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Abstract
Recent methodological advances in covariate adjustment in RCTs have used semiparametric
theory to improve efficiency of inferences by incorporating baseline covariates; these methods
have focused on independent outcomes. We modify one of these approaches, augmentation of
standard estimators, for use within cluster randomized trials in which treatments are assigned to
groups of individuals, thereby inducing correlation. We demonstrate the potential for imbalance
correction and efficiency improvement through consideration of both cluster- and individual-level
covariates. To improve small-sample estimation, we consider several variance adjustments. We
evaluate this approach for continuous and binary outcomes through simulation, and apply it to data
from a cluster randomized trial of a community behavioral intervention related to HIV prevention
in Tanzania.
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1. INTRODUCTION
1.1. Traditional and cluster randomized trials

Randomized clinical trials (RCTs) are recognized as the gold standard in medical research
for evaluating new treatments. Cluster or group randomized trials (GRTs), which assign
treatment to groups of individuals, are advantageous when interaction among subjects within
a group may impact their respective outcomes. GRTs are therefore especially relevant for
assessing prevention and treatment methods for infectious diseases, where subjects within a
geographical unit such as a neighborhood, school, or workplace may infect each other. For
example, in vaccine studies, a subject’s vaccination status may impact health outcomes not
only for that subject but for others as well. Clustered designs also have the advantage of
reducing the potential for contamination of effects caused by sharing of information or
medication between treated and control subjects. Similarly, group treatment assignment can
enhance compliance as subjects within a group are given the same regimen to follow. In
some cases, the intervention may be administered at the cluster-level, such as in studies
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involving schools or medical practices. Klar and Donner provide several examples of
intervention trials in which groups were randomized for medical, political, or logistical
reasons [1].

Although intervention is assigned at the group level, interest often lies in performing
inference on the individual. Generally, subjects within a group are expected to be more
similar than subjects in different groups, inducing dependence across study subjects. Cluster
randomized designs thus present the additional challenge of accounting for correlation
among group members. Standard approaches for estimating treatment effects when
responses are correlated include maximum likelihood for generalized linear mixed models
(GLMM) and generalized estimating equations (GEE) for restricted mean models [2, 3]. To
estimate the marginal effect in a binary treatment setting, one typically fits a model
including an intercept and treatment term. The relevant GLMM is defined by the model
E(Yij|Ai,bi) = g(β0 + β1cAi + bi), where Yij denotes the outcome for the jth individual in the
ith cluster, Ai is an indicator for treatment, bi is a random effect inducing correlation among
subjects within a cluster, and g(·) is a monotone link function. The outcome Yij and random
effect bi are assumed to follow a particular distribution. We note here that β1c is interpreted
as a cluster-specific treatment effect, but marginalizes over all other covariates. In the
analogous GEE approach, estimating equations are constructed following the mean model

(1)

where correlation is accounted for by incorporating a working covariance matrix Vw. For
cluster randomized designs, independence or exchangeable structure is generally assumed.

An advantage of the GEE approach is that consistency of , the estimate of β, only requires

that the mean g(Ai; β) is correctly specified, in which case,  is asymptotically normal for
all Vw and efficient when Vw takes the true form of V, the variance of response vector Yi.
The exact form of the GEE is reviewed in the following section. GEE differ from maximum
likelihood estimation in mixed models by treating correlation as a nuisance parameter.
Additionally, GLMM require full specification of the distribution of Yij, while GEE follow
from semiparametric theory and only specify the first moment of Yij while requiring the
second moment to be finite. Unlike GLMM, GEE do not make any assumptions about
cluster effects, and thus provide a population-averaged effect estimate in contrast to the
GLMM cluster-specific estimate. In either approach, treatment is evaluated through
inference on β1.

A second challenge presented by cluster randomized designs is that the number of available
experimental units may be fairly small. Inference for model-based methods relies on
asymptotic theory, which may not be applicable in trials with relatively few clusters. For
GEE, several studies have shown that the sandwich variance estimator typically
underestimates the variability of parameter estimates and consequently results in inference
that is too liberal [4]. A number of adjustment methods for small sample analysis have been
proposed [5, 6, 7, 8, 9]. These adjustments generally take one of two strategies; they account
for the variability in the sandwich estimator or correct for its small-sample bias. None of
these methods have been uniformly adopted.

The number of available experimental units also affects the degree to which randomization
successfully balances baseline characteristics across treatment groups. RCTs with large
sample sizes assure a reasonable degree of balance in covariate profiles with high
probability, but GRTs often have smaller numbers of experimental units, and therefore
provide less assurance of balance [10]. GRTs are also likely to contain subject heterogeneity
in cluster-level and individual-level characteristics that can influence estimated treatment
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effects. Clustered designs therefore require methods that permit controlling for imbalances
at the cluster and subject levels.

