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Abstract In this study we propose a new feature extraction

algorithm, dNMF (discriminant non-negative matrix fac-

torization), to learn subtle class-related differences while

maintaining an accurate generative capability. In addition to

the minimum representation error for the standard NMF

(non-negative matrix factorization) algorithm, the dNMF

algorithm also results in higher between-class variance for

discriminant power. The multiplicative NMF learning

algorithm has been modified to cope with this additional

constraint. The cost function was carefully designed so that

the extraction of feature coefficients from a single testing

pattern with pre-trained feature vectors resulted in a qua-

dratic convex optimization problem in non-negative space

for uniqueness. It also resolves issues related to the previous

discriminant NMF algorithms. The developed dNMF algo-

rithm has been applied to the emotion recognition task for

speech, where it needs to emphasize the emotional differ-

ences while de-emphasizing the dominant phonetic com-

ponents. The dNMF algorithm successfully extracted subtle

emotional differences, demonstrated much better recogni-

tion performance and showed a smaller representation error

from an emotional speech database.

Keywords Discriminant feature � Feature extraction �
NMF � LDA � Emotional speech

Introduction

Human perception of audio and visual sensory signals

incorporates feature extraction at an early stage and clas-

sification at a later stage. The extraction of meaningful and

robust features makes the classification task much easier.

Therefore, almost all man-made pattern recognition sys-

tems also have two stages: feature extraction and classifi-

cation. The feature extraction stage involves either analysis

or learning. Gabor filters and MFCC (mel-frequency

cepstral coefficient) belong to the former, while the latter

includes PCA (principal component analysis), ICA (inde-

pendent component analysis), and NMF (non-negative

matrix factorization). It is interesting to note that ICA

results in similar features to those extracted from our brain,

i.e. edge filters for vision (Bell and Sejnowski 1997),

spectral filters for the cochlea (Lee et al. 2002; Lewicki

2002), and spectro-temporal patterns in the inferior col-

liculus and auditory cortex (Kim and Lee 2005). For non-

negative data, NMF extracts efficient part-based features

for easy interpretation (Lee and Seung 1999). PCA is also

used in combination with other information-theoretic

measures (Wang et al. 2010). However, these unsupervised

learning algorithms do not utilize class labels and are not

optimized for the classification task at the latter stage.

The optimum features depend upon the classification

task (Long et al. 2011). For example, speech recognition

relies on the classification of phonemes while neglecting

speaker-dependent and emotion-dependent components.

On the other hand, emotion recognition in speech needs to

amplify the subtle differences between emotional speeches
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while neglecting the phonemes and speaker-dependent

components (Ververidisa and Kotropoulos 2006). In this

context LDA (linear discriminant analysis) and CSP

(common spatial patterns) have found that discriminant

features are better for classification performance, but the

effective number of extracted features is smaller than the

number of classes and subject to overfitting to training data

(Martinez and Kak 2001; Zhao et al. 2010).

Recently, by adding discriminant terms to the cost func-

tion, semi-supervised learning algorithms have been devel-

oped to improve the discriminant power of ICA (Dhir and

Lee 2011) and NMF features (Wang et al. 2005; Zafeiriou

et al. 2006; Kotsia et al. 2007). If the number of features is

less than the number of data dimensions, ICA-based algo-

rithms have difficulty accurately regenerating the original

data from the extracted feature coefficients. Also, NMF is

more suitable than ICA for non-negative data, but the

reported discriminant non-negative matrix factorization

(DNMF) algorithms do not directly utilize the extracted

feature coefficients for classification. In this paper we

present a new dNMF algorithm which simultaneously

maximizes the Fisher linear discriminant and minimizes the

NMF cost function. The developed dNMF algorithm is free

from many of the problems shown by previous DNMF

algorithms, and is a natural extension of the standard NMF

algorithm with both generative and discriminant power.

The developed dNMF algorithm was first tested on a

simple toy problem with known discriminant features, and

was then applied to emotion recognition in human speech.

