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Abstract

The long-term sequelae of adverse early-life experiences have long been a focus in psychiatry,
with a historic neurobiological emphasis on physiological systems that are demonstrably stress-
responsive, such as the hypothalamic-pituitary-adrenal (HPA) axis and neuroimmune function.
However, there has been increasing recognition in the general medical literature that such sequelae
might encompass more pervasive alterations in health status and physiology. Recent findings in
telomere biology have suggested a new avenue for exploring the adverse health effects of
childhood maltreatment. Telomere length in proliferative tissues declines with cell replication, and
the effect can be accelerated by such factors as inflammation, oxidative stress, radiation, and
toxins. Reduced telomere length, as a proxy for cellular aging, has been associated with numerous
chronic somatic diseases that are generally considered to be diseases of aging, such as diabetes,
cancer, and heart disease. More recently, shorter telomeres have been demonstrated in several
psychiatric conditions, particularly depression. Sustained psychosocial stress of a variety of types
in adulthood appears to be associated with shorter telomeres. Now, emerging work suggests a
robust, and perhaps dose-dependent, relationship with early-life stress. These findings present new
opportunities to re-conceptualize the complex relationships between experience, physical and
psychiatric disease, and aging.
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That early life experiences have enduring sequelae has been a central tenet of psychiatry for
over a century. Initial formulations of this idea emphasized clinical implications, particularly
in classical psychoanalytic theory, and it is now well documented that childhood adversity
increases risk for major depression (MDD), bipolar disorder, anxiety disorders, substance
disorders, schizophrenia, eating disorders, personality disorders, and suicidality (1). Risk
appears to be dose-dependent, and these disorders may have a more virulent course in
individuals with a history of childhood maltreatment (1).

More recently, an etiological role for early-life stress has been documented for several
prevalent somatic conditions, including irritable bowel syndrome (2), fibromyalgia (3),
chronic fatigue syndrome (4), obesity (5), migraine (6), and chronic pain (7). These
disorders have in common an unclear, perhaps multifactorial, etiology and pathophysiology.
However, some investigators suggest that early environmental factors can also impact the
risk for conditions generally thought to have a relatively clear pathogenesis, such as
cardiovascular disease and type 2 diabetes (8). Indeed, individuals with a history of early-
life stress show increased risk for premature death, with one recent study reporting that
adults with six or more adverse childhood experiences died nearly 20 years earlier than
those without (9).

Efforts to elucidate how early-life stress is transduced into physiological dysfunction and
clinical impairment have focused on the hypothalamic-pituitary-adrenal (HPA) axis (1), not
surprisingly given the historic centrality of that system in understanding the stress response.
Other research has provided evidence for the role of neuroimmunological mechanisms in
linking early-life stress and disease (10). Now, rapidly emerging clinical findings suggest
that telomere biology might offer a new avenue for exploring the adverse health effects of
childhood maltreatment. This review will examine those findings, contextualize them in
light of current understanding of the relationship between telomeres, illness, and stress, and
highlight key methodological issues requiring consideration as the field moves forward.

Telomeres: Basic Concepts

Telomeres (from the Greek felos [end] and meros [part]) are DNA-protein complexes at the
ends of chromosomes, composed of tandem TTAGGG repeats ranging from a few to 15
kilobases in length. Their critical role in maintaining chromosomal stability was first
described in the 1930s by McClintock (11) and Muller (12). It is now established that
telomeres shorten with each cell division (13), and that maintenance of telomere function
depends on both a minimal length of TTAGGG repeats and telomere-binding proteins (14).
Telomere length can be maintained by the enzyme telomerase, a ribonucleoprotein reverse
transcriptase mainly expressed in stem cells, germ cells, and regenerating tissues. However,
there is insufficient telomerase in somatic cells to indefinitely maintain telomere length, and
most tissues have very low telomerase levels. Consequently, telomeres shorten with age in
most somatic tissues, and telomere length can serve as a kind of biological counter, ticking
off the passage of time with each cell division (15). Telomere shortening is also influenced
by recombination, epigenetic regulation, and genetic factors, as well as oxidative stress, and
the ability of telomerase to counteract these influences is limited.

