

NIH Public Access

Author Manuscript

Biol Psychiatry. Author manuscript; available in PMC 2014 January 01.

Published in final edited form as:

Biol Psychiatry. 2013 January 1; 73(1): 15–23. doi:10.1016/j.biopsych.2012.06.025.

Telomeres and Early-Life Stress: An Overview

Lawrence H. Price, M.D.^{1,3}, Hung-Teh Kao, M.D., Ph.D.^{2,3}, Darcy E. Burgers, B.A.¹, Linda L. Carpenter, M.D.^{1,3}, and Audrey R. Tyrka, M.D., Ph.D.^{1,3,*}

¹Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI

²Laboratory of Molecular Psychiatry, Butler Hospital, Providence, RI

³Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI

Abstract

The long-term sequelae of adverse early-life experiences have long been a focus in psychiatry, with a historic neurobiological emphasis on physiological systems that are demonstrably stressresponsive, such as the hypothalamic-pituitary-adrenal (HPA) axis and neuroimmune function. However, there has been increasing recognition in the general medical literature that such sequelae might encompass more pervasive alterations in health status and physiology. Recent findings in telomere biology have suggested a new avenue for exploring the adverse health effects of childhood maltreatment. Telomere length in proliferative tissues declines with cell replication, and the effect can be accelerated by such factors as inflammation, oxidative stress, radiation, and toxins. Reduced telomere length, as a proxy for cellular aging, has been associated with numerous chronic somatic diseases that are generally considered to be diseases of aging, such as diabetes, cancer, and heart disease. More recently, shorter telomeres have been demonstrated in several psychiatric conditions, particularly depression. Sustained psychosocial stress of a variety of types in adulthood appears to be associated with shorter telomeres. Now, emerging work suggests a robust, and perhaps dose-dependent, relationship with early-life stress. These findings present new opportunities to re-conceptualize the complex relationships between experience, physical and psychiatric disease, and aging.

Keywords

Telomere; telomerase; stress; early-life stress; childhood adversity; childhood maltreatment

^{© 2012} Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

^{*}Address Correspondence to: Audrey R. Tyrka, M.D., Ph.D., Butler Hospital, 345 Blackstone Blvd., Providence, RI 02906. TEL: (401) 455-6520. FAX: (401) 455-6534. Audrey_Tyrka@Brown.edu.

Financial Disclosures: Drs. Price, Carpenter and Tyrka report having received research funding from the National Institute of Health, NeoSync, Neuronetics, Medtronic, and Cyberonics. Dr. Price also received research funding from HRSA, served on advisory panels for Abbott and AstraZeneca, and served as a paid consultant to Gerson Lehrman, Wiley, Springer, Qatar National Research Fund, Alberta Heritage Foundation for Medical Research, Abbott, and AstraZeneca. Dr. Carpenter discloses consulting fees from Abbott, Cyberonics, Novartis, Wyeth, AstraZenica and Neuronetics, serving on the speakers' bureau for Neuronetics, and receiving honoraria for continuing medical education from AstraZenica. Dr. Tyrka received honoraria for continuing medical education from Lundbeck and Takeda. Dr. Kao and Ms. Burgers report no biomedical financial interests or potential conflicts of interest.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

That early life experiences have enduring sequelae has been a central tenet of psychiatry for over a century. Initial formulations of this idea emphasized clinical implications, particularly in classical psychoanalytic theory, and it is now well documented that childhood adversity increases risk for major depression (MDD), bipolar disorder, anxiety disorders, substance disorders, schizophrenia, eating disorders, personality disorders, and suicidality (1). Risk appears to be dose-dependent, and these disorders may have a more virulent course in individuals with a history of childhood maltreatment (1).

More recently, an etiological role for early-life stress has been documented for several prevalent somatic conditions, including irritable bowel syndrome (2), fibromyalgia (3), chronic fatigue syndrome (4), obesity (5), migraine (6), and chronic pain (7). These disorders have in common an unclear, perhaps multifactorial, etiology and pathophysiology. However, some investigators suggest that early environmental factors can also impact the risk for conditions generally thought to have a relatively clear pathogenesis, such as cardiovascular disease and type 2 diabetes (8). Indeed, individuals with a history of early-life stress show increased risk for premature death, with one recent study reporting that adults with six or more adverse childhood experiences died nearly 20 years earlier than those without (9).

Efforts to elucidate how early-life stress is transduced into physiological dysfunction and clinical impairment have focused on the hypothalamic-pituitary-adrenal (HPA) axis (1), not surprisingly given the historic centrality of that system in understanding the stress response. Other research has provided evidence for the role of neuroimmunological mechanisms in linking early-life stress and disease (10). Now, rapidly emerging clinical findings suggest that telomere biology might offer a new avenue for exploring the adverse health effects of childhood maltreatment. This review will examine those findings, contextualize them in light of current understanding of the relationship between telomeres, illness, and stress, and highlight key methodological issues requiring consideration as the field moves forward.

Telomeres: Basic Concepts

Telomeres (from the Greek *telos* [end] and *meros* [part]) are DNA-protein complexes at the ends of chromosomes, composed of tandem TTAGGG repeats ranging from a few to 15 kilobases in length. Their critical role in maintaining chromosomal stability was first described in the 1930s by McClintock (11) and Muller (12). It is now established that telomeres shorten with each cell division (13), and that maintenance of telomere function depends on both a minimal length of TTAGGG repeats and telomere-binding proteins (14). Telomere length can be maintained by the enzyme telomerase, a ribonucleoprotein reverse transcriptase mainly expressed in stem cells, germ cells, and regenerating tissues. However, there is insufficient telomerase in somatic cells to indefinitely maintain telomere length, and most tissues have very low telomerase levels. Consequently, telomeres shorten with age in most somatic tissues, and telomere length can serve as a kind of biological counter, ticking off the passage of time with each cell division (15). Telomere shortening is also influenced by recombination, epigenetic regulation, and genetic factors, as well as oxidative stress, and the ability of telomerase to counteract these influences is limited.

Measurement of Telomere Length

For years the gold standard for measuring telomere length has been the Southern blot. There are significant limitations to this method: it is time-consuming and labor-intensive, significant amounts of genomic DNA are required, deducing telomere length from a Southern blot smear is problematic, and there are potential issues of reproducibility. Cawthon (16) developed an easier method utilizing quantitative polymerase chain reaction (PCR), which mimics DNA replication. Cawthon's method entails separate PCRs to

measure telomeres (T), which are normalized to a single copy gene (S), yielding a T/S ratio as a measure of telomere length. Quantitative PCR demonstrates good correlation with results from Southern blot analyses, and is now widely used. However, this method has greater measurement error than the Southern blot and can show substantial variability across laboratories (17), necessitating careful quality controls and multiple sampling to assure reliability.