1.2. Methods for covariate adjustment in randomized trials
Traditionally, adjustment for residual imbalance has been achieved by adding covariates Zi,
Xij to a model for the effect of treatment on some outcome. The adjusted model for Yij is
defined by E(Yij|Ai, Zi, Xij) = g(β0 + β1* Ai + βZZi + βXXij), where Zi is a vector of
covariates shared by all subjects within the ith cluster, and Xij is a subject-specific vector of
measurements. Standard approaches such as mixed models and GEE can incorporate
adjustment at both levels. With the exception of linear and log-linear models, the conditional
model differs from the marginal model (1) in the interpretation of β1*. Inference on β1* is
also affected by the presence of baseline covariates. For uncorrelated continuous outcomes
and an identity link function relating covariates to the mean, it has been shown that when X
and Y are correlated, β1* is more precise than the unadjusted estimator [11, 12]. No direct
relationship between the efficiency of β1 (1) and β1* has been established for non-linear
models [13] or correlated outcomes. To provide an alternative that makes fewer parametric
assumptions, Gail et al. [14] proposed a permutation approach to covariate adjustment in
GRTs. Parametric models are used for adjustment, and permutation inference is conducted
on the cluster-averaged model-based residuals. Permutation tests are guaranteed to be valid
even for small samples, unlike modeling approaches. A similar model-based permutation
approach using an optimally weighted combination of residuals was developed by Braun
and Feng [15].

Recent methodological developments in covariate adjustment for RCTs include van der
Laan’s Targeted Maximum Likelihood [16] and Tsiatis’ augmentation approach [12, 17].
These methods adapt semiparametric theory developed by Robins [18] and Robins,
Rotnitzky, and Zhao [19] for observational studies with time-varying exposures and missing
data problems, respectively. RCTs may be conceptualized theoretically in either framework,
with counterfactual outcomes under the treatment not received considered missing, or as
observational studies with a known probability of point exposure. Robins et al. [19] and
Robins [18] characterize the efficient influence function in these settings [19, 18]. van der
Laan and Tsiatis solve the set of estimating functions determined by the efficient score using
two different approaches, which are equivalent in the absence of model misspecification.

Targeted Maximum Likelihood Estimation (tMLE) is an iterative procedure that involves
adding a cleverly defined covariate to standard regression models. Upon convergence, the
tMLE estimator solves the efficient influence function for the parameter of interest, resulting
in bias reduction and efficiency improvement relative to maximum likelihood. tMLE is
currently available for independent binary, continuous, time-to-event outcomes [20, 21], and
most recently, clustered or longitudinal outcomes. Tsiatis’ approach involves directly
solving a set of augmented estimating equations determined by the efficient influence
function for the marginal treatment effect [17]. This method has been explored for
continuous, binary, and discrete survival outcomes [22, 12, 17, 23]. Current applications of
the augmentation method have focused on independent outcomes, with the exception of a
simulation study based on the linear mixed model [17].

While tMLE simultaneously uses baseline covariates from treatment and control groups to
target treatment effect estimation, Tsiatis’ method separates covariate adjustment and
treatment evaluation. It also has the added advantage of allowing separate adjustment for
baseline covariates within treatment arms. If done by separate statistical groups that do not
share data, this approach reduces the risk that adjustment models are chosen to yield the
most significant result. Even without decoupling of adjustment and treatment effect
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estimation, all covariate adjustment methods can be made objective by prespecifying the
adjustment strategy.

2. THE SIMPLE AUGMENTED GEE
This section demonstrates the use of augmented estimating equations in analyses of cluster
randomized trials. In such a trial, m clusters of size ni, i = 1,…,m, are randomized to either
treatment (Ai = 1) or control (Ai = 0) with probability P(Ai = 1) = π. To motivate the
augmented GEE, we first review standard GEE. Let Yij denote the response for the jth
individual in the ith cluster. Yi = (Yi1, Yi2,…,Yini)T, where ni is the number of subjects
within the ith cluster. GEE for the marginal treatment effect are defined by the mean model
(1), where β is a p-dimensional parameter. An estimator for β is obtained by solving the
estimating equations

(2)

where , , and bold g(Ai; β) denotes the ni-dimensional
link function for the outcome vector Yi. Covariance matrix Vi is determined by the ni × ni
matrix function v(Ai). The variance function v(Ai) is a product of the diagonal matrix Vϕ,
where Vϕi,i is the variance of Yij, and correlation matrix R{α(Ai)}, where we allow α to be
treatment specific. This differs from the usual presentation of GEE, in which Vi is constant
and does not depend on Ai. Because our model does not place any restrictions on Vi, we
generalize the usual approach to allow Vi to be more flexible. Variance parameters ϕ and αk,

where k indexes treatment, are estimated by the method of moments using , an initial
estimator of β. To recover the GEE fit in standard software, the above expressions simplify
such that v(Ai) = v(1) = v(0) = V, and a single correlation parameter α is estimated across
all clusters. In a slight abuse of notation, we take Vi to be the matrix function v(Ai) and V
the constant variance matrix.