Measurement of Telomere Length

For years the gold standard for measuring telomere length has been the Southern blot. There
are significant limitations to this method: it is time-consuming and labor-intensive,
significant amounts of genomic DNA are required, deducing telomere length from a
Southern blot smear is problematic, and there are potential issues of reproducibility.
Cawthon (16) developed an easier method utilizing quantitative polymerase chain reaction
(PCR), which mimics DNA replication. Cawthon’s method entails separate PCRs to
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measure telomeres (T), which are normalized to a single copy gene (S), yielding a T/S ratio
as a measure of telomere length. Quantitative PCR demonstrates good correlation with
results from Southern blot analyses, and is now widely used. However, this method has
greater measurement error than the Southern blot and can show substantial variability across
laboratories (17), necessitating careful quality controls and multiple sampling to assure
reliability.

There are also methods employing hybridization coupled with cytometry (18, 19), designed
to measure the shortest telomeres and telomeres from specific chromosomes. Once the
shortest telomeres are depleted, cells either die or become senescent, so the length of the
shortest telomeres is a better indicator of cellular aging than average telomere length. A
more detailed discussion of telomere measurement is available in Aubert ef a/. (20). Most
psychiatric studies examining telomere length have used either Southern blot analyses or
Cawthon’s quantitative PCR method. Since individual laboratories internally calibrate their
measurements of telomere length, it can be difficult to compare measurements across
groups.

Cross-sectional vs. Longitudinal Approaches in Studies of Telomere

Length

A major drawback to using telomere length as a clinical measure is the high variability
between individuals, which is present at birth (21, 22). Moreover, although telomere length
is equal between the sexes at birth, shortening with age occurs more rapidly in males than
females, and rates may also differ between ethnic groups (23). These factors limit the power
of cross-sectional studies, which utilize measurements at a single time-point. Such studies
require large sample sizes because of the marked variability of telomere length, as well as
careful controls for age and sex. Aviv et al. (22) estimates that longitudinal studies,
measuring actual telomere erosion rates within individuals over time, would require five
times fewer subjects than cross-sectional ones. Longitudinal studies also better support an
assertion of causality by the independent variable of interest, which is severely constrained
in cross-sectional designs.

Despite these considerations, very few longitudinal telomere studies have been conducted,
and their dearth is particularly evident in work involving psychiatric or stress-related
conditions. An alternative approach would be to standardize telomere length in an easily
accessible proliferative tissue, representing the effects of exposure to the variable of interest,
against telomere length in a postmitotic source, since telomere lengths in such tissues
change little from birth. However, obtaining samples from postmitotic tissues (i.e., nerves,
skeletal muscle, bone) presents practical obstacles. Indeed, even peripheral blood can be
difficult to obtain in a longitudinal context.

Telomeres and Somatic Disease

Because of their prominence in aging (24), telomeres have been intensively investigated in
medical conditions associated with aging. Most clinical studies have utilized telomeres
derived from leukocytes, since peripheral blood is more easily obtained than most other
tissues. The major determinants of aging, including cell replication, inflammation, and
oxidative stress, are all demonstrable in leukocyte telomeres (15, 24, 25). A potential pitfall
to this approach is that telomere length may differ among different leukocyte subsets, so that
factors favoring predominance of one subset over another can introduce bias (22). If such a
factor is of major interest (e.g., HIV), telomere length might be more appropriately
ascertained in a specific subset. Similarly, since telomere length reflects the leukocyte’s
replicative history, any condition that increases leukocyte turnover can introduce bias.
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Controlling for factors that alter leukocyte turnover or subsets (e.g., acute or chronic
inflammatory conditions) can help minimize bias. An alternative approach is to use buccal
mucosa cells obtained by oral swab, which is less invasive than venipuncture and therefore
ideal for studies with children (26-28), although at present there is less experience with this
tissue source.

A key finding from clinical studies is that alteration of leukocyte telomere dynamics reflects
organ dysfunction elsewhere in the body (25). A prime example is cardiovascular disease, in
which reduced telomere length is observed not only in leukocytes, but also in myocardial
and arterial wall tissue (29, 30). Findings in other medical conditions, including cancers (31,
32), stroke (33, 34), diabetes (35-37), and autoimmune diseases (38), support the notion that
reduced telomere length in leukocytes correlates with shorter telomeres in the target tissue.