The recognition of human emotion is an important com-

ponent for efficient human–computer interactions. How-

ever, the primary information in human speech is phonetic,

and the speaker-dependent and emotion-dependent infor-

mation is minor. The unsupervised learning algorithms

have a tendency to extract features with a larger magnitude,

and are not suitable for the extraction of subtle differences

such as the emotional content in speech. Therefore, the

features for language-independent emotion recognition are

difficult to extract and are still under intensive study.

The popular speech features for emotional recognition

include fundamental frequency (pitch), formants, MFCC,

and energy (Slaney and McRoberts 2003; Lin and Wei

2005). Features based on manifold learning (You et al.

2006) and the Teager energy operator (Zhou et al. 2001)

are also used. However, a large number of features are

required for good recognition performance. For example,

the AIBO team came out with a large set of 200 features

from an intensity and pitch time series (Oudeyer 2003).

However, these have many redundant features and there-

fore are not ideal for this problem (Kim et al. 2009). The

developed dNMF algorithm successfully demonstrated the

extraction of subtle emotional differences and resulted in a

better recognition performance.

Issues with using the NMF algorithm for classification

Non-negative matrix factorization (NMF) algorithm learns a

factorization represenation of a non-negative matrix X into

two non-negative matrices as X = WH. Here, X and H are

an M 9 N matrix of the training data and an R 9 N matrix of

feature coefficients, respectively, and each column denotes

one sample. W is an M 9 R matrix, of which each column

denotes one feature basis vector. Also, M, N, and R denote

the number of data dimensions, the number of data samples,

and the number of feature vectors, respectively. All elements

of W, H, and W must be equal to or [0. With the linear

summation of non-negative values the NMF algorithm

usually learns a part-based additive representation of non-

negative sensory data such as images and time–frequency

spectrogram (Lee and Seung 1999).

The standard NMF algorithm learns generative features

by unsupervised learning without the class label informa-

tion. However, there are two problems to overcome in

order to achieve high classification accuracy with these

features. Firstly, like other unsupervised learning algo-

rithms, NMF does not utilize class label information from

the training data and therefore does not have high dis-

criminant power. Secondly, the learned feature vectors

(columns of W) are not orthogonal to each other and it is

not straightforward to extract feature coefficients H for test

data even with given feature vectors.

To overcome the first problem, DNMF algorithms have

recently been reported that combine NMF and LDA (Wang

et al. 2005; Zafeiriou et al. 2006; Kotsia et al. 2007). The

new cost function to minimize for the feature learning

consists of two parts: the representation error of the stan-

dard NMF and the discriminant power terms of LDA. As

usual, other terms may be added for sparsity. The resulting

cost function E is written as

E ¼ ENMF � kED þ aEHS þ bEWS; ð1Þ

where ENMF, ED, EHS, and EWS denote the terms for NMF

representation error, discriminant power, H-, and W-spar-

sity, respectively. Here, H and W are matrices consisting

of the feature vectors and their coefficients, respectively.

Also, k, a, and b denote relative weighting factors. One of

two forms is usually used for the representation error as

(Lee and Seung 1999)where the first and second forms are

based on Euclidean distance and Kullback–Leibler diver-

gence between the training data X and represented data

WH, respectively. Recently, nonlinear extensions of (1)
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have been proposed (Yang and Oja 2010; Zafeiriou and

Petrou 2010).

Two forms have also been used for the discriminant

term as (Wang et al. 2005; Zafeiriou et al. 2006; Kotsia

et al. 2007; Kim et al. 2009)

where the first form is a Fisher discriminant of the ratio of

between-class variance to within-class variance, and the

second form is its simpler variant. The mean coefficients

of the kth class and of all samples for the rth feature are

defined as

lrk ¼
1

Nk

X

n2Ck

Hrn ¼
1

Nk

XN

n¼1

Hrndkk
0 ðnÞ and

lr ¼
1

N

XN

n¼1

Hrn ¼ 1:

