transferred to an immersion chamber for recordings.

For whole cell patch clamp, slices were transferred to a

recording chamber mounted on upright microscope DM-

LFSA (Leica, Germany) perfused with ACSF (room tem-

perature). Recordings were made from hippocampal CA1

pyramid neurons visually identified by infrared DIC-video

microscopy using a high performance vidicon camera DAGE-

MTI (Dage-MTI of Michigan City, Inc., USA). The resistance

of microelectrode was 3–5 MX. All recordings from CA1

pyramidal cells were obtained using a Digidata 1440A inter-

face connected to an AXON700B amplifier (Axon Ins., USA).

Data were acquired, processed and analyzed using the Pclamp

10 software (Axon Ins., USA), respectively.

Autocorrelation coefficient

Autocorrelation function, verified to be a practical method

to identify dependent or non-renewal characteristic within

ISI series (Chacron et al. 2000; Gu et al. 2011a) of neural

firing, is employed in this paper.

For a time series (t1; t2; . . .; tN) (N is an integer), the

mean of the series is
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�t ¼
PN

i¼1 ti
N

ð3Þ

The autocorrelation coefficient of the time series q is

defined as

q½i� ¼
PN�i

j¼1 ðtj � tÞðtiþj � tÞ
PN

k¼1ðtk � tÞ2
ð4Þ

where the lag i ¼ 0; 1; 2; . . .;N � 1.

In general, for a renewal stochastic process, q[i] = 0 for

all i [ 0, implying that the time series is independent. For a

non-renewal stochastic process, q[i] = 0 for at least one

i = 0, implying that there exists some correlation or

dependence within the time series.

In this paper, -0.05 B q[i] B 0.05 is thought to be nearly

zero. Because -0.05 B q[i] B 0.05 when i C 2 in this paper,

q[i] when i \ 10 is shown in the corresponding figures.

Analysis to ISI histogram

When a suitable ISI interval is chosen, ISI histogram of

integer multiple firing can be acquired, manifesting expo-

nential decay in multiple peaks. Expediently, the peak in

ISIH whose sequential number is k is called as kth peak. The

maximal amplitude of the kth peak in ISIH, i.e. the ISI height,

is labeled as y(k), and the ISI corresponding to y(k) is labeled

as x(k). The value of y(k) and x(k) might have a little dif-

ference when the ISI interval is chosen as different values.

Correspondingly, the value of decay slope also exhibits a

little difference. The statistical error in y(k) and x(k) might be

induced by the unsuitable choice of the ISI interval.

All number of ISIs in kth peak, i.e. the integrated peaks

of the ISI distributions, is labeled as NP(k). Obviously, the

y(k) is a partial of NP(k). Different to y(k) that is dependent

to the choice of bin, the value of NP(k) is unique and

independent. In Ref (Gu et al. 2011a), the exponential

decay law existed between NP(k) and k is acquired, proved

to be the cause that lead to the exponential relationship

appeared between y(k) and x(k).

In this paper, two methods are employed to acquire the

linear relationship existed between logy(k) and x(k), and

between logNP(k) and k. One is the least square method.

The other is the probability analysis method to be intro-

duced in Sect. 5

Firings in stochastic Morris–Lecar model

Saddle-node bifurcation on an invariant cycle

in deterministic ML model

In this paper, / ¼ 1
15
; gCa ¼ 4:0;V3 ¼ 12;V4 ¼ 17:4. The

behaviors of ML model is near a saddle-node bifurcation

on an invariant cycle corresponding to type I excitability

(Tateno et al. 2004; Liu et al. 2010).

In deterministic ML model, Is&39.96 is a point of

saddle-node bifurcation on an invariant cycle, as shown in

Fig. 1a. When I \ Is, the behavior of the system is resting

with underlying dynamics determined by the coexistence

of a stable node, an unstable saddle and an unstable focus.

When I [ Is, the system’s behavior is period 1 firing.

Different from period 1 firing near the Hopf bifurcation

point where the period of firing is approximately fixed, the

firing period is changed rapidly from 2,148.5 ms when

I = 39.97, to 939.7 m when I = 40, to 262.7 ms when

I = 40.5, to 194.8 ms when I = 41, as shown in Fig. 1b.