A possible explanation for this observation could be that common underlying mechanisms
for these diseases also manifest themselves in leukocytes. For example, oxidative stress,
which is caused by age-related mitochondrial dysfunction, is involved in diabetes,
cardiovascular disease, and cancer, and affects tissues in general. Telomerase could also be
involved, perhaps as a mediating agent. Indeed, some evidence implicates telomerase in the
cell survival-promoting actions of brain-derived neurotrophic factor (BDNF) in early
postmitotic hippocampal neurons (39), which could be relevant to the association of
telomere length with stress and depression, discussed below.

While telomere length in these conditions could be merely a disease marker (i.e., an
indicator of ongoing disease), other evidence implicates telomere length as a risk marker
(i.e., a predictor of the likelihood of disease despite current clinical health). For example, in
a study of healthy older adults, Cawthon et a/. (40) found telomere length highly predictive
of eventual mortality, even though cause of death was variable. Other studies implicate
telomere length as a risk marker for cancer (41, 42) and hypertension (43). Reports of
reduced telomere length in association with smoking (44), obesity (45), and alcohol abuse
(46) are consistent with these conditions as risk factors for increased mortality.

Telomere dysfunction can play a causal role in disease. Telomerase deficiency has been
causally linked with the genetic disorder dyskeratosis congenita, familial idiopathic
pulmonary fibrosis, and familial bone marrow failure syndromes (15). Progeroid syndromes,
characterized by clinical manifestations of accelerated aging and molecular evidence of
defective DNA repair, may also reflect causal involvement of telomeres (15). A preliminary
report suggests an increased rate of neuropsychiatric disorders in dyskeratosis congenita
(47). At this point, it would be premature to exclude an etiologic contribution of telomere
dysfunction in other conditions.

Telomeres and Psychiatric Conditions

Independent of stress, most of the findings implicating telomeres in psychiatry have
involved mood disorders. In an initial epidemiological study (N=433), Lung et al. (48)
reported an association of reduced telomere length with the high-activity allele of the
monoamine oxidase A (MAOA) promoter polymorphism, which has been linked to
aggression and impulsivity; this association was later found mediated by MDD (49). Simon
et al. (50) demonstrated shorter telomeres in patients with MDD (N=15) or bipolar disorder
(type I or 11 not stated) (N=29) compared with healthy controls (N=44) (50). This was
replicated by Hartmann et a/. (51), who found no effect of illness duration or severity, or
nature or intensity of treatment, in a study comparing MDD patients (N=54) with controls
(N=20). Elvsashagen et al. (52), describing reduced telomere length in bipolar Il patients
(N=28) compared with controls (N=28), detected an association with lifetime humber of
depressive episodes, but not illness duration. Wikgren et al. (53), reporting shorter telomeres
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in MDD patients (N=91) vs. controls (N=451), also noted an association with
hypocortisolism in both groups. Wolkowitz et a/. (54) found no difference in telomere length
between drug-free MDD (N=18) and control (N=17) subjects, but inverse correlations with
lifetime depression exposure and measures of oxidative stress and inflammation. This group
also reported increased telomerase activity in drug-free MDD patients vs. controls, with
superior antidepressant responses in patients showing the greatest further increases (55). In
an epidemiological study of 952 patients with coronary heart disease, Hoen et al. (56) found
MDD associated with shorter telomeres. While these studies all utilized leukocytes, no
differences from controls were found in telomere length in occipital cortex of patients with
MDD (N=24) (57) or in cerebellar gray matter of patients with MDD (N=15), bipolar
disorder (N=46), or schizophrenia (N=46) (58).