ð4Þ

Here, Ck is a set of sample indices for the kth class, k(n)

is the class index of the nth sample, and d is Kronecker

delta. Also, K and Nk denote the number of classes and the

number of samples in the kth class, respectively. The

sparsity terms are written as (Hoyer 2004)

EHS ¼
1

2NR

XR

r¼1

XN

n¼1

H2
rn and EWS ¼

1

2MR

XR

r¼1

XM

m¼1

W2
mr:

ð5Þ

The second problem comes from the non-orthogonality

of the feature vectors. At the feature extraction phase, one

needs to calculate a feature coefficient vector h for a single

test vector x with a given feature matrix W obtained during

the feature learning phase. If the Euclidean distance is used

for the representation error and the error becomes

sufficiently small during the training phase, one may

obtain h by solving a matrix equation, i.e.,

x ¼Wh: ð6Þ

In the literature (Wang et al. 2005; Zafeiriou et al. 2006)

the following two methods have been used:

h ¼WT x; ð7aÞ

h ¼ ðWT WÞ�1WT x: ð7bÞ

The matrix transpose method (7a) is exact only for

orthogonal basis vectors. Although the sparsity constraint

on W may result in near-orthogonal basis vectors, it usually

causes big errors on the calculated h. The matrix pseudo-

inverse method (7b) results in a minimum error solution.

However, the non-negativity of h is not guaranteed. The

standard NMF updating rule for H with a fixed W had not

been used for the solution. It is well known that the NMF

algorithm may not converge to a unique solution (Laurberg

et al. 2008), and this can cause a serious problem for

classification tasks.

Unfortunately the addition of extra terms in (1) for

discriminant features makes the second problem more

serious. Equation (6) is no longer an appropriate solu-

tion to minimize (1), and (7a, b) may cause bigger errors

even for training data. To resolve this problem the

discriminant term in (3a, b) was also defined for WTX,

not for the H (Kotsia et al. 2007). However, it is natural

to utilize the feature coefficients H of part-based rep-

resentation for the classification. In the following sec-

tion we present a new method that resolves this

problem.

ENMF ¼

1

2MN
X�WHk k2¼ 1

2MN

XM

m¼1

XN

n¼1

Xmn �
XR

r¼1

WmrHrn

 !2

1

MN
DKLðX WHj Þ ¼ 1

MN

XM

m¼1

XN

n¼1

Xmn log
XmnPR

r¼1 WmrHrn

� Xmn þ
XR

r¼1

WmrHrn

 !
;

8
>>>>><

>>>>>:

ð2a; bÞ

ED ¼

PR
r¼1

PK
k¼1 Nk lrk � lrð Þ2

PR
r¼1

PN
n¼1 Hrm � lrkðnÞ

� �2
;

1

2NR

XR

r¼1

XK

k¼1

Nk lrk � lrð Þ2� 1

2NR

XR

r¼1

XN

n¼1

Hrn � lrkðnÞ

� �2

;

8
>>>>><

>>>>>:

ð3a; bÞ
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A new discriminant NMF (dNMF) algorithm

In this section we describe a new dNMF algorithm which

maximizes discriminant performance while maintaining

the representation capability. It shares the same philosophy

with the recent DNMF (Zafeiriou et al. 2006; Kotsia et al.

2007) or Fisher NMF (FNMF) (Wang et al. 2005) algo-

rithms that combine NMF and LDA. However, the pro-

posed dNMF algorithm resolves several important

problems shown by DNMF and FNMF. Unlike the previ-

ous algorithms, we maintain the part-based representation

of the NMF algorithm and only make slight modifications

for the discriminant performance, and use a lower character

‘d’ in the name.

For the proposed dNMF algorithm the cost function is

still written as (1). However, to compare with previous

algorithms, two distinct points need be mentioned. First,

we prefer to use Euclidean distance (3a, b) instead of

Kullback–Leibler divergence for the representation error.