(a)

(b)

Fig. 1 a Behaviors of deterministic Morris–Lecar model near the

saddle-node bifurcation on an invariant cycle (I&39.96). Dashed line:

unstable focus, dotted line: saddle, thin solid line: stable node, upper
(lower) bold solid line: maximal (minimal) amplitude of the stable

limit cycle. b Changes of ISI and firing frequency (Insert figure) with

respect to I near saddle-node bifurcation on an invariant cycle
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Firing in the stochastic ML model without external

signal

The behavior of the deterministic ML model without external

signal (Amp = 0) is rest when I = 39.6. When noise with

middle density (D = 0.1) is introduced, stochastic firing

pattern is induced. The spike train, ISI series, and fist return

map of ISI series are shown in Fig. 2a–c, respectively. In ISIH,

the amplitude increases rapidly firstly and then decreases

slowly with respect to the increase of ISI, as shown in Fig. 2d.

Exponential decay is also exhibited in the decaying part, as

shown in the insert figure of Fig. 2d. If the ordinate and

abscissa are labeled as y and x, respectively, the relationship

between logy and x of the decaying part is logy = 3.370x -

1.442 with correlation coefficient being -0.99, using the least

square regression method, as shown in Fig. 2b.

q[i]&0 when i C 1, implying that the firing is a renewal

process, as shown in Fig. 2e.

Distinction to the case 2 integer multiple firing

The stochastic firing pattern corresponding to type I

excitability is different to case 2 integer multiple firing, a

typical neural firing pattern related to Hopf bifurcation

point and type II excitability (Gu et al. 2001). Case 2

integer multiple firing pattern (Gu et al. 2001, 2011a; Yang

et al. 2009) generated near excitable threshold in the

experiments on neural pacemaker, shark multi-modal sen-

sory cell (Braun et al. 1994) and the injured sensory neu-

rons (Xing et al. 2001), and can be simulated near Hopf

bifurcation point in the stochastic Chay model (Gu et al.

2001, 2011a; Yang et al. 2009) without external signal. An

typical example of case 2 integer multiple firing recorded

from the experimental neural pacemaker is shown in

Fig. 3, exhibiting exponential decay in other peaks except a

higher first peak in ISIH, studied particularly in previous

studies (Gu et al. 2001, 2011a; Yang et al. 2009).

Case 1 integer multiple neural firing pattern

in stochastic ML model with external signal

The integer multiple firing pattern with perfect exponential

decay in all peaks in ISIH, i.e. case 1 integer multiple

firing, was reported in previous experimental studies (Rose

et al. 1967; Siegel 1990; Longtin et al. 1991, 1994).

In this subsection, case 1 integer multiple firing is

simulated using the stochastic ML model with type I

(a)

(b)

(d)

(c)

(e)

Fig. 2 The characteristics of spontaneous neural firing induced by

noise in the stochastic ML model without external signal I = 39.6 and

D = 0.1). a Spike trains. b ISI series. c First return map of ISI series.

d ISIH (Insert figure: logarithm scale). e Autocorrelation coefficient

of ISI series

c
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excitability, a middling noise density and an external signal

whose period is longer than 250 ms.

A typical example of case 1 integer multiple firing is sim-

ulated when x = 0.025 (period of external signal is 251 ms),

I = 37, Amp = 5 and D = 0.01. The spike trains are shown in

Fig. 4a. The ISIs locate at the integer multiples of the period of

external signal, as shown in Fig. 4b. Application of least

square regression method to y(k) and x(k) yields that logy(k) =

3.349 - 0.00084x(k) with a correlation coefficient being

-0.96, as shown in Fig. 4b.q[i]&0 when i C 1, implying that

the firing is renewal process, as shown in Fig. 4c.

Case 3 integer multiple neural firing pattern

in stochastic ML model with external signal

When period of the external signal is decreased, cases 3

integer multiple firing whose first peak in ISIH is lower

than that expected by exponential fit while other peaks

decay exponentially is simulated. x = 0.04 is chosen as

representative in this subsection.