Shorter leukocyte telomeres have been reported in schizophrenia (59), treatment-resistant
schizophrenia (60), obstructive sleep apnea (61), migraine (62), mild cognitive impairment
(63), and Alzheimer disease (64) (one study failed to replicate the latter two findings (65)).
Reduced telomere length correlated with decreased mental health in chronic heart failure
(66) (but not in community-dwelling elderly men (67)), poorer cognition in community-
dwelling elders (68) and healthy women (69), unspecified poor sleep quality in healthy
women (70), and pessimism in postmenopausal women (71). It remains to be clarified
whether the shorter telomeres observed in these heterogeneous conditions reflect a specific
or nonspecific pre-existing marker of illness vulnerability, a specific or nonspecific marker
of ongoing disease, or an entirely nonspecific sequela of the psychosocial stress or lifestyle
factors (e.g., smoking, obesity) with which these conditions are associated.

Telomeres and Psychosocial Stress

It is established that biophysical stress and stressors (e.g., radiation, toxins) (31, 32) can
impact telomere dynamics. However, Epel ef al. (72), in a study of mothers caring for either
a chronically ill (N=39) or healthy (N=19) child, were the first to demonstrate shorter
telomeres (and reduced telomerase activity) in association with psychosocial stress. In a
follow-up study of 62 women, these investigators found that reduced telomere length
correlated with increased nocturnal urinary cortisol and catecholamines, while low
telomerase activity correlated with increased nocturnal urinary epinephrine and greater
decreases in heart rate variability during the Trier Social Stress Test (TSST) (73).
Subsequent studies have examined telomere length and telomerase activity in various stress-
related contexts. Damjanovic ef al. (74) reported shorter telomeres and increased telomerase
activity in caregivers of Alzheimer’s disease patients (N=41) compared with controls
(N=41). Kiefer et al. (75), in a study of 56 women, observed reduced telomere length with
greater dietary restraint, defined as chronic preoccupation with weight and attempts at
restricting food intake leading to chronic psychological stress. In an epidemiological study
of 647 sisters of women with breast cancer, Parks et al. (76) found that reduced telomere
length correlated with perceived stress, especially in women who were =55 years old, had a
recent major loss, or had higher morning urinary epinephrine levels. Humphreys et al. (77)
detected shorter telomeres in women with a history of intimate partner violence (N=61)
compared with controls (N=41). In a study of female caregivers of dementia partners (N=14)
and controls (N=9), Tomiyama et a/. (78) found that shorter telomeres were associated with
greater salivary cortisol responses to the TSST and higher overnight urinary free cortisol. In
one expanded sample from this study (N=22 caregivers, N=22 controls), telomerase activity
was lower at baseline in caregivers but rose similarly in both groups during the TSST (79);
in another expanded sample (N=27 caregivers, N=23 controls), reduced telomere length
correlated with higher anticipatory threat appraisal, which correlated in turn with caregiver
status, even though telomere length did not differ between the two groups (80). Kroenke et
al. (26) found that buccal telomere length was inversely correlated with heart rate and
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cortisol reactivity in 78 children during mildly stressful laboratory challenge tasks. Malan et
al. (81) observed shorter telomeres in women who developed post-traumatic stress disorder
(PTSD) following rape (N=9) compared with those who did not (N=53). In a study of
patients with (N=18) and without (N=18) chronic osteoarthritis pain, Sibille et a/. (82) found
reduced telomere length in those with chronic pain and high stress vs. those with no pain and
low stress. Reasoning that hostility correlates with heightened stress reactivity, Brydon et al.
(83) found hostility inversely correlated with telomere length and positively correlated with
telomerase activity, in men but not women, in an epidemiological sample of 434 adults.
Supporting these observational findings in humans, Kotrschal et a/. (84) showed that a six-
month exposure to reproductive stress in female mice and crowding stress in male mice
induced telomere shortening compared with unstressed controls.

Reduced telomere length has been correlated with several sociodemographic variables
thought to represent proxies for sustained psychosocial stress, including lower
socioeconomic status (27, 85), African-American ethnicity (23), lower educational
attainment (86, 87), and current and long-term full-time work schedule (88).