Secondly, only the between-class variance, i.e., the first

term in (3a, b), is used instead of the Fisher discriminant

or the difference between the two variances. The cost

function has fourth-order polynomials of unknown W and

H, and the uniqueness of the solution is not guaranteed at

the training phase. However, it is still important to have

unique solution at the test phase. With a given W, unless

k becomes too large, the resulting cost function becomes a

quadratic convex function of H. The cost function may

become concave for very large k values. Even with the

non-negative constraint it still has only one minimum,

therefore it has a unique solution of feature coefficients

for a test vector. Of course the updating rule needs be

designed carefully for the unique convergence in the non-

negative subspace. Although uniqueness is not guaranteed

at the feature learning phase, uniqueness of the extracted

features at the latter extraction phase is much more

important for classification tasks. Also, the calculation of

within-class variance requires the class label which is not

provided for the test data. Therefore, by removing the

within-class variance term, one can reduce the mismatch

between the cost functions at the feature learning and

feature extraction phases. The effect of the still-remaining

between-class variance term for the test data will be dis-

cussed latter.

Unlike the standard NMF (Lee and Seung 1999) and

recent discriminant versions (Wang et al. 2005; Zafeiriou

et al. 2006; Kotsia et al. 2007), we normalize H instead of

W. Since the discriminant function is defined in terms of

the feature coefficients H, it is important to scale H prop-

erly. Also, with the proper scaling of H, the maximization

of the between-class variance may naturally minimize the

within-class variance.

Now the steepest-descent learning algorithm becomes

W(W� gW �
1

MN
XHT þ 1

MN
WHHT þ a

RM
W

� �
;

ð8aÞ

H( H� gH �
1

MN
WT Xþ 1

MN
WT WXþ b

RN
H

�

� k
RN

HðMc �MaÞ
�
;

ð8bÞ

where the averaging matrices Ma over all samples and Mc

for each class are defined as

Ma ¼
1

N

1 1 1 � � � 1

� � � � � �
� � � � � �
1 1 1 � � � 1

2
664

3
775 ¼

1

N
IN ;

Mc ¼

IN1
=N1 0 0 0 0 0 0
0 IN1

=N2 0 0 0 0 0
� � � � � �

0 0 0 � � � INK
=NK

2

664

3

775

ð9Þ

Here IN is an N 9 N matrix for which all elements are 1,

and 0 is a matrix with all 0 elements of appropriate size. Ni

denotes the number of learning samples in the ith class. By

properly choosing learning rates gW and gH, one obtains

multiplicative update rules as

Wmr  Wmr

XHT
� �

mr

WHHT þ a N
R W

� �
mr

ð10aÞ

Hrn ( Hrn

WT Xþ k M
R HMc

� �
rn

WT WHþ b M
R Hþ k M

R HMa

� �
rn

: ð10bÞ

Here (�)mr denotes the rth element of mth column of a

matrix. Then, the normalization of H, i.e.,

Hrn  Hrn

,
PN

n0 ¼1

Hrn
0 =N

 !
ð11Þ

also results in HMa = IN. These include slight changes

from the original multiplicative learning rule for the spar-

sity and discriminant power.

During the feature extraction phase we used a fixed

feature matrix W obtained during the feature learning

phase, and calculated h for each test vector x separately.

Therefore, the between-class variance term could not be

used. However, with a small k value, one may neglect the

second term in (1). The resulting update rule for each test

vector h is now given as

hr ( hr

WT x
� �

r

WT Whþ b M
R h

� �
r

; ð12Þ
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which is basically the same as that of standard NMF with a

sparsity constraint.

The mismatch between the cost functions of the feature

learning and feature extraction phases naturally results in

differences between h values even for the same training

vectors. One may turn this difficulty into an advantage. For

the same training data X, due to the discriminant term, the

learning rule (10a, b) results in a higher Fisher discriminant

value than that of (12). During the learning one may check

Fisher discriminant values of the learned data by (12) and

stop the learning process at the highest value. To avoid

overfitting, it is common practice to check the performance

on a separate validation database and stop learning process.