A typical example of case 3 integer multiple firing is

simulated in the stochastic ML model when x = 0.04 (the

period of external period is 157 ms), I = 37, Amp = 9 and

D = 0.01. The first peak in the ISIH is lower, as shown in

Fig. 5a. Application of least square regression method to

(a)

(b)

Fig. 3 Spontaneous integer multiple firing pattern generated in the

experimental neural pacemaker. a pike trains; b SIH

(a)

(b)

(c)

Fig. 4 Integer multiple firing pattern simulated in stochastic ML

model stimulated by external periodic signal and noise

(I = 37, x = 0.025, Amp = 5, D = 0.01). a Spike trains; b ISI

histogram; c autocorrelation coefficient of ISI series
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all peaks yields that logy(k) = 3.876 - 0.00178x(k) with a

correlation coefficient being -0.96. Ignoring the first peak,

logy(k) = 4.093 - 0.00198x(k) (k [ 1) with a correlation

coefficient being -0.99, much higher than -0.99. q[i] =

- 0.18 when i = 1 and q[i]&0 when i [ 1, as shown in

Fig. 5b. It shows that the firing pattern exhibits negative

correlation and non-renewal characteristic.

Firing patterns in the experiment on CA1 pyramidal

neurons

Spontaneous firing pattern in absence of external

periodic signal

In normal condition without external periodic signal, some

CA1 pyramidal neurons in hippocampal slices can generate a

kind of stochastic firing pattern different to case 2 integer

multiple firing, others can be rest. If suitable polarization

current was applied, the spontaneous firings were changed

into rest condition. It showed that the spontaneous firing was

near the excitable threshold. When suitable depolarization

current was applied, some resting CA1 pyramidal neurons in

normal condition can generate stochastic firing patterns. A

typical example of the firing pattern recorded from a neuron

was shown in Fig. 6. The neuron was at resting condition

without external current and the membrane voltage was

about -60.8 mV. When a depolarization current with

strength being as 25 pA was applied, the neuron was changed

from resting condition into firing similar to that simulated in

stochastic ML in absence of external periodic signal.

The spike trains of the firing pattern are irregular, as

shown in Fig. 6a. The ISI series and the first return map of ISI

series are shown in Fig. 6b and c, respectively. In ISIH, the

amplitude increases rapidly firstly and then decreases slowly

with respect to the increase of ISI, as shown in Fig. 6d.

Similar firing patterns were discovered in previous experi-

mental studies (Gerstein et al. 1960; Rodieck et al. 1962).

Exponential decay is also exhibited in the decaying part, as

shown in Fig. 6e. If the ordinate and abscissa are labeled as

y and x, respectively, the relationship between logy and x of

the decaying part is logy = - 0.80x ? 2.12 with correla-

tion coefficient being -0.95, using the least square regres-

sion method. q[i]&0 when i C 1, implying the ISI series is

independent and is a renewal process, as shown in Fig. 6f.

Case 1 integer multiple firing (perfect exponential

decay)

When an external sinusoid current (the period is 200 ms)

was applied, a number of resting CA1 pyramidal neurons in

hippocampal slice were driven to generate case 1 integer

multiple firing. A typical example of case 1 integer mul-

tiple firing was shown in Fig. 7a. The ISIs located at

integer multiples to the period of external signal and the

ISIH exhibited exponential decay in all peaks, as shown in

Fig. 7b, similar to that simulated in ML model.

Application of the least square regression method to

y(k) and x(k) yields that logy(k) = 2.794 - 0.0087x(k) with

a correlation coefficient being -0.97, as shown in Fig. 7b.

q[i]&0 when i [ 0, as shown in Fig. 7c, implying that the

ISI series is independent and a renewal process.

Case 3 integer multiple firing pattern (a lower first

peak)

When external periodic current (the period is 200 ms) was

applied, some resting CA1 pyramidal neurons were driven

to generate case 3 integer multiple firing, as shown in

Fig. 8. The maximal amplitude of the kth peak in ISIH

exhibit exponential decay except the lower first peak, as

shown in Fig. 8a, similar to that simulated in ML model.