There are also methods employing hybridization coupled with cytometry (18, 19), designed to measure the shortest telomeres and telomeres from specific chromosomes. Once the shortest telomeres are depleted, cells either die or become senescent, so the length of the shortest telomeres is a better indicator of cellular aging than average telomere length. A more detailed discussion of telomere measurement is available in Aubert *et al.* (20). Most psychiatric studies examining telomere length have used either Southern blot analyses or Cawthon's quantitative PCR method. Since individual laboratories internally calibrate their measurements of telomere length, it can be difficult to compare measurements across groups.

Cross-sectional vs. Longitudinal Approaches in Studies of Telomere Length

A major drawback to using telomere length as a clinical measure is the high variability between individuals, which is present at birth (21, 22). Moreover, although telomere length is equal between the sexes at birth, shortening with age occurs more rapidly in males than females, and rates may also differ between ethnic groups (23). These factors limit the power of cross-sectional studies, which utilize measurements at a single time-point. Such studies require large sample sizes because of the marked variability of telomere length, as well as careful controls for age and sex. Aviv *et al.* (22) estimates that longitudinal studies, measuring actual telomere erosion rates within individuals over time, would require five times fewer subjects than cross-sectional ones. Longitudinal studies also better support an assertion of causality by the independent variable of interest, which is severely constrained in cross-sectional designs.

Despite these considerations, very few longitudinal telomere studies have been conducted, and their dearth is particularly evident in work involving psychiatric or stress-related conditions. An alternative approach would be to standardize telomere length in an easily accessible proliferative tissue, representing the effects of exposure to the variable of interest, against telomere length in a postmitotic source, since telomere lengths in such tissues change little from birth. However, obtaining samples from postmitotic tissues (i.e., nerves, skeletal muscle, bone) presents practical obstacles. Indeed, even peripheral blood can be difficult to obtain in a longitudinal context.

Telomeres and Somatic Disease

Because of their prominence in aging (24), telomeres have been intensively investigated in medical conditions associated with aging. Most clinical studies have utilized telomeres derived from leukocytes, since peripheral blood is more easily obtained than most other tissues. The major determinants of aging, including cell replication, inflammation, and oxidative stress, are all demonstrable in leukocyte telomeres (15, 24, 25). A potential pitfall to this approach is that telomere length may differ among different leukocyte subsets, so that factors favoring predominance of one subset over another can introduce bias (22). If such a factor is of major interest (e.g., HIV), telomere length might be more appropriately ascertained in a specific subset. Similarly, since telomere length reflects the leukocyte's replicative history, any condition that increases leukocyte turnover can introduce bias.

Controlling for factors that alter leukocyte turnover or subsets (e.g., acute or chronic inflammatory conditions) can help minimize bias. An alternative approach is to use buccal mucosa cells obtained by oral swab, which is less invasive than venipuncture and therefore ideal for studies with children (26-28), although at present there is less experience with this tissue source.

A key finding from clinical studies is that alteration of leukocyte telomere dynamics reflects organ dysfunction elsewhere in the body (25). A prime example is cardiovascular disease, in which reduced telomere length is observed not only in leukocytes, but also in myocardial and arterial wall tissue (29, 30). Findings in other medical conditions, including cancers (31, 32), stroke (33, 34), diabetes (35-37), and autoimmune diseases (38), support the notion that reduced telomere length in leukocytes correlates with shorter telomeres in the target tissue.

A possible explanation for this observation could be that common underlying mechanisms for these diseases also manifest themselves in leukocytes. For example, oxidative stress, which is caused by age-related mitochondrial dysfunction, is involved in diabetes, cardiovascular disease, and cancer, and affects tissues in general. Telomerase could also be involved, perhaps as a mediating agent. Indeed, some evidence implicates telomerase in the cell survival-promoting actions of brain-derived neurotrophic factor (BDNF) in early postmitotic hippocampal neurons (39), which could be relevant to the association of telomere length with stress and depression, discussed below.

While telomere length in these conditions could be merely a disease marker (i.e., an indicator of ongoing disease), other evidence implicates telomere length as a risk marker (i.e., a predictor of the likelihood of disease despite current clinical health). For example, in a study of healthy older adults, Cawthon *et al.* (40) found telomere length highly predictive of eventual mortality, even though cause of death was variable. Other studies implicate telomere length as a risk marker for cancer (41, 42) and hypertension (43). Reports of reduced telomere length in association with smoking (44), obesity (45), and alcohol abuse (46) are consistent with these conditions as risk factors for increased mortality.

Telomere dysfunction can play a causal role in disease. Telomerase deficiency has been causally linked with the genetic disorder dyskeratosis congenita, familial idiopathic pulmonary fibrosis, and familial bone marrow failure syndromes (15). Progeroid syndromes, characterized by clinical manifestations of accelerated aging and molecular evidence of defective DNA repair, may also reflect causal involvement of telomeres (15). A preliminary report suggests an increased rate of neuropsychiatric disorders in dyskeratosis congenita (47). At this point, it would be premature to exclude an etiologic contribution of telomere dysfunction in other conditions.

Telomeres and Psychiatric Conditions

Independent of stress, most of the findings implicating telomeres in psychiatry have involved mood disorders. In an initial epidemiological study (N=433), Lung *et al.* (48) reported an association of reduced telomere length with the high-activity allele of the monoamine oxidase A (MAOA) promoter polymorphism, which has been linked to aggression and impulsivity; this association was later found mediated by MDD (49). Simon *et al.* (50) demonstrated shorter telomeres in patients with MDD (N=15) or bipolar disorder (type I or II not stated) (N=29) compared with healthy controls (N=44) (50). This was replicated by Hartmann *et al.* (51), who found no effect of illness duration or severity, or nature or intensity of treatment, in a study comparing MDD patients (N=54) with controls (N=20). Elvsåshagen *et al.* (52), describing reduced telomere length in bipolar II patients (N=28) compared with controls (N=28), detected an association with lifetime number of depressive episodes, but not illness duration. Wikgren *et al.* (53), reporting shorter telomeres

in MDD patients (N=91) vs. controls (N=451), also noted an association with hypocortisolism in both groups. Wolkowitz *et al.* (54) found no difference in telomere length between drug-free MDD (N=18) and control (N=17) subjects, but inverse correlations with lifetime depression exposure and measures of oxidative stress and inflammation. This group also reported increased telomerase activity in drug-free MDD patients vs. controls, with superior antidepressant responses in patients showing the greatest further increases (55). In an epidemiological study of 952 patients with coronary heart disease, Hoen *et al.* (56) found MDD associated with shorter telomeres. While these studies all utilized leukocytes, no differences from controls were found in telomere length in occipital cortex of patients with MDD (N=24) (57) or in cerebellar gray matter of patients with MDD (N=15), bipolar disorder (N=46), or schizophrenia (N=46) (58).