In the proposed scheme we used the same database, but a

different performance measure could be used for the vali-

dation. To reduce mismatches between the training and test

data classifiers should be trained with the feature coeffi-

cients obtained by (12), not by (10a, b).

The utilization of (12) for the feature extraction requires

uniqueness of the converged feature coefficients h’s. The

cost function (1) with a small or zero k and a fixed W is a

convex quadratic function, which has a unique minimum

point. As shown in Fig. 1, only one minimum point (‘d’)

exists even in non-negative subspace. Therefore, a gradi-

ent-based minimization algorithm is most likely to find the

minimum point. However, there is one possible problem. If

one of the non-zero coefficients accidently becomes zero,

the multiplicative rule (12) has difficulty in recovering. The

cross (‘x’) points in Fig. 1a, b show this cases. As shown

by the dotted line in Fig. 1b, we try to avoid this issue by

initializing far from zero and allowing only small changes

for each update. At each update we calculate the difference

between the previous and new costs. If the cost decreases

faster than a certain threshold, we move the new position to

the middle of the previous position and new-position-to-be

as

hnew
r  ðhnew

r þ hprev
r Þ=2: ð13Þ

It is equivalent to reduce the learning rate by a half.

Another popular method for NMF is to use the pseudo-

inverse (7b) and project into non-negative subspace by

setting all negative values to 0. Although this projection

method is computationally efficient, especially for a small

number of features, it may fail to converge to the minimum

point (‘d’) and result in too many zeros (‘x’) as shown in

Fig. 1c. Therefore, we cannot use the projection method for

classification tasks.

Table 1 summarizes the new dNMF algorithm in regard

to classification tasks, and Table 2 compares it with pre-

vious DNMF algorithms. The proposed dNMF has minimal

mismatch between h-update rules for both feature learning

and feature extraction phases. Also, the feature extraction

rule guarantees a unique solution from a fixed feature

Fig. 1 Equal-contour lines and

gradient-descent searches for

quadratic convex minimization

problems. a The original

minimum is located in the non-

negative space; b the original

minimum has one negative

value; c the original minimum

has two negative values. The

circle represents the minimum

position in non-negative space,

while the cross symbol
represents possible false

convergence points
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vectors W for a quadratic convex optimization problem.

On the other hand, the DNMF and CSDNMF result in

different feature coefficient vector h’s from feature learn-

ing and feature extraction rules even for the same data.

Therefore, the maximization of discriminant power at the

DNMF learning phase does not correspond to the maxi-

mization at the feature extraction phase. The PGDNMF

solves this problem by introducing another vector

h0 = WTx for the discriminant measure (Kotsia et al.

2007). However, the new vector h0 is no longer interpret-

able as feature coefficients of the part-based representation.

The other main difference comes from the normalization in

the feature learning phase. Since the discriminant term for

the cost function is represented by the feature coefficient

H, it is natural to normalize H instead of W. With the H-

normalization all features have an equal contribution to the

overall discriminant measure through the between-class

variance (and also within-class variance), while W-nor-

malization will assign higher weights to the features with

larger H values. Therefore, the maximization of discrimi-

Table 1 Pseudo-code for the developed dNMF feature learning and

classifier training

Feature learning phase

Obtain training data X and their class labels, and randomly

initialize W and H

Do until convergence

Update W and H by (10a, b) and normalize H by (11) for a

certain number of epochs

Update h’s for each column of X with a fixed W by (12) until

convergence

Calculate Fisher discriminant value from h’s for the validation

End loop

Classifier training phase

Train a classifier with h’s obtained during the feature learning

phase

Classifier testing phase

Obtain test data X0, and randomly initialize h’s

Update h’s for each column of X0 with the obtained W by (12)

until convergence

Test the classifier

Table 2 Comparison of proposed dNMF with previous discriminant NMF algorithms

Algorithm Feature learning phase Feature extraction

phase

Representation

error

Discriminant

power

W and H update

rules

Normalization h Update rule

LNMF (Wang et al. 2005) KL-divergence (Sb - Sw) of H Multiplicative Column of W Not explained

DNMF/CSDNMF (Zafeiriou et al.