(a)

(b)

Fig. 5 Integer multiple firing pattern in stochastic Morris–Lecar model

stimulated by external periodic signal and noise (I = 37,

x = 0.04, Amp = 9, D = 0.01). a ISI histogram; b autocorrelation

coefficient of ISI series
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Application of the least square regression method to all

peaks yields that logy(k) = 2.03 - 1.08x(k) with a corre-

lation coefficient being -0.93. Ignoring the first peak,

logy(k) = 2.412 - 1.463x(k)(k [ 1) with a correlation

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 Spontaneous firing pattern generated in CA1 neuron of

hippocampal slice. a Spike trains; b ISI series; c first return map of

ISI series; d ISIH; e logarithm of ISIH; f autocorrelation coefficient of

ISI series

b

(a)

(b)

(c)

Fig. 7 Integer multiple firing pattern generated in CA1 neuron of

hippocampal slice stimulated by external periodic signal. a Spike

train; b ISI histogram; c autocorrelation coefficient of ISI series
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coefficient being -0.99, much higher than -0.93. The

similar ISIH were shown in Fig.30 (f) and (g) in previous

experimental study (Gammaitoni et al. 1998).

q[i]& - 0.23 when i = 1 and q[i]&0 when i [ 1,

implying that there exists negative dependence within the

ISI series and the ISI series is a non-renewal process, as

shown in Fig. 8b. The negative dependence shows that

there exists an inhibitory effect within the firing.

Exponential decay law

In previous study, the exponential decay law of the integer

multiple firing related to Hopf bifurcation and type II

excitability were analyzed by transforming the ISI series to

a binary chain and using probability analysis to the binary

chain (Gu et al. 2011a). In this paper, the integer multiple

firings related to type I excitability are analyzed through

these methods.

Binary chain

Binary chain transformed from the firing pattern

The behavior of external periodic signal induced integer

multiple firing pattern is either a spike or a subthreshold

oscillation in a period. A binary discrete chain can be

acquired according to the rules as follow, a spike in a

period of external signal is labeled as 1 and a subthreshold

oscillation as 0. For example, an integer multiple firing

induced by the external periodic signal, recorded from

pyramidal neuron of rat hippocampal slice, whose binary

chain is composed of symbols 0 and 1, as shown in Fig. 7a.

The binary chain corresponding to Fig. 7a is 011001

100001110. The binary chain of the firing pattern can also

be acquired from ISI series by transforming each ISI into

binary symbols. If an ISI nearly equals k times to the period

of the external signal, i.e. locating in the kth peak of ISIH,

its binary chain is a string containing k - 1 continual 0,

and ended with a 1. The binary chains acquired from two

methods are identical (Gu et al. 2011a). Therefore, NP(k)

equals the number of strings beginning with 1, followed by

k - 1 continual 0 and ended with a 1 in the binary chain.

Probabilities of the binary chain

For the convenience, the definitions or symbols used in the

probability analysis are given as follows. The total number

of elements in the chain is labeled as N. In practice, N

should be large enough to ensure that R1 and R0 is inde-

pendent to N. The number of symbol 1 and 0 is N1 and N0,

respectively. N1 ? N0 = N. The probability of 1 and 0 is

expressed by the frequence of symbol 1 and 0, respectively.

R1 = N1/N and R0 = 1 - R1, respectively. The number of

continuous symbols 11, 10, 01 and 00 in the binary chain is

labeled as N11, N10, N01 and N00, respectively. N11 ?

N10 ? N01 ? N00 = N - 1. R11 = N11/(N - 1), R10 =

N10/(N - 1), R01 = N01/(N - 1), and R00 = N00/(N - 1),

respectively. Where, R11 ? R10 = R1, R01 ? R00 =

R0, R01 = R10. The transition probability from 0 to 0, 0 to

1, 1 to 0 and 1 to 1 in the chain is labeled as PTð0!0Þ;

PTð0!1Þ;PTð1!0Þ and PTð1!1Þ, respectively. The corre-

sponding value can be calculated as R00/R0, R01/R0, R10/R1

and R11/R1. In addition, PTð0!0Þ þ PTð0!1Þ ¼ 1;

PTð1!0Þ þ PTð1!1Þ ¼ 1.