Shorter leukocyte telomeres have been reported in schizophrenia (59), treatment-resistant schizophrenia (60), obstructive sleep apnea (61), migraine (62), mild cognitive impairment (63), and Alzheimer disease (64) (one study failed to replicate the latter two findings (65)). Reduced telomere length correlated with decreased mental health in chronic heart failure (66) (but not in community-dwelling elderly men (67)), poorer cognition in community-dwelling elders (68) and healthy women (69), unspecified poor sleep quality in healthy women (70), and pessimism in postmenopausal women (71). It remains to be clarified whether the shorter telomeres observed in these heterogeneous conditions reflect a specific or nonspecific pre-existing marker of illness vulnerability, a specific or nonspecific marker of ongoing disease, or an entirely nonspecific sequela of the psychosocial stress or lifestyle factors (e.g., smoking, obesity) with which these conditions are associated.

Telomeres and Psychosocial Stress

It is established that biophysical stress and stressors (e.g., radiation, toxins) (31, 32) can impact telomere dynamics. However, Epel et al. (72), in a study of mothers caring for either a chronically ill (N=39) or healthy (N=19) child, were the first to demonstrate shorter telomeres (and reduced telomerase activity) in association with psychosocial stress. In a follow-up study of 62 women, these investigators found that reduced telomere length correlated with increased nocturnal urinary cortisol and catecholamines, while low telomerase activity correlated with increased nocturnal urinary epinephrine and greater decreases in heart rate variability during the Trier Social Stress Test (TSST) (73). Subsequent studies have examined telomere length and telomerase activity in various stressrelated contexts. Damjanovic et al. (74) reported shorter telomeres and increased telomerase activity in caregivers of Alzheimer's disease patients (N=41) compared with controls (N=41). Kiefer *et al.* (75), in a study of 56 women, observed reduced telomere length with greater dietary restraint, defined as chronic preoccupation with weight and attempts at restricting food intake leading to chronic psychological stress. In an epidemiological study of 647 sisters of women with breast cancer, Parks et al. (76) found that reduced telomere length correlated with perceived stress, especially in women who were 55 years old, had a recent major loss, or had higher morning urinary epinephrine levels. Humphreys et al. (77) detected shorter telomeres in women with a history of intimate partner violence (N=61) compared with controls (N=41). In a study of female caregivers of dementia partners (N=14) and controls (N=9), Tomiyama et al. (78) found that shorter telomeres were associated with greater salivary cortisol responses to the TSST and higher overnight urinary free cortisol. In one expanded sample from this study (N=22 caregivers, N=22 controls), telomerase activity was lower at baseline in caregivers but rose similarly in both groups during the TSST (79); in another expanded sample (N=27 caregivers, N=23 controls), reduced telomere length correlated with higher anticipatory threat appraisal, which correlated in turn with caregiver status, even though telomere length did not differ between the two groups (80). Kroenke et al. (26) found that buccal telomere length was inversely correlated with heart rate and

cortisol reactivity in 78 children during mildly stressful laboratory challenge tasks. Malan *et al.* (81) observed shorter telomeres in women who developed post-traumatic stress disorder (PTSD) following rape (N=9) compared with those who did not (N=53). In a study of patients with (N=18) and without (N=18) chronic osteoarthritis pain, Sibille *et al.* (82) found reduced telomere length in those with chronic pain and high stress vs. those with no pain and low stress. Reasoning that hostility correlates with heightened stress reactivity, Brydon *et al.* (83) found hostility inversely correlated with telomere length and positively correlated with telomerase activity, in men but not women, in an epidemiological sample of 434 adults. Supporting these observational findings in humans, Kotrschal *et al.* (84) showed that a sixmonth exposure to reproductive stress in female mice and crowding stress in male mice induced telomere shortening compared with unstressed controls.

Reduced telomere length has been correlated with several sociodemographic variables thought to represent proxies for sustained psychosocial stress, including lower socioeconomic status (27, 85), African-American ethnicity (23), lower educational attainment (86, 87), and current and long-term full-time work schedule (88).

Telomeres and Early-Life Stress

Tyrka et al. (89) offered the first evidence linking early-life stress with reduced telomere length, in a study of physically and psychiatrically healthy adults with (N=10) or without (N=21) a reported history of childhood maltreatment. Eight other studies have since appeared examining this issue, a remarkable number given the short time interval (Table 1). In response to Tyrka et al. (89), Glass et al. (90) presented data on adults from the Twins UK cohort in which they detected no difference in telomere length between individuals who endorsed childhood sexual (N=34) or physical abuse (N=20) compared to those who did not (N=516 and 520, respectively). However, Kananen *et al.* (91) confirmed an association of shorter telomere length with increasing number of reported childhood adverse life events in N=974 adults in the Finnish Health 2000 project, even absent a relationship with current psychological distress or DSM-IV anxiety disorder diagnosis. Kiecolt-Glaser et al. (92) reported that shorter telomeres were associated with multiple childhood adversities in a study comprising dementia family caregivers (N=58) and controls (N=74). Surtees et al. (93), studying 4,441 women in the UK European Prospective Investigation into Cancer (EPIC)-Norfolk database, found that shorter telomeres correlated with increased reported childhood adverse experiences, although not with current social adversity or emotional health. Consistent with Malan et al. (81), O'Donovan et al. (94) observed reduced telomere length in adults with chronic PTSD (N=43) vs. healthy controls (N=47); however, this was accounted for by those PTSD subjects reporting multiple categories of childhood trauma (N=18). In the first study to show effects of early adversity on telomere length in children, Drury et al. (95) found that greater time spent in institutional care correlated with reduced buccal cell telomere length in 100 children aged 6-10 years in the prospective Bucharest Early Intervention Project. Extending the period of vulnerability, Entringer et al. (96) demonstrated that maternal experience of severe psychosocial stress during pregnancy was associated with shorter telomeres in young adult offspring (N=45) vs. controls (N=49). In the only prospective longitudinal study thus far, involving 236 children tested at age 5 and again at age 10 years, Shalev et al. (28) found greater buccal cell telomere shortening in children exposed to 2 forms of violence (N=39) compared to those unexposed (N=128) or less-exposed (N=69). Taken together, these studies support a relationship between early-life stress and reduced telomere length, and strongly suggest that this effect is dose-dependent.

Telomeres and Early-Life Stress: Mechanisms

In their review of the neurobiological interrelationship between stress, depression, and aging, Wolkowitz *et al.* (97) observe that many of the biochemical derangements in depression, and in chronic stress, result in cellular effects indistinguishable from aging. Indeed, they propose that the high comorbidity of depression with diseases of aging, such as cardiovascular disease, cerebrovascular disease, and metabolic syndrome, suggests that stress-engendered depression is itself such a disease. In this conceptualization, telomere shortening would be an expected concomitant, and/or consequence, of the HPA axis dysregulation, enhanced glutamatergic excitotoxicity, increased oxidative stress, impaired neurotrophin function, and immune dysregulation reported in chronic stress and depression. Supporting this is evidence that cortisol can reduce telomerase activity (78, 98).