2006)

KL-divergence (Sb - Sw) of H Fixed point Column of W WTx or W?x

PGDNMF (Kotsia et al. 2007) KL-divergence (Sb - Sw) of WTx Projected gradient Column of W WTx

Previous dNMF (Kim et al. 2009) Euclidean distance Sb/Sw of H Gradient Column of W Gradient update of h

dNMF (proposed) Euclidean distance Sb of H Multiplicative Row of H Multiplicative update of h

Fig. 2 Basic simulated music

data. a Time-dependent

waveforms of four temporal

modulation classes;

b spectrograms of 16 simulated

music datasets with four

amplitude modulation types,

two harmonic structures, and

two fine spectro-temporal

patterns (with and without pitch

modulation)
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nant power will be dominated by stronger features and the

subtle difference may not be learned.

Discriminant features for simulated music classification

The developed dNMF algorithm was first tested for simu-

lated music classification problems, for which the dis-

criminant features are known. A total of 16 basic music

samples were generated with four types of temporal

amplitude modulation, two types of harmonic structure (all

harmonics and odd harmonics only), and two types of fine

spectro-temporal structure (with and without pitch modu-

lation). Figure 2a shows four temporal amplitude modu-

lated signals in time, and Fig. 2b shows 16 basic

spectrograms. Then, random noises were added generating

a total of 1,200 samples.

Figure 3a–c show extracted features for three different

classification tasks from the same data, i.e. classifications

by temporal amplitude modulation, with/without pitch

modulation, and with/without even harmonics, respec-

tively. All three cases demonstrated the extraction of dis-

criminant features for the specific classification tasks, i.e.,

temporal amplitude components in (a), pitch vibration in

(b), and even and odd harmonics in (c). Even when

the number of features was set incorrectly, as shown in

Fig. 3d, the dNMF algorithm successfully extracted the

discriminant features. It is interesting to note that even

though the dNMF algorithm tried to increase discriminant

power, some features were not particularly discriminant.

This is due to the fact that all features need to form a

complete set for data representation, which may require

some common features.

Mismatch between the feature learning and feature

extraction phases

We also extracted discriminant features from ORL face

image database (http://www.cam-orl.co.uk) and showed

the mismatch between the feature coefficients obtained

during the feature learning phase and feature extraction

phase. The ORL database has 40 classes (persons) and 10

facial images were taken at different times for each person.

Each image has 28 9 23 pixels and was transformed into

1-D vector.

In Fig. 4 the Fisher discriminant values are plotted as

functions of learning epoch during the learning phase of 10

features. Here parameters in (1) are set as k = 0.0004,

a = 0 and b = 0. However, data with other parameter

values show similar tendency. The blue triangles (D) show

the Fisher linear discriminant values during the learning by

(10a, b) and (11). At every 500 learning epochs we fixed

the feature vectors W and updated only the feature

Fig. 3 Feature patterns

extracted by dNMF. a Four

features for temporal amplitude

modulation classification; b two

features for simple versus

vibrato classification; c two

features for all harmonics versus

odd harmonics only; d three

features for all harmonics versus

odd harmonics only
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coefficients H until convergence by (12). The resulting

H may be used for the classifiers in the dNMF algorithm

and shown as red circles (o). Also, equation (7b) may be

used in DNMF algorithm for the feature coefficients H and

shown as green stars (*). Even with the same data X, there

exist differences between the extracted feature coefficients.

Although the supervised extraction of H with the class

label information is possible for the classifier training

stage, the class label information is not available during the

test stage. Therefore, it is better to use the same formula,

i.e., (12) or (7b), for both the classifier training and testing.

Although both extracted feature coefficients with (12) and

(7b) show smaller Fisher discriminant values than those at

the feature learning phase (10a, b), the proposed dNMF

update rule (12) results in higher Fisher discriminant values

and smaller distortion from the learned features during the

feature learning phase than the DNMF rule (7b).