Deduction of exponential decay law

NP(k) equals the number of strings beginning with 1, fol-

lowed by k - 1 continual 0 and ended with a 1 in the

chain. Therefore, the relationship between NP(k) and k is:

(a)

(b)

Fig. 8 Integer multiple firing pattern generated in CA1 neuron of

hippocampal slice stimulated by external periodic signal. a ISI

histogram; b autocorrelation coefficient of ISI series

Cogn Neurodyn (2012) 6:485–497 493

123



NPð1Þ ¼ NR1PTð1!1Þ ¼ NR1

R11

R1

¼ NR11 ð5Þ

NPð2Þ ¼ NR1PTð1!0ÞPTð0!1Þ ¼ N
R0R10R01

R2
00

R00

R0

� �2

ð6Þ

NPðkÞ ¼ NR1PTð1!0ÞP
k�2
Tð0!0ÞPTð0!1Þ

¼ N
R0R10R01

R2
00

R00

R0

� �k

ðk [ 2Þ
ð7Þ

Equations (5), (6) and (7) can be written as

NPð1Þ ¼ NR11 ð8Þ

NPðkÞ ¼ N
R0R10R01

R2
00

R00

R0

� �k

ðk [ 1Þ ð9Þ

Therefore, if R11 ¼ R0R10R01

R2
00

R00

R0

� �k

ðk ¼ 1Þ ¼ R10R01

R00
, all

peaks exhibit perfect exponential decay, corresponding to

case 1. If R11 [ R10R01

R00
, other peaks exhibit exponential

decay except a higher first peak, corresponding to case 2. If

R11\ R10R01

R00
, other peaks manifest exponential decay except

a lower first peak, corresponding to case 3. The exponential

decay law exhibited in case 1, 2 and 3 integer multiple

firing are as follows.

Case 1: A spike generated in a period of the external

signal imposes no influence to the behavior in the next

period. For the corresponding binary chain, a symbol 1

imposes no influence to the next symbol, whether it is 1 or

0. The transition from 0 to 0, 0 to 1, 1 to 0 and 1 to 1 in

the binary chain is independent. Therefore, PTð1!1Þ ¼
PTð0!1Þ ¼ R1, i.e. R11/R1 = R01/R0 = R1.

We can acquire R11 ¼ R10R01

R00
because R10 = R01 and

R00 = R0R0. The proof procedure is as follows,

R00 ¼ 1� R01 � R10 � R11 ¼ 1� 2R0R1 � R1R1 ¼ R0R0

ð10Þ

R11 ¼ R2
1 ¼

R1R0R0R1

R0R0

¼ R10R01

R00

¼ R0R10R01

R2
00

R00

R0

� �

ð11Þ

Therefore, the relationship between NP(k) and k can be

reduced to

NPðkÞ ¼ N
R2

1

R0

Rk
0ðk� 1Þ ð12Þ

The result shows that NP(k) decrease exponentially with

respect to k for all peaks. The decay slope is related to the

probability of symbol 0 R0. Because R0 is less than 1,

NP(k) decreases exponentially with respect to the increase

of k.

Applying logarithm to Eq. (12),

logNPðkÞ ¼ klogR0 þ log N
R2

1

R0

� �
ð13Þ

logNP(k) decays lineally with respect to k. The decay slope

is logR0, only related to the probability of symbol 0.

Case 2: A spike only imposes excitatory influence to the

following spike in the next period. Correspondingly, a

symbol 1 imposes excitatory effect to the next symbol 1 in

the binary chain. PTð1!1Þ[ PTð0!1Þ, i.e. R11/R1 [ R01/R0.

We can acquire PTð0!0Þ[ PTð1!0Þ.

A proof procedure is as follows,

PTð1!1ÞPTð0!0Þ[ PTð0!1ÞPTð1!0Þ

) R11

R1

R00

R0

[
R01

R0

R10

R1

) R11 [
R01R10

R00

ð14Þ

The result shows that, except a higher value of NP(1),

NP(k) (k [ 1) decreased exponentially with respect to the

increase of k. The decay slope of logNP(k) is logR00

R0
when

k [ 1, related to not only R0, but also the joint probability

of continuous symbols 00 R00.

Case 3: A spike only imposes inhibitory influence to the

following spike in the next period. Correspondingly, a

symbol 1 imposes inhibitory effect to the next symbol 1. In

this case, PTð1!1Þ\PTð0!1Þ, i.e. R11/R1 \ R01/R0. We can

acquire PTð0!0Þ\PTð1!0Þ.

A proof procedure is as follows,

PTð1!1ÞPTð0!0Þ\PTð0!1ÞPTð1!0Þ

) R11

R1

R00

R0

\
R01

R0

R10

R1

) R11\
R01R10

R00

ð15Þ

The result shows that, except a lower NP(1), NP(k)

(k [ 1) is decreased exponentially with respect to the

increase of k. The decay slope of logNP(k) is also log R00

R0

� �

when k [ 1, related to both R0 and R00.