However, while examination of the biochemistry of aging and telomere dynamics (15, 24, 25, 31, 32) is beyond the present scope, there has yet to be direct demonstration of these mechanisms in affected human subjects or relevant animal models. Similarly, even as attention has turned to the role of epigenetics as a major transductive mechanism for adult sequelae of early-life stress (99, 100), there are still no direct studies of telomere dynamics in this regard. Finally, as noted above, problematic lifestyle factors (e.g., smoking, obesity, alcohol abuse) are frequent sequelae of early-life stress. While most studies of telomere length and early-life stress controlled for such influences (Table 3), it remains possible that these or other factors could account for the association between reduced telomere length and early-life stress.

Telomeres and Early-Life Stress: Methodological Issues

Nearly all of the clinical and epidemiological studies examining health implications of telomere length have been cross-sectional in design *with respect to telomere assessment*, limiting the ability to draw causal inferences about telomere shortening; the same is true for all but one (28) of the nine studies addressing the effects of early-life stress (Table 1). Analogously, *assessment of early-life stress* can be either prospective or retrospective; all but two (28, 95) of the studies in this area have been retrospective.

The limitations of cross-sectional vs. longitudinal measurement of telomere length have been discussed. How early-life stress is retrospectively ascertained and assessed is highly variable across studies, but more systematic and comprehensive approaches seem more likely to compensate for the bias toward false negatives (101). Several studies have found an effect of the number of discrete childhood adversities, suggesting that early stressors may have additive effects on telomere length. Ideally, assessment tools should have demonstrable validity and reliability; short of that, ascertainment methods requiring the least amount of judgment or interpretation by the subject are preferable. Such considerations may explain why Glass *et al.* (90) failed to replicate an association between early-life stress and reduced telomere length. Timing and type of early-life stress, and the impact of mitigating psychosocial or genetic factors ("resilience factors") (102), could also affect findings.

Effects of Therapeutic Stress Reduction on Telomeres

Epel *et al.* (103) have proposed that therapeutic interventions designed to mitigate adverse effects of psychosocial stress (e.g., threat appraisal, rumination, negative affect, stress arousal) might promote telomere maintenance. Supporting this, vigorous exercise attenuated the correlation between perceived stress and reduced telomere length in a sample of 63 healthy women (104). In a prospective study, Jacobs *et al.* (105) showed that a three-month intensive meditation retreat increased telomerase activity in participants (N=30) compared with controls (N=30), an effect mediated by increased perceived control and decreased

neuroticism. Daubenmier *et al.* (106) found that telomerase activity increased both in overweight women receiving a four-month mindfulness-based intervention for stress eating (N=47) and in wait-list controls (N=47), with increases correlated with decreased chronic stress, anxiety, dietary restraint, dietary fat intake, cortisol, and glucose. Lin *et al.* (107) have summarized other recent work examining effects of lifestyle interventions on telomere length and general health status.

Summary and Implications

In the four years since Aubert and Landsorp (15) published their review, telomere research has exploded: they identified over 5,000 articles on this topic indexed in PubMed, whereas a current search yields nearly 14,000. Most studies addressing the relationship between telomere length, psychosocial stress, and psychiatric illness have been published during this brief period. At present, evidence is strongest in supporting an association of reduced telomere length with psychosocial stress and depression. Given the relationship between stress and depression, this is not surprising; it remains to be established exactly when, how, and why shorter telomeres are observed in these conditions.

The more recent demonstration that reduced telomere length is associated with early-life stress poses challenges and opportunities. Should the adverse health outcomes in adults after early adversity be conceptualized as accelerated aging, following Wolkowitz *et al.* (97)? Or can these findings be better accommodated by the dysregulated homeostasis/allostatic load model (108) that currently predominates? Alternatively, perhaps reduced telomere length is not even caused by early-life stress, but is rather a pre-existing (risk) or acquired (disease) marker for those individuals who subsequently *characterize* their early-life experiences as stressful. Nor has the possibility been excluded of a spurious association between early-life stress and reduced telomere length, accounted for by other adverse health and behavioral sequelae of childhood adversity.

The role of telomerase in understanding these findings must also be considered. Since telomerase maintains telomere length, it might be expected that decreased telomerase activity would result in telomere shortening, perhaps suggesting a more proximal effect of chronic stress on this enzyme rather than on the telomere itself. However, the studies reviewed above suggest inconsistent relationships between telomere length and telomerase activity, and some authorities suggest that telomerase activity might compensatorily increase in the face of stress and/or telomere shortening. These conceptual challenges, in conjunction with the greater technical difficulty associated with the telomerase assay, limit the current utility of telomerase activity for informing our understanding of stress and telomere length.

The early findings reviewed above raise hopes that telomere length might serve as a "deep" biomarker of early-life stress in terms of damage done, future vulnerability, and efficacy of therapeutic interventions. But a final caveat must acknowledge that, as in most rapidly emerging areas, publication bias in favor of positive findings could be a significant factor in overstating the robustness of this association. Much of the published literature is based on studies originally designed for other purposes, with telomere findings deriving from secondary analyses using banked blood specimens. Prospective research in this area over the next several years will clarify whether telomere assessment will merely constitute a new outcome measure, or serve as the basis for a new paradigm.

Acknowledgments

The authors thank Yuliya Kuras for bibliographic assistance.