For continuous outcomes with the identity link , where  is the ni × 2 design

matrix composed of rows (1, Ai), the solution to (2), , exists in closed form, with

For simple designs, a closed form solution for  can also be derived for non-identity link
functions g(Ai; β) using the discreteness of A. The solution to (2) for the logit link is given
in Appendix A of the supplementary material. Generally, for more complex models, GEE
coefficient estimates are found using an iterative procedure such as the Newton-Raphson
method or Iteratively Reweighted Least Squares (IRWLS).

Robins et al. [19] and Robins [18] established that in a model for data O = (Y, A, X) in
which πk = P(A = k|X) is known, any regular and asymptotically linear estimator for β can

be found as the solution to  for a specific choice of . Zhang et al.
[17] demonstrated use of this theory in RCTs with univariate outcomes. Applying these

results to multivariate settings,  may be improved by augmenting the standard GEE with a
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function of baseline covariates X. The general form of the augmented GEE for a K-level
treatment is

(3)

where γk(Xi) is a p-dimensional function of Xi.

It was further shown that for the class of estimating functions , where ΓK

is the set of all functions of X such that , the optimal estimator
within this class for a fixed ψ (Y, A; β) is obtained by setting γkopt(Xi) = E{Ϙi(Y, A; β)|Ai
= k, Xi} [19, 18, 17]. When only two treatment arms are considered, the augmentation term

 can be written as

The simple augmented GEE is thus

(4)

where

Solving for  therefore requires knowledge of ϕ, αk, π, and E(Yi|Xi, Ai = k) for k = 0,1.
Following standard practice, we estimate ϕ and αk using the residuals from a GLM fit under
independence. Specifically, ϕ is estimated by the Pearson Chi-Square statistic, and αk is
obtained by solving the treatment-specific moment equations

, where , and h(αk) is determined by the
correlation structure assumed. For fixed ψi(Y, A; β), the optimality of the augmentation
depends on correct estimation of E(Yi|Xi, Ai = k)=fk(Xi; ηk). When E(Yi|Xi, Ai = k) is
misspecified, asymptotic normality and consistency hold, but the resulting estimator does
not achieve maximum asymptotic efficiency. Several options are available for estimating the
conditional mean E(Yi|Xi, Ai). We propose a strategy below which in large samples is
guaranteed to improve on standard GEE. Following Tsiatis’ approach of estimating E(Yi|Xi,
Ai) separately within each arm, estimation proceeds via ordinary least squares (OLS), or
maximum likelihood (ML) on an appropriately defined generalized linear model. Although
the observations within a cluster are not independent, the predicted values from OLS and
ML fits remain consistent. For treatment-specific estimation, the argument in [22] may be
generalized to GEE, guaranteeing that when E(Yi|Xi, Ai) is estimated with OLS, the
augmented estimator is at least as efficient as the unaugmented estimator for continuous and
discrete outcomes. This property holds even if models are misspecified. To more correctly
specify the mean function, one may opt to fit an appropriate GLM, such as logistic
regression for a binary outcome. We explore both approaches through simulation. It is also
worthwhile to note that if the probability of treatment depends on baseline covariates Xi
such that πk = P(Ai = k|Xi), the simple augmented GEE does provide a valid estimate of
treatment effects, but OLS is no longer sufficient to guarantee efficiency improvement over
unaugmented methods. For continuous Yij and identity link g(Ai; β), the improved estimator
is
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As in the unaugmented case, a closed form solution can be derived for non-identity links
under a simple design. Solutions for the logit link may be found in Appendix A.

Implementation of the simple augmented GEE for inclusion of baselines covariates in
analysis of a cluster randomized trial is summarized in the following steps:

1. Determine  from OLS or ML regression of Y onto
baseline covariates X within each treatment arm.

2. Fit a GLM under independence to obtain .

3. Estimate ϕ and αk from  of the initial fit.

4. Construct the augmented estimating equations ψaug(Y, A, X; β).

5. Solve for 

The GEE was initially proposed as an iterative procedure, in which fitting involved
repeatedly estimating correlation parameters α and mean parameters β until convergence.
Since its inception, however, theoretical development and simulation studies have shown
that the one-step procedure, as we have proposed for the augmented estimator, provides
asymptotically equivalent estimates to the fully iterated approach, with similar finite sample
properties [24].