Emotion recognition from speech

To test the performance of the proposed dNMF algorithm

for classification tasks we chose a speech emotion recog-

nition task. Since the dominant information in speech is

phonetic, feature extraction algorithms usually extract

phonetic features. The emotion-dependent signal is much

weaker than the phonetic signal, and it is very important to

extract these weaker emotional features for the emotion

classification task. Therefore, it is an excellent test problem

for discriminant feature extraction algorithms.

We used the Berlin emotional speech database devel-

oped by the Technical University of Berlin (Burkhardt

et al. 2005). Ten actors (five females and five males) spoke

ten German utterances (five short and five longer sen-

tences) with seven different emotions. The emotional states

were defined as neutral, happy, angry, sad, boredom, fear,

and disgust. In total, 535 utterances were recorded with a

48 kHz sampling frequency that was later downsampled to

16 kHz. We randomly divided the database into a test set

of 424 utterances for the training and 111 utterances for the

testing.

As the baseline, we used 200 raw prosodic features

implemented by the AIBO team with an excellent emotion

recognition performance (Oudeyer 2003). This is a bottom-

up approach using an extensive feature set of low level

statistics of prosodic parameters. The features were based

on five time series, i.e. intensity, lowpassed intensity,

highpassed intensity, pitch, and MFCCs. Next, four series

were derived from each time series, i.e. minima, maxima,

duration between local extremes, and the series itself.

Finally ten statistical measures, i.e., mean, variance, max-

imum, minimum, median, first quartile, range, third quar-

tile, between quartile range, and mean absolute local

derivatives, were estimated from each of the twenty

derived series. Therefore, 200 (5 9 4 9 10) raw features

were extracted from each speech utterance. Many of the

raw features are highly correlated each other, and therefore

an efficient dimension reduction may be advantageous.

In Figs. 5 and 6 we show the results of ten features with

k = 0.002 as a typical example. Also, for a fair compari-

son, a and b are set to zero for both the standard NMF and

the proposed dNMF. The results of the other cases show a

similar trend. In Fig. 5 both the Fisher discriminant values

and the representation error are plotted during the feature

learning phase. Figure 5a shows basically the same infor-

mation with Fig. 4 on different data. However, the hori-

zontal axis is not the learning epoch. To understand the

effects of mismatch between the feature learning and fea-

ture extraction rules, in Fig. 5a we show the Fisher dis-

criminant values from re-calculated feature coefficients

H as functions of the Fisher discriminant value during the

feature learning. We paused the dNMF learning at certain

Fisher values (from 1 to 5 with 0.5 intervals) and validated

the features W by re-calculating the feature coefficients

H without the label information. The re-calculation was

made by four methods, i.e., 3 variants of dNMF updates

(the matrix transpose method in (7a), the matrix pseudo-

inverse method in (7b) with and without non-negative

projection) and the proposed dNMF updates in (12). Fig-

ure 5a shows the re-calculated Fisher discriminant values,

which are much smaller than those obtained during dNMF

feature learning with class label information. It clearly

shows the effect of a mismatch between the feature

learning and feature extraction rules. With higher Fisher

discriminant values during the dNMF training, the contri-

bution of the discriminant term kED on the total cost E in

(1) becomes higher, which causes greater differences

between the two features. Actually, the re-calculation of

Fig. 4 Fisher discriminant values for ORL face image database
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H without the class labels resulted in smaller between-class

variance of feature coefficients and smaller Fisher dis-

criminant values. This trend becomes stronger with higher

Fisher discriminant values. However, the proposed dNMF

updates still resulted in higher discriminant values than the

other methods. As the dNMF-updated Fisher value

increases, the re-calculated Fisher values increase and then

decrease. This may be understood as overfitting, and one

may stop the dNMF learning at this peak.