References

- Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 2008; 33:693– 710. [PubMed: 18602762]
- Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res. 2007; 62:240–245. [PubMed: 17622962]
- 3. Schweinhardt P, Sauro KM, Bushnell MC. Fibromyalgia: a disorder of the brain? Neuroscientist. 2008; 14:415–421. [PubMed: 18270311]
- Heim C, Nater UM, Maloney E, Boneva R, Jones JF, Reeves WC. Childhood trauma and risk for chronic fatigue syndrome: association with neuroendocrine dysfunction. Arch Gen Psychiatry. 2009; 66:72–80. [PubMed: 19124690]
- 5. Charmandari E, Kino T, Souvatzoglou E, Chrousos GP. Pediatric stress: hormonal mediators and human development. Horm Res. 2003; 59:161–179. [PubMed: 12649570]
- 6. Tietjen GE, Peterlin BL. Childhood abuse and migraine: epidemiology, sex differences, and potential mechanisms. Headache. 2011; 51:869–879. [PubMed: 21631473]
- Jones GT, Power C, Macfarlane GJ. Adverse events in childhood and chronic widespread pain in adult life: Results from the 1958 British Birth Cohort Study. Pain. 2009; 143:92–96. [PubMed: 19304391]
- Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004; 305:1733–1736. [PubMed: 15375258]
- 9. Brown DW, Anda RF, Tiemeier H, Felitti VJ, Edwards VJ, Croft JB, et al. Adverse childhood experiences and the risk of premature mortality. Am J Prev Med. 2009; 37:389–396. [PubMed: 19840693]
- Graham JE, Christian LM, Kiecolt-Glaser JK. Stress, age, and immune function: toward a lifespan approach. J Behav Med. 2006; 29:389–400. [PubMed: 16715331]
- McClintock B. The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A. 1939; 25:405–416. [PubMed: 16577924]
- 12. Muller HJ. The re-making of chromosomes. The Collecting Net, Woods Hole. 1938; 13:181–198.
- Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 2005; 579:859–862. [PubMed: 15680963]
- Blackburn EH. Telomeres: structure and synthesis. J Biol Chem. 1990; 265:5919–5921. [PubMed: 2180936]
- Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008; 88:557–579. [PubMed: 18391173]
- Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002; 30:e47. [PubMed: 12000852]
- Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011; 39:e134. [PubMed: 21824912]
- Lauzon W, Sanchez Dardon J, Cameron DW, Badley AD. Flow cytometric measurement of telomere length. Cytometry. 2000; 42:159–164. [PubMed: 10861688]
- Slijepcevic P. Telomere length measurement by Q-FISH. Methods Cell Sci. 2001; 23:17–22. [PubMed: 11741140]
- 20. Aubert G, Hills M, Lansdorp PM. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res. 2012; 730:59–67. [PubMed: 21663926]
- Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M, et al. Telomere lengths are characteristic in each human individual. Exp Gerontol. 2002; 37:523–531. [PubMed: 11830355]
- Aviv A, Valdes AM, Spector TD. Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol. 2006; 35:1424–1429. [PubMed: 16997848]

- Geronimus AT, Hicken MT, Pearson JA, Seashols SJ, Brown KL, Cruz TD. Do US Black Women Experience Stress-Related Accelerated Biological Aging?: A Novel Theory and First Population-Based Test of Black-White Differences in Telomere Length. Hum Nat. 2010; 21:19–38. [PubMed: 20436780]
- 24. Oeseburg H, de Boer RA, van Gilst WH, van der Harst P. Telomere biology in healthy aging and disease. Pflugers Arch. 2010; 459:259–268. [PubMed: 19756717]
- von Zglinicki T, Martin-Ruiz C. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 2005; 5:197–203. [PubMed: 15974873]
- Kroenke CH, Epel E, Adler N, Bush NR, Obradovic J, Lin J, et al. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosom Med. 2011; 73:533–540. [PubMed: 21873585]
- Needham BL, Fernandez JR, Lin J, Epel ES, Blackburn EH. Socioeconomic status and cell aging in children. Soc Sci Med. 2012; 74:1948–1951. [PubMed: 22472277]
- Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A, et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry. 2012
- 29. Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A. 1995; 92:11190–11194. [PubMed: 7479963]
- Oh H, Wang SC, Prahash A, Sano M, Moravec CS, Taffet GE, et al. Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci U S A. 2003; 100:5378–5383. [PubMed: 12702777]
- Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005; 6:611–622. [PubMed: 16136653]
- 32. Holt SE, Shay JW. Role of telomerase in cellular proliferation and cancer. J Cell Physiol. 1999; 180:10–18. [PubMed: 10362013]
- Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol. 2006; 60:174–180. [PubMed: 16685698]
- von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000; 28:64–74. [PubMed: 10656292]
- Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol. 2000; 166:103–109. [PubMed: 10856888]
- Jeanclos E, Krolewski A, Skurnick J, Kimura M, Aviv H, Warram JH, et al. Shortened telomere length in white blood cells of patients with IDDM. Diabetes. 1998; 47:482–486. [PubMed: 9519758]
- Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006; 29:283–289. [PubMed: 16443874]
- Andrews NP, Fujii H, Goronzy JJ, Weyand CM. Telomeres and immunological diseases of aging. Gerontology. 2010; 56:390–403. [PubMed: 20016137]
- Fu W, Lu C, Mattson MP. Telomerase mediates the cell survival-promoting actions of brainderived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons. J Neurosci. 2002; 22:10710–10719. [PubMed: 12486164]
- Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003; 361:393–395. [PubMed: 12573379]
- 41. Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, et al. Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst. 2003; 95:1211–1218. [PubMed: 12928346]
- 42. Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011; 6:e20466. [PubMed: 21695195]

- 43. Yang Z, Huang X, Jiang H, Zhang Y, Liu H, Qin C, et al. Short telomeres and prognosis of hypertension in a chinese population. Hypertension. 2009; 53:639–645. [PubMed: 19255364]
- 44. Morla M, Busquets X, Pons J, Sauleda J, MacNee W, Agusti AG. Telomere shortening in smokers with and without COPD. Eur Respir J. 2006; 27:525–528. [PubMed: 16507852]
- 45. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005; 366:662–664. [PubMed: 16112303]
- 46. Pavanello S, Hoxha M, Dioni L, Bertazzi PA, Snenghi R, Nalesso A, et al. Shortened telomeres in individuals with abuse in alcohol consumption. Int J Cancer. 2011; 129:983–992. [PubMed: 21351086]
- Rackley S, Pao M, Seratti GF, Giri N, Rasimas JJ, Alter BP, et al. Neuropsychiatric conditions among patients with dyskeratosis congenita: a link with telomere biology? Psychosomatics. 2012; 53:230–235. [PubMed: 22458992]
- Lung FW, Fan PL, Chen NC, Shu BC. Telomeric length varies with age and polymorphisms of the MAOA gene promoter in peripheral blood cells obtained from a community in Taiwan. Psychiatr Genet. 2005; 15:31–35. [PubMed: 15722955]
- 49. Lung FW, Chen NC, Shu BC. Genetic pathway of major depressive disorder in shortening telomeric length. Psychiatr Genet. 2007; 17:195–199. [PubMed: 17417064]
- Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006; 60:432–435. [PubMed: 16581033]
- Hartmann N, Boehner M, Groenen F, Kalb R. Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease. Depress Anxiety. 2010; 27:1111–1116. [PubMed: 21053332]
- Elvsashagen T, Vera E, Boen E, Bratlie J, Andreassen OA, Josefsen D, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord. 2011; 135:43–50. [PubMed: 21880373]
- Wikgren M, Maripuu M, Karlsson T, Nordfjall K, Bergdahl J, Hultdin J, et al. Short telomeres in depression and the general population are associated with a hypocortisolemic state. Biol Psychiatry. 2012; 71:294–300. [PubMed: 22055018]
- Wolkowitz OM, Mellon SH, Epel ES, Lin J, Dhabhar FS, Su Y, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings. PLoS One. 2011; 6:e17837. [PubMed: 21448457]
- Wolkowitz OM, Mellon SH, Epel ES, Lin J, Reus VI, Rosser R, et al. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry. 2012; 17:164–172. [PubMed: 21242992]
- 56. Hoen PW, de Jonge P, Na BY, Farzaneh-Far R, Epel E, Lin J, et al. Depression and leukocyte telomere length in patients with coronary heart disease: data from the heart and soul study. Psychosom Med. 2011; 73:541–547. [PubMed: 21597035]
- Teyssier JR, Ragot S, Chauvet-Gelinier JC, Trojak B, Bonin B. Expression of oxidative stressresponse genes is not activated in the prefrontal cortex of patients with depressive disorder. Psychiatry Res. 2011; 186:244–247. [PubMed: 20800905]
- Zhang D, Cheng L, Craig DW, Redman M, Liu C. Cerebellar telomere length and psychiatric disorders. Behav Genet. 2010; 40:250–254. [PubMed: 20127402]
- 59. Kao HT, Cawthon RM, Delisi LE, Bertisch HC, Ji F, Gordon D, et al. Rapid telomere erosion in schizophrenia. Mol Psychiatry. 2008; 13:118–119. [PubMed: 18202693]
- Yu WY, Chang HW, Lin CH, Cho CL. Short telomeres in patients with chronic schizophrenia who show a poor response to treatment. J Psychiatry Neurosci. 2008; 33:244–247. [PubMed: 18592039]
- Barcelo A, Pierola J, Lopez-Escribano H, de la Pena M, Soriano JB, Alonso-Fernandez A, et al. Telomere shortening in sleep apnea syndrome. Respir Med. 2010; 104:1225–1229. [PubMed: 20430605]
- Ren H, Collins V, Fernandez F, Quinlan S, Griffiths L, Choo KH. Shorter telomere length in peripheral blood cells associated with migraine in women. Headache. 2010; 50:965–972. [PubMed: 20618815]