Test of the exponential decay law

In this subsection, we will test the exponential decay law of

the integer multiple firing related to type I excitability in

Sects. 3 and 4.

Case 1 integer multiple firing simulated in ML model

In the example shown in Fig. 4, there are 50,001 spikes in

119,087 periods. N = 119,087, N1 = 50,001, N11 = 20,364,

N10 = 29,414, N01 = 29,414, N00 = 39,894. The probabili-

ties are R1 = 0.420, R0 = 0.580, R11 = 0.171, R10 = 0.247,

R01 = 0.247 and R00 = 0.335, respectively. R11/R1 = 0.407,

R01/R0 = 0.426. R11/R1&R01/R0 with a relative error 4.66 %,

showing that the integer multiple firing is case 1.
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The deducted value of decay slope is log R0 = -0.237.

Applying the least square method to all peaks yields

logNP(k) = 4.565 - 0.232k with correlation coefficient

being -0.98, as shown in Fig. 9a. The decay slope is

-0.232, nearly equaling the deducted value logR0 =

-0.237 with a relative error being 2.11 %.

Case 3 integer multiple firing simulated in ML model

In the example shown in Fig. 5, spikes appear in 49,996 out

of the total 122,545 periods. N = 122,545, N1 = 49,996,

N11 = 12,867, N10 = 37,131, N01 = 37,131 and N00 =

35,415, respectively. The probabilities are R1 = 0.408, R0

= 0.592, R11 = 0.105, R10 = 0.303, R01 = 0.303 and R00

= 0.289, respectively. R11/R1 = 0.257, R01/R0 = 0.512.

R11/R1 \ R01/R0, showing that the integer multiple firing is

case 3.

The deducted values of decay slope are log R0 =

-0.228 and log R00

R0

� �
¼ �0:312, respectively. Application

of the least square method to NP(k) and k yields

logNP(k) = 4.743 - 0.294k (k C 1) with a correlation

coefficient of -0.96, as shown in Fig. 9b (bold line).

The decay slope is -0.294, different to the deducted value

logR0 = -0.228. For other peaks except the first one,

logNP(k) = 4.985 - 0.321k (k [ 1) with a correlation

coefficient of -0.99, as shown in Fig. 9b (thin line).

The decay slope is -0.321, very close to the deducted

value log R00

R0

� �
¼ �0:312. The relative error is 2.88 %.

Case 1 integer multiple firing discovered in the experiment

There were 1,941 spikes generated in 5,000 periods of

external signal in the example shown in Fig. 7.

N = 5,000, N1 = 1,941, N11 = 799, N10 = 1,201, N01 =

1,201, N00 = 1,798. The probabilities are R1 = 0.388,

R0 = 0.612, R11 = 0.160, R10 = 0.240, R01 = 0.240 and

R00 = 0.360. R11/R1 = 0.412, R01/R0 = 0.392. R11/R1&
R01/R0 with a relative error 4.82 %, showing that the

integer multiple firing is case 1.

Applying the least square regression method to NP(k)

and k, yields logNP(k) = 2.497 - 0.198k with a correla-

tion coefficient -0.983, as shown in Fig. 9c. The decay

(a)

(b)

(c)

(d)

Fig. 9 The relationship between NP(k) and k. a Case 1 integer

multiple firing simulated in stochastic ML model, shown in Fig. 4;

b Case 3 integer multiple firing simulated in stochastic ML model,

shown in Fig. 5. The solid line is the regression linear fit for all peaks;

the thin line is the regression linear fit for other peaks except the first

one; c Case 1 integer multiple firing observed in the experiment,

shown in Fig. 7; d Case 3 integer multiple firing observed in the

experiment, shown in Fig. 8. The solid line is the regression linear fit

for all peaks; the thin line is the regression linear fit for other peaks

except the first one

b
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slope is -0.198, close to the deducted value logR0 = -

0.213 with a relative error 7.05 %.

Case 3 integer multiple firing discovered in the experiment

There were 660 spikes generated in 1,378 periods in the

example shown in Fig. 8. N = 1,378, N1 = 660, N11 =

256, N10 = 424, N01 = 424 and N00 = 273, respectively.