Telomeres and Early-Life Stress

Tyrka et al. (89) offered the first evidence linking early-life stress with reduced telomere
length, in a study of physically and psychiatrically healthy adults with (N=10) or without
(N=21) a reported history of childhood maltreatment. Eight other studies have since
appeared examining this issue, a remarkable number given the short time interval (Table 1).
In response to Tyrka et al. (89), Glass et al. (90) presented data on adults from the Twins UK
cohort in which they detected no difference in telomere length between individuals who
endorsed childhood sexual (N=34) or physical abuse (N=20) compared to those who did not
(N=516 and 520, respectively). However, Kananen et a/. (91) confirmed an association of
shorter telomere length with increasing number of reported childhood adverse life events in
N=974 adults in the Finnish Health 2000 project, even absent a relationship with current
psychological distress or DSM-1V anxiety disorder diagnosis. Kiecolt-Glaser et al. (92)
reported that shorter telomeres were associated with multiple childhood adversities in a
study comprising dementia family caregivers (N=58) and controls (N=74). Surtees et al.
(93), studying 4,441 women in the UK European Prospective Investigation into Cancer
(EPIC)-Norfolk database, found that shorter telomeres correlated with increased reported
childhood adverse experiences, although not with current social adversity or emotional
health. Consistent with Malan et a/. (81), O’Donovan et al. (94) observed reduced telomere
length in adults with chronic PTSD (N=43) vs. healthy controls (N=47); however, this was
accounted for by those PTSD subjects reporting multiple categories of childhood trauma
(N=18). In the first study to show effects of early adversity on telomere length in children,
Drury et al. (95) found that greater time spent in institutional care correlated with reduced
buccal cell telomere length in 100 children aged 6-10 years in the prospective Bucharest
Early Intervention Project. Extending the period of vulnerability, Entringer et al. (96)
demonstrated that maternal experience of severe psychosocial stress during pregnancy was
associated with shorter telomeres in young adult offspring (N=45) vs. controls (N=49). In
the only prospective longitudinal study thus far, involving 236 children tested at age 5 and
again at age 10 years, Shalev et al. (28) found greater buccal cell telomere shortening in
children exposed to =2 forms of violence (N=39) compared to those unexposed (N=128) or
less-exposed (N=69). Taken together, these studies support a relationship between early-life
stress and reduced telomere length, and strongly suggest that this effect is dose-dependent.
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Telomeres and Early-Life Stress: Mechanisms

In their review of the neurobiological interrelationship between stress, depression, and
aging, Wolkowitz et al. (97) observe that many of the biochemical derangements in
depression, and in chronic stress, result in cellular effects indistinguishable from aging.
Indeed, they propose that the high comorbidity of depression with diseases of aging, such as
cardiovascular disease, cerebrovascular disease, and metabolic syndrome, suggests that
stress-engendered depression is itself such a disease. In this conceptualization, telomere
shortening would be an expected concomitant, and/or consequence, of the HPA axis
dysregulation, enhanced glutamatergic excitotoxicity, increased oxidative stress, impaired
neurotrophin function, and immune dysregulation reported in chronic stress and depression.
Supporting this is evidence that cortisol can reduce telomerase activity (78, 98).

However, while examination of the biochemistry of aging and telomere dynamics (15, 24,
25, 31, 32) is beyond the present scope, there has yet to be direct demonstration of these
mechanisms in affected human subjects or relevant animal models. Similarly, even as
attention has turned to the role of epigenetics as a major transductive mechanism for adult
sequelae of early-life stress (99, 100), there are still no direct studies of telomere dynamics
in this regard. Finally, as noted above, problematic lifestyle factors (e.g., smoking, obesity,
alcohol abuse) are frequent sequelae of early-life stress. While most studies of telomere
length and early-life stress controlled for such influences (Table 3), it remains possible that
these or other factors could account for the association between reduced telomere length and
early-life stress.

Telomeres and Early-Life Stress: Methodological Issues

Nearly all of the clinical and epidemiological studies examining health implications of
telomere length have been cross-sectional in design with respect to telomere assessment,
limiting the ability to draw causal inferences about telomere shortening; the same is true for
all but one (28) of the nine studies addressing the effects of early-life stress (Table 1).
Analogously, assessment of early-life stress can be either prospective or retrospective; all
but two (28, 95) of the studies in this area have been retrospective.