3. VARIANCE ESTIMATION

The asymptotic variance of , under m → ∞, is derived through the usual M-estimator
Taylor expansion, accounting for the nuisance parameters  involved in estimating E(Yi|Xi,

Ai = k)=fk(Xi; ηk). We let  be an estimate of (4) evaluated at . The familiar

sandwich variance estimator  is obtained, where

, and , where . By randomization,
the augmentation term has mean zero and does not contribute to Γ. We therefore estimate Γ

by . Estimation of ηk results in additional terms in our expansion of

 shown below.

(a)
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(b)

where . By randomization (b)  as m → ∞, showing that asymptotically there is
no additional variability associated with estimating ηk, even when fk(Xi; ηk) is misspecified.
For cluster randomized designs, however, the asymptotics may not hold, as the number of

experimental units may be fairly small. In small sample settings, it is likely that  is

affected by estimation of ηk. We therefore estimate Δ by , with and without
term (b) and evaluate our variance estimator through simulation. Specifically, we estimate

 by its first order approximation and substitute estimated parameter values for the
truth. Inclusion of (b) is not guaranteed to increase the estimated variance but does provide a
more unbiased estimate by accounting for estimation of ηk.

The sandwich variance estimator of standard GEE is known to often be biased downward
for inference involving relatively few independent units. We examine Fay’s bias-correction
approach to recover loss. We choose this approach because unlike other methods which
were derived for standard GEE, Fay’s method is generalizable to any M-estimator, including
our augmented estimating equations. We apply Fay’s first correction, in which Δ is

estimated by , where Hi is a diagonal matrix with

. Lower bound q is typically set to 0.75 to
prevent gross inflation [5]. In total, we consider four standard error estimators for the simple
augmented GEE: 1) unadjusted sandwich (SE1), 2) nuisance -adjusted sandwich [term
(b)] (SE2), 3) sandwich with Fay’s small-sample bias correction (SE3), and 4) sandwich with
Fay’s small-sample bias correction and nuisance adjustment (SE4), and evaluate each
through simulation. Formulas for each estimator are provided in Appendix B of the
supplementary material.

An alternative estimate  can be computed through a resampling technique such as
the nonparametric bootstrap. To preserve the number of treated and control clusters within
any bootstrap sample, we resample clusters within treatment arm. We use strategy 1
described by Davidson and Hinkley [25], in which the composition of resampled clusters is
maintained, and demonstrate this approach through data analysis.

4. APPLICATION: YOUNG CITIZENS STUDY
We applied the simple augmented GEE to data from the Young Citizens study [26]. This
trial involved a behavioral intervention designed to train children ages 10-14 to educate their
communities about HIV. To facilitate randomization, 30 communities, were grouped into 15
pairs using a clustering algorithm involving several demographic characteristics. One
community per pair was randomly assigned to treatment and the other to control. Residents
within each community were surveyed post-intervention regarding their beliefs about the
ability of children to effectively teach their peers and families about HIV. The primary
outcome was a composite score reflecting the strength of this belief (Y1). A secondary
outcome measured residents’ beliefs regarding whether or not the AIDS problem was
getting worse in their communities. Residents responded on a 4-point scale with values
‘strongly disagree’, ‘disagree’, ‘agree’, and ‘strongly agree’. Responses were dichotomized
by collapsing ‘strongly agree’ and ‘agree’ into one category labeled ‘agree’; ‘strongly
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disagree’ and ‘disagree’ were collapsed similarly (Y2). The number of residents surveyed
per community ranged from 16-80 by multiples of 16.

We implemented standard and augmented GEE using the customary single correlation
parameter as well as the less restrictive approach of allowing treatment-specific correlation.
For augmented estimators, we also included estimation under independence to further
examine the impact of covariance selection on the efficiency of augmented inference.
Adjustment models were determined separately for treatment and control groups by various
model selection procedures. The final models used in analysis were selected via cross
validation. For child efficacy (Y1), the adjustment model in the treatment arm included the
baseline covariates employment status, residential or urban community, the number of
relatives living in the community, age, religion, population density, and whether or not the
household had a flushing toilet, which was an indicator of household wealth. Among control
communities, employment, age, and flushing toilet were included. The baseline covariates
that entered the adjustment models for beliefs about the state of the HIV problem (Y2) were
mean community wealth, ethnic group, and household wealth for the intervention arm, and
only mean community wealth for the control arm.