- Grodstein F, van Oijen M, Irizarry MC, Rosas HD, Hyman BT, Growdon JH, et al. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses' health study. PLoS One. 2008; 3:e1590. [PubMed: 18795148]
- Hochstrasser T, Marksteiner J, Humpel C. Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol. 2012; 47:160–163. [PubMed: 22178633]
- Zekry D, Herrmann FR, Irminger-Finger I, Graf C, Genet C, Vitale AM, et al. Telomere length and ApoE polymorphism in mild cognitive impairment, degenerative and vascular dementia. J Neurol Sci. 2010; 299:108–111. [PubMed: 20709332]
- Huzen J, van der Harst P, de Boer RA, Lesman-Leegte I, Voors AA, van Gilst WH, et al. Telomere length and psychological well-being in patients with chronic heart failure. Age Ageing. 2010; 39:223–227. [PubMed: 20085922]
- 67. Rius-Ottenheim N, Houben JM, Kromhout D, Kafatos A, van der Mast RC, Zitman FG, et al. Telomere length and mental well-being in elderly men from the Netherlands and Greece. Behav Genet. 2012; 42:278–286. [PubMed: 21870178]
- Yaffe K, Lindquist K, Kluse M, Cawthon R, Harris T, Hsueh WC, et al. Telomere length and cognitive function in community-dwelling elders: findings from the Health ABC Study. Neurobiol Aging. 2011; 32:2055–2060. [PubMed: 20031273]
- Valdes AM, Deary IJ, Gardner J, Kimura M, Lu X, Spector TD, et al. Leukocyte telomere length is associated with cognitive performance in healthy women. Neurobiol Aging. 2010; 31:986–992. [PubMed: 18718693]
- 70. Prather AA, Puterman E, Lin J, O'Donovan A, Krauss J, Tomiyama AJ, et al. Shorter leukocyte telomere length in midlife women with poor sleep quality. J Aging Res 2011. 2011:721390. published ahead of print October 20.
- O'Donovan A, Lin J, Dhabhar FS, Wolkowitz O, Tillie JM, Blackburn E, et al. Pessimism correlates with leukocyte telomere shortness and elevated interleukin-6 in post-menopausal women. Brain Behav Immun. 2009; 23:446–449. [PubMed: 19111922]
- Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004; 101:17312–17315. [PubMed: 15574496]
- Epel ES, Lin J, Wilhelm FH, Wolkowitz OM, Cawthon R, Adler NE, et al. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology. 2006; 31:277– 287. [PubMed: 16298085]
- 74. Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients. J Immunol. 2007; 179:4249–4254. [PubMed: 17785865]
- Kiefer A, Lin J, Blackburn E, Epel E. Dietary restraint and telomere length in pre- and postmenopausal women. Psychosom Med. 2008; 70:845–849. [PubMed: 18923062]
- Parks CG, Miller DB, McCanlies EC, Cawthon RM, Andrew ME, DeRoo LA, et al. Telomere length, current perceived stress, and urinary stress hormones in women. Cancer Epidemiol Biomarkers Prev. 2009; 18:551–560. [PubMed: 19190150]
- 77. Humphreys J, Epel ES, Cooper BA, Lin J, Blackburn EH, Lee KA. Telomere Shortening in Formerly Abused and Never Abused Women. Biol Res Nurs. 2011 published online ahead of print March 8.
- 78. Tomiyama AJ, O'Donovan A, Lin J, Puterman E, Lazaro A, Chan J, et al. Does cellular aging relate to patterns of allostasis?: An e'xamination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav. 2012; 106:40–45. [PubMed: 22138440]
- 79. Epel ES, Lin J, Dhabhar FS, Wolkowitz OM, Puterman E, Karan L, et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun. 2010; 24:531–539. [PubMed: 20018236]
- 80. O'Donovan A, Tomiyama AJ, Lin J, Puterman E, Adler NE, Kemeny M, et al. Stress appraisals and cellular aging: A key role for anticipatory threat in the relationship between psychological stress and telomere length. Brain Behav Immun. 2012 published online ahead of print January 24.
- Malan S, Hemmings S, Kidd M, Martin L, Seedat S. Investigation of telomere length and psychological stress in rape victims. Depress Anxiety. 2011; 28:1081–1085. [PubMed: 22065550]