As shown in Fig. 5b, the transposed matrix method

resulted in unacceptably high representation error and a

small Fisher discriminant value. Even at a very small Fisher

discriminant value of 0.5, the representation errors of the

other methods had already converged to a small enough

value and did not change much during the latter fine-tuning

stage for the other methods. However, the non-negative

projected pseudo-inverse method resulted in a relatively

higher representation error, especially with high Fisher

discriminant values. The pseudo-inverse matrix was calcu-

lated for the minimum representation error and naturally the

DNMF resulted in the smallest error. However, the extracted

features showed lower discriminant power. The proposed

dNMF algorithm provided excellent results with both small

representation error and high discriminant values.

In Fig. 6a–e the Fisher discriminant values of each

feature are shown separately. Here the discriminant values

of dNMF features are compared with those of other popular

feature extraction algorithms, i.e., PCA, LDA, and NMF,

for the training data. Since the raw features are non-neg-

ative, the standard ICA algorithm is not straightforward to

apply. First of all the discriminant values are quite different

from feature to feature. Also, the discriminant values are

highest with LDA, and those of PCA and NMF are lowest.

The proposed dNMF algorithm results in slightly different

feature coefficients during the feature learning by (10a, b)

and feature extraction by (12) even with the same training

data. The statistics for the test data are even more different.

It is also worth noting that the feature coefficients for LDA

are meaningful for the first six features only in the seven-

class classification task.

For the recognition a support vector machine (SVM)

was used as the classifier, with a one-versus-the-other

tactic. The class with the maximum output value among the

seven SVMs was regarded as the final decision. As shown

in Fig. 7, PCA and NMF do not show high recognition

rates up to 40 features. LDA results in good recognition

rates even with 5–10 features only, but does not improve

with more features. Also DNMF algorithm shows good

performance with smaller number of features, but results in

early saturation. The proposed dNMF algorithm improves

recognition performance with more features. With only 40

dNMF features the recognition rate becomes similar or

better than the black horizontal line that represents the

recognition rate with all 200 AIBO features. These results

agree with the theory presented in this paper, and also

demonstrate the usefulness of the developed dNMF algo-

rithm for discriminant features.

Recently it had been reported that the combined pro-

sodic and modulation frequency features resulted in about

87 % recognition rate for the Berlin database (Wu et al.

2011). More training samples and the speaker normaliza-

tion had been incorporated for the high recognition rate. In

this paper we use prosodic features only, and focus on the

reduction of the number of features.

Fig. 5 a Re-calculated Fisher discriminant values and b representa-

tion errors at different stages of dNMF learning. The feature learning

phase is discredited by the Fisher discriminant value during the

dNMF learning. The re-calculated Fisher discriminant values and

representation errors were obtained using the same training data

X and feature vectors W, but different calculation algorithms were

used for the feature coefficients H
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Conclusion and future research

In this paper we present a new dNMF algorithm, which

maximizes both representation and discriminant power

during the feature learning phase. The cost function and

updating rules for both the feature learning and feature

extraction phases have been carefully designed to over-

come the problems shown by previous dNMF algorithms.

Although slight differences still exist between feature

coefficient update rules for the feature learning and the

feature extraction, we found that the discriminant power of

extracted features can be made higher by increasing the

Fisher discriminant value during the dNMF learning. This

learning process may incorporate the early stopping tactic

by checking a discriminant value of the extracted feature

coefficients. The dNMF algorithm also results in excellent

recognition rates with a considerably smaller number of

features, i.e., 40 compared to 200 used in the AIBO

baseline. The dNMF algorithm is useful for classifying

patterns based on subtle differences, not the primary

information.

In future, we will work on algorithms that self-adjust the

weighting parameters (k, a, and b) in the cost function (1).

The dNMF cost function consists of the representation

error ENMF and the discriminant power ED. The optimum

features may be extracted based on the tradeoff between

the two cost terms by adjusting the weighting factor k. The

optimum weights for sparsity will also be investigated.

Also, nonlinear and multilayer extension of the dNMF will

be studied.
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