The limitations of cross-sectional vs. longitudinal measurement of telomere length have
been discussed. How early-life stress is retrospectively ascertained and assessed is highly
variable across studies, but more systematic and comprehensive approaches seem more
likely to compensate for the bias toward false negatives (101). Several studies have found an
effect of the number of discrete childhood adversities, suggesting that early stressors may
have additive effects on telomere length. Ideally, assessment tools should have demonstrable
validity and reliability; short of that, ascertainment methods requiring the least amount of
judgment or interpretation by the subject are preferable. Such considerations may explain
why Glass et al. (90) failed to replicate an association between early-life stress and reduced
telomere length. Timing and type of early-life stress, and the impact of mitigating
psychosocial or genetic factors (“resilience factors™) (102), could also affect findings.

Effects of Therapeutic Stress Reduction on Telomeres

Epel et al. (103) have proposed that therapeutic interventions designed to mitigate adverse
effects of psychosocial stress (e.g., threat appraisal, rumination, negative affect, stress
arousal) might promote telomere maintenance. Supporting this, vigorous exercise attenuated
the correlation between perceived stress and reduced telomere length in a sample of 63
healthy women (104). In a prospective study, Jacobs et a/. (105) showed that a three-month
intensive meditation retreat increased telomerase activity in participants (N=30) compared
with controls (N=30), an effect mediated by increased perceived control and decreased
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neuroticism. Daubenmier et a/. (106) found that telomerase activity increased both in
overweight women receiving a four-month mindfulness-based intervention for stress eating
(N=47) and in wait-list controls (N=47), with increases correlated with decreased chronic
stress, anxiety, dietary restraint, dietary fat intake, cortisol, and glucose. Lin et a/. (107) have
summarized other recent work examining effects of lifestyle interventions on telomere
length and general health status.

Summary and Implications

In the four years since Aubert and Landsorp (15) published their review, telomere research
has exploded: they identified over 5,000 articles on this topic indexed in PubMed, whereas a
current search yields nearly 14,000. Most studies addressing the relationship between
telomere length, psychosocial stress, and psychiatric illness have been published during this
brief period. At present, evidence is strongest in supporting an association of reduced
telomere length with psychosocial stress and depression. Given the relationship between
stress and depression, this is not surprising; it remains to be established exactly when, how,
and why shorter telomeres are observed in these conditions.

The more recent demonstration that reduced telomere length is associated with early-life
stress poses challenges and opportunities. Should the adverse health outcomes in adults after
early adversity be conceptualized as accelerated aging, following Wolkowitz et a/. (97)? Or
can these findings be better accommodated by the dysregulated homeostasis/allostatic load
model (108) that currently predominates? Alternatively, perhaps reduced telomere length is
not even caused by early-life stress, but is rather a pre-existing (risk) or acquired (disease)
marker for those individuals who subsequently characterize their early-life experiences as
stressful. Nor has the possibility been excluded of a spurious association between early-life
stress and reduced telomere length, accounted for by other adverse health and behavioral
sequelae of childhood adversity.

The role of telomerase in understanding these findings must also be considered. Since
telomerase maintains telomere length, it might be expected that decreased telomerase
activity would result in telomere shortening, perhaps suggesting a more proximal effect of
chronic stress on this enzyme rather than on the telomere itself. However, the studies
reviewed above suggest inconsistent relationships between telomere length and telomerase
activity, and some authorities suggest that telomerase activity might compensatorily increase
in the face of stress and/or telomere shortening. These conceptual challenges, in conjunction
with the greater technical difficulty associated with the telomerase assay, limit the current
utility of telomerase activity for informing our understanding of stress and telomere length.

The early findings reviewed above raise hopes that telomere length might serve as a “deep”
biomarker of early-life stress in terms of damage done, future vulnerability, and efficacy of
therapeutic interventions. But a final caveat must acknowledge that, as in most rapidly
emerging areas, publication bias in favor of positive findings could be a significant factor in
overstating the robustness of this association. Much of the published literature is based on
studies originally designed for other purposes, with telomere findings deriving from
secondary analyses using banked blood specimens. Prospective research in this area over the
next several years will clarify whether telomere assessment will merely constitute a new
outcome measure, or serve as the basis for a new paradigm.
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