- 82. Sibille KT, Langaee T, Burkley B, Gong Y, Glover TL, King C, et al. Chronic pain, perceived stress, and cellular aging: an exploratory study. Mol Pain. 2012; 8:12. [PubMed: 22325162]
- Brydon L, Lin J, Butcher L, Hamer M, Erusalimsky JD, Blackburn EH, et al. Hostility and cellular aging in men from the Whitehall II cohort. Biol Psychiatry. 2012; 71:767–773. [PubMed: 21974787]
- Kotrschal A, Ilmonen P, Penn DJ. Stress impacts telomere dynamics. Biol Lett. 2007; 3:128–130. [PubMed: 17264051]
- Cherkas LF, Aviv A, Valdes AM, Hunkin JL, Gardner JP, Surdulescu GL, et al. The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell. 2006; 5:361–365. [PubMed: 16856882]
- 86. Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimaki M, et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011; 25:1292–1298. [PubMed: 21536122]
- Surtees PG, Wainwright NW, Pooley KA, Luben RN, Khaw KT, Easton DF, et al. Educational attainment and mean leukocyte telomere length in women in the European Prospective Investigation into Cancer (EPIC)-Norfolk population study. Brain Behav Immun. 2012; 26:414– 418. [PubMed: 22178899]
- Parks CG, DeRoo LA, Miller DB, McCanlies EC, Cawthon RM, Sandler DP. Employment and work schedule are related to telomere length in women. Occup Environ Med. 2011; 68:582–589. [PubMed: 21540175]
- Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL. Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry. 2010; 67:531–534. [PubMed: 19828140]
- Glass D, Parts L, Knowles D, Aviv A, Spector TD. No correlation between childhood maltreatment and telomere length. Biol Psychiatry. 2010; 68:e21–22. [PubMed: 20678755]
- 91. Kananen L, Surakka I, Pirkola S, Suvisaari J, Lonnqvist J, Peltonen L, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One. 2010; 5:e10826. [PubMed: 20520834]
- Kiecolt-Glaser JK, Gouin JP, Weng NP, Malarkey WB, Beversdorf DQ, Glaser R. Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom Med. 2011; 73:16–22. [PubMed: 21148804]
- 93. Surtees PG, Wainwright NW, Pooley KA, Luben RN, Khaw KT, Easton DF, et al. Life stress, emotional health, and mean telomere length in the European Prospective Investigation into Cancer (EPIC)-Norfolk population study. J Gerontol A Biol Sci Med Sci. 2011; 66:1152–1162. [PubMed: 21788649]
- 94. O'Donovan A, Epel E, Lin J, Wolkowitz O, Cohen B, Maguen S, et al. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol Psychiatry. 2011; 70:465–471. [PubMed: 21489410]
- 95. Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JY, et al. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol Psychiatry. 2011 published online ahead of print May 18.
- 96. Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH, et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011; 108:E513–518. [PubMed: 21813766]
- 97. Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety. 2010; 27:327–338. [PubMed: 20376837]
- Choi J, Fauce SR, Effros RB. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav Immun. 2008; 22:600–605. [PubMed: 18222063]
- 99. Low FM, Gluckman PD, Hanson MA. Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases. Epigenomics. 2011; 3:279–294. [PubMed: 22122338]

- 100. Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL. Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS One. 2012; 7:e30148. [PubMed: 22295073]
- 101. Hardt J, Rutter M. Validity of adult retrospective reports of adverse childhood experiences: review of the evidence. J Child Psychol Psychiatry. 2004; 45:260–273. [PubMed: 14982240]
- 102. Nugent NR, Tyrka AR, Carpenter LL, Price LH. Gene-environment interactions: early life stress and risk for depressive and anxiety disorders. Psychopharmacology (Berl). 2011; 214:175–196. [PubMed: 21225419]
- Epel E, Daubenmier J, Moskowitz JT, Folkman S, Blackburn E. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Ann N Y Acad Sci. 2009; 1172:34– 53. [PubMed: 19735238]
- 104. Puterman E, Lin J, Blackburn E, O'Donovan A, Adler N, Epel E. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010; 5:e10837. [PubMed: 20520771]
- 105. Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, et al. Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology. 2011; 36:664–681. [PubMed: 21035949]
- 106. Daubenmier J, Lin J, Blackburn E, Hecht FM, Kristeller J, Maninger N, et al. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study. Psychoneuroendocrinology. 2011 published online ahead of print December 12.
- 107. Lin J, Epel E, Blackburn E. Telomeres and lifestyle factors: Roles in cellular aging. Mutat Res. 2012; 730:85–89. [PubMed: 21878343]
- 108. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993; 153:2093–2101. [PubMed: 8379800]

\$watermark-text

Telomeres and psychiatric conditions

Diagnosis	References	Total N	Findings
Major depressive disorder (MDD)	49-51, 53-58	MDD = 700 (including 204 with stable CHD) HC = 1,765 (including 746 with stable CHD)	Shorter telomeres associated with MDD: 5 studies No difference in telomere length: 3 studies Increased telomerase activity with MDD: 1 study
Bipolar disorder (I and II) (BIP)	50, 52, 58	BIP = 103 HC = 118	Shorter telomeres associated with BIP: 2 studies No difference in telomere length: 1 study
Schizophrenia (SCZ)	58-60	SCZ = 145 HC = 187	Shorter telomeres associated with SCZ: 2 studies* No difference in telomere length: 1 study *Only in treatment-resistant patients in 1 study

Key: HC = healthy controls; CHD = coronary heart disease.

I elomeres and psychosocial structures and psychosocial structures and below the structure of the structure	ess		
Type of Stress	References	Total N	Findings
Caregiver stress	72, 74, 78-80	Stressed = 126^*	Shorter telomeres associated with perceived stress: 1 study
		Controls = 64^*	Shorter telomeres associated with caregiver status: 1 study
			Telomere length not associated with caregiver status: 1 study
			Reduced telomerase activity associated with perceived stress: 1 study
			Reduced telomerase activity associated with caregiver status: 1 study
			Increased telomerase activity associated with caregiver status: 1 study
			Shorter telomeres associated with greater salivary cortisol response to TSST: 1 study
		* <i>N's estimated due to overlapping samples</i>	Shorter telomeres associated with higher anticipatory threat appraisal to the TSST: 1 study
TSST	73	Stressed = 62	Shorter telomeres and reduced telomerase activity associated with increased nocturnal urinary cortisol and catecholamines: 1 study
Laboratory challenge tasks	26	78 (children)	Shorter telomeres associated with increased heart rate and cortisol reactivity
Dietary restraint (preoccupation with weight, restricted food intake)	75	Stressed = 56	Shorter telomeres associated with greater dietary restraint: 1 study
Perceived stress (PSS)	76	647	Shorter telomeres associated with perceived stress: 1 study
Interpersonal violence	17	Stressed = 61 Controls = 41	Shorter telomeres associated with interpersonal violence: 1 study
Rape	81	Stressed = 64 (9 with PTSD)	Shorter telomeres associated with PTSD following rape: 1 study
Chronic pain	82	Stressed = 18 Controls = 18	Shorter telomeres associated with chronic pain + high stress: 1 study
Hostility	83	434	Shorter telomeres and increased telomerase activity associated with hostility in men: 1 study
SES	27, 85	1,622	Shorter telomeres associated with lower SES: 2 studies
Minority ethnicity	23	African-American = 117 Caucasian =115	Shorter telomeres associated with African-American ethnicity (trend): 1 study

Price et al.

\$watermark-text

Table 2

	•
X	
ate	
rm	
ar	
K-t	
exi	

\$watermark-text

Price et al.