The probabilities are R1 = 0.479, R0 = 0.521, R11 =

0.186, R10 = 0.308, R01 = 0.308 and R00 = 0.198. R11/R1 =

0.388, R01/R0 = 0.596. R11/R1 \R01/R0, showing that the

integer multiple firing is case 3.

Applying the least square regression method to NP(k)

and k yields that logNP(k) = 2.686 - 0.362k (k C 1) with

a correlation coefficient being -0.96, as shown in Fig. 9d

(bold line). The decay slope is -0.362, different to the

deducted value logR0 = -0.287. Ignoring the first peak,

logNP(k) = 3.030 - 0.435k (k [ 1) with a correlation

coefficient being -0.99, as shown in Fig. 9d (thin line).

The decay slope is -0.435, nearly equaling the deducted

value log R00

R0

� �
¼ �0:416 with a relative error 4.56 %.

Discussion and conclusion

Identification of the types of excitability is important to the

nervous systems. PRC curve and f - I curve are often

employed to distinguish type I and II excitability (Er-

mentrout 1996; Izhikevich 2000; Prescott et al. 2008a),

restricted by noise induced firing patterns. For example,

PRC curve can be calculated only when the firing is period

1 firing (Tateno et al. 2007). In this paper, the dynamics of

noise induced firing patterns corresponding to type I

excitability are studied. The ISIH of stochastic firing pat-

terns simulated in ML model and observed in the experi-

ments on rat hippocampal CA1 pyramidal neuron exhibits

a continuous distribution, whose amplitude increases

sharply firstly and then decreases slowly and exponentially.

Similar firing patterns were discovered in many tissues in

previous studies (Gerstein et al. 1960; Rodieck et al. 1962;

Gu et al 2011b; Jia et al. 2011), suggested that the excit-

ability might be type I. The stochastic firing pattern without

external periodic signal corresponding to type I excitability

is obviously different to that of the type II excitability

being as spontaneous (case 2) integer multiple firing (Gu

et al. 2001, 2011a). The ISIH of the spontaneous integer

multiple firing pattern exhibits discrete multi-peaks, whose

amplitude exhibits exponential decay except the higher first

peak. The ISIH of the firing pattern without external signal

provides a practical indicator to distinguish type I and type

II excitability. The very rapid increasing part in ISIH

should be formed by the refractory period with a very little

variability, and the exponential decreasing part is formed

by an excitation with stochastic dynamics similar to a

Poisson process. The essential reason for such an ISIH has

not been clear, awaited further study.

In the presence of external signal, case 1 and 3 of integer

multiple firing pattern are simulated in ML model with type

I excitability and observed in the experiments on rat hip-

pocampal CA1 pyramidal neuron. The case 1 integer

multiple firing exhibits perfect exponential decay in all

peaks, being as renewal process. No excitatory or inhibi-

tory effect between the behaviors within continual two

periods of the external signal. The case 3 integer multiple

firing pattern exhibits exponential decay in other peaks

except the first lower one, being as non-renewal process. A

spike can put inhibitory effect on the behavior in the next

period of the external signal. The exponential decay slope

of case 1 integer multiple firing is related to the probability

of symbol 0 in the corresponding binary chain, acquired by

transforming a spike in a period of the external signal to 1

and quiescence to 0, respectively. The exponential decay

slope of case 3 is related to both probability of symbol 0

and the joint probability of the continual two symbols 00 in

the binary chain. It shows case 1 and case 3 integer mul-

tiple firing patterns corresponding to type I excitability

exhibit exponential decay laws identical to those of the

type II excitability (Gu et al. 2011a), implying that case 1

and 3 integer multiple firing can also be related to type I

excitability. It is also known that the case 1 and 3 integer

multiple firing patterns are evoked by external signal with

low frequency. The dynamics of firing patterns near the

threshold evoked by external signal with high frequency

should be complex and diversity in ISIH, awaited to be

further studied.

Many studies should be done to further identify the

dynamics of the type I and II excitability, especially the

representation of the two types of excitability in different

tissues of the central nerve system (Tateno and Pakdaman

2004; Tsubo et al. 2007; Prescott et al. 2008b; Stiefel et al.

2009). In addition, more practical and simple indictors to

distinguish two types of excitability should be explored and

provided.
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