Key: PSS = Perceived Stress Scale, TSST = Trier Social Stress Test; PTSD = Post-traumatic stress disorder; SES = Socioeconomic Status

Table 3	-life stress (ELS).
	early.
	and
	ength
	nere l
	teloı
	between
	ship l
	lation
	he re
	ing t
	examin
	dies
	Stu

Findings	Shorter telomeres associated with ELS.	Telomere length no different between subjects with and without ELS.	Shorter telomeres associated with ELS (greater number of adverse events). Telomere length no different different different anxiety and anxiety and control groups.	Shorter telomeres associated with ELS (2 childhood adversities; abuse without other adversities not adversities not adversities not adversities not adversities not
Telomere Measurement Method	qPCR; leukocytes	Southern blot; leukocytes	qPCR; leukocytes	Southern blot; leukocytes
Controlled Covariates	Age, sex, oral contraceptives, smoking, BMI, race, education, SES, perceived stress	Age, sex, BMI, smoking	Comorbid disorders, psychiattic medication, BMI, blood pressure, blood chemistries (homocysteine, triglycerides, HDL, LDL, glucose, insulin), diabetes, lifestyle factors (smoking, sleep, exercise)	Age, sex, BMI, exercise, sleep, alcohol use, caregiving status
Sample Composition and Assessment of Psychopathology	No current or past major Axis I disorder, SCID	Epidemiological sample; psychopathology not specified	Anxiety disorder (full or subthreshold) vs. controls; assessed MDD/dysthymia, alcohol use disorder; M-CIDI	Caregivers vs. controls; assessed depressive symptoms; CES-D
Type of ELS and Assessment Method	Emotional/ physical/sexual abuse, emotional/ physical neglect; CTQ subscales	Physical/sexual abuse; individual survey questions	Adverse childhood social environment (financial difficulties, parental unemployment, parental unemployment, parental illness, familial conflict, bullying, personal illness); sum of individual survey questions	Emotional/ physical/sexual abuse, childhood adversity qarental marital conflict, familial mental alcohol alcohol
Age at Telomere Measurement X±SD or Range, years	26.9 ±10.1	Not specified	49.7 ±12.8 (Anx); 49.8 ±12.6 (controls)	70.10 ± 9.41 (caregivers); 69.37 ± 10.73 (controls)
Presence of ELS in Sample	10/31	20/540 (physical abuse); 34/550 (sexual abuse)	1.94 adverse events (Anx); (Anx); adverse evense events) (controls)	42/132 (abuse); 74/132 (adverse event)
Sex Distribution	9 M, 22 F	Not specified	617 F (202 Anx), 357 M (119 Anx)	37 M, 95 F
Author	Tyrka et al. (2010) ⁸⁹	Glass et al. (2010) ⁹⁰	K ananen et al. (2010) ⁹¹	Kiecolt- Glaser et al. (2011) ⁹²

\$watermark-text

\$watermark-text

\$watermark-text

Findings	length). Shorter telomeres associated with increased plasma IL-6.	Shorter telomeres associated with ELS (greater number of childhood adverse events).	Shorter telomeres associated with ELS (greater number of ELS nypes); shorter telomeres in PTSD vs. controls (accounted for by effect of ELS).	Shorter telomeres associated with ELS (greater time in institutionalized care).
Telomere Measurement Method		qPCR; leukocytes	qPCR; leukocytes	qPCR; buccal cells
Controlled Covariates		Age, physical health score, self-reported health, social class, obesity, smoking, pre- existing disease	Age, sex, BMI, smoking, education	Institutionalized vs. foster care, ethnicity, age at telomere collection, low birth weight
Sample Composition and Assessment of Psychopathology		Epidemiological sample: assessed MDD, GAD; HLEQ, SF-36	PTSD vs. controls; assessed alcohol/substance abuse/ dependence, MDD; CAPS, SCID	Psychopathology not specified
Type of ELS and Assessment Method	problems, lack of close relationship with adult); CTQ; sum of individual survey questions	Childhood social adversity (separation from mother for >1 year, extended hospital stays, parental unemployment, traumatic events, removal from home, dirorree, physical abuse); HLEQ	Physical neglect, physical abuse, family violence, forced sexual touch, forced sexual intercourse; sum of interview items on Life Stressor Checklist interview	Time spent in institutionalized care
Age at Telomere Measurement X±SD or Range, years		62 (median)	30.40 ±6.63 (PTSD); 30.68 ±8.19 (controls)	6-10
Presence of ELS in Sample		2234/4441	50 trauma reports (PTSD); 6 trauma reports (controls)	136/136
Sex Distribution		0 M, 4441 F	43 M (22 PTSD), 45 F (20 PTSD)	67 M, 69 F
Author		Surtees et al. (2011) ⁹³	O'Donovan et al. (2011) ⁹⁴	Drury et al. (2011) ⁹⁵

Price et al.

\$watermark-text

\$watermark-text

\$watermark-text

Findings	Shorter telomeres associated with ELS (prenatal stress): effect greater in females than males.	Telomere shortening from age 5 to age 10 associated with exposure to 2 forms of violence	mantitative
Telomere Measurement Method	qPCR; leukocytes	qPCR; buccal cells	ES = socioeconomic status: aPCR = a
Controlled Covariates	Age, BMI, birth weight percentile, early-life and concurrent life stress	Age, sex, BMI, SES.	BMI = body mass index: S
Sample Composition and Assessment of Psychopathology	Assessed depressive symptoms; CES-D	Subset of epidemiological sample; psychopathology not specified	d Clinical Interview for DSM-IV:
Type of ELS and Assessment Method	Exposure to prenatal stress during mother's pregnancy (defined as experience of negative life events, such as events, such as family, loss of residence, etc.); interview	Exposure to domestic violence between mother between mother frequent bullying victimization, physical maltreatment by an adult; CTS, interview	e: SCID = Structure
Age at Telomere Measurement \vec{X} ±SD or Range, years	25 ± 0.8 (prenatal stress); 24 ± 0.6 (controls)	Baseline: 5 Follow-up: 10	auma Ouestionnair
Presence of ELS in Sample	45/94	108/236	Childhood Tr
Sex Distribution	21 M, 73 F	120 M, 116 F	: F = Female: CTO =
Author	Entringer et al. (2011) ⁹⁶	Shalev et al. (2012) ²⁸	Kev: M = Male

polymerase chain reaction; Anx = anxiety disorder (full or subthreshold); MDD = Major Depressive Disorder; M-CIDI = Munich-Composite International Diagnostic Interview; HDL = high-density lipoproteins; LDL = low-density lipoproteins; CES-D = Center for Epidemiologic Studies Depression Scale; IL-6 = interleukin-6; PTSD = posttraumatic stress disorder; CAPS = Clinician-Administered PTSD Scale; HLEQ = Health and Life Experiences Questionnaire; GAD = Generalized Anxiety Disorder; SF-36 = Short Form Health Survey; CTS = Conflict Tactics Scale.

Biol Psychiatry. Author manuscript; available in PMC 2014 January 01.

Price et al.