In analyzing our continuous outcome Y1, we evaluated the marginal treatment effect by
considering model (1), where g(Ai; β) was the identity link function. We computed the

standard error of  by the sandwich estimator and the nonparametric bootstrap for each
estimation procedure. The standard error modifications in section 3 were applied, namely: 1)
unadjusted sandwich (SE1), 2) nuisance -adjusted sandwich (term (b) above) (SE2), 3)
sandwich with small-sample bias correction (SE3), and 4) sandwich with bias correction and
nuisance adjustment (SE4). In our second application, we evaluated the marginal treatment
effect on the binary secondary outcome Y2 and fit model (1) with the inverse logit link. We
compared estimates obtained from standard GEE, the simple augmented GEE, adjusted
logistic GEE with standardization i.e. the G-formula [27], and inverse probability of
treatment weighted (IPTW) methods. In the IPTW approach, we ignore that the treatment
probability is known and estimate P(A = 1|X) using a logistic regression model in which
covariates were entered linearly.

In standard and augmented analyses, the intervention had a highly significant impact on the
perceived ability of children to be peer educators {95% CI Standard (0.182, 0.526), 95% CI
Augmented (0.245, 0.482)}. The adjusted sandwich variance estimator suggested over a
70% increase in efficiency resulting from covariate adjustment (ARE, Table 1). Bootstrap
estimates showed a similar efficiency gain under common correlation (58%) and a much
more modest gain using treatment specific correlation (5%) (‘ARE boot’, Table 1).
Comparing within unaugmented and augmented estimators, little difference in standard error
was observed between estimators allowing for treatment-specific correlation versus
estimators assuming common correlation. Estimates of β1 were similar across standard and
augmented estimators with either correlation structure.

Examining our binary outcome, Y2, there was a marked difference in the estimated

parameters when comparing standard and augmented GEE (Table 2). The estimate  was
−0.238 {95% CI (−0.777, 0.300)} using standard methods, compared to values the range
(−0.079,−0.023) for all augmented GEE estimates. In either approach, the effect of treatment
on the perception of the AIDS epidemic was not significant at the p=0.05 level {95% CI
Augmented GEE=(-0.491,0.332)}. Estimates from the standardized adjusted logistic GEE
were also closer to 0. Although effects were not significant at the p=0.05 level for any of the
approaches, confidence intervals for the augmented GEE were somewhat tighter, as were
those using standard methods of covariate adjustment.
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Considering efficiency, for both outcomes the estimated variability was lower for the
augmented estimator compared to standard GEE. Although there is some uncertainty
regarding the behavior of the sandwich estimator in small samples, these results suggest that
when the asymptotics hold, augmented GEE is a valid approach that may be substantially
more efficient than standard GEE. Randomized trials involving longitudinal data with many
subjects or clustered designs with many smaller units, such as households or offspring, are
therefore ideal candidates for this method. We evaluate our method and the behavior of the
sandwich variance estimator through simulation in the following section.

5. SIMULATIONS
We assessed the performance of the simple augmented GEE in two sets of simulations. The
first investigates continuous outcomes with an identity link, and the second set explores
binary outcomes using an inverse logit link. We considered the impact of misspecification of
the augmentation term and working covariance structure on the performance of our
estimator. Results are based on 1000 simulated datasets.

5.1. SIMULATIONS 1
Cluster level covariates were treatment, density, wealth, and community type (eg., urban/
rural, etc). Treatment assignment was completed by first fixing the number of treated and
control clusters to m/2, where m is the total number of clusters. Clusters were then randomly
assigned to treatment or control. Community type was generated from a multinomial
distribution. Density and wealth were generated from the exponential and normal
distributions, respectively. Individual-level covariates age, employment, security1, and
security2 were simulated from normal and multinomial distributions with age treated as
continuous and other covariates categorical. Data were generated following the means and
variances of covariates in the Young Citizens data. Intracluster correlation was induced by
cluster-specific random effects and community-level covariates. We considered varying
levels of correlation for treated versus control clusters. To assess small-sample performance,
we compared scenarios of m = 30 and m = 100 clusters.

Outcomes were generated from the following models: (Yij|Xij, Ai = 1) = 7.23 +
0.599employedij + 0.44mean wealthi – 0.22I(security1ij = 3) – 0.06ageij + 49.702densityi +
b1i + ∈ij, and (Yij|Xij, Ai = 0) = 2.56 + 0.245employedij + 0.691I(community typei = 4) +

0.921I(security2ij = 4) + 0.055ageij + b0i + ∈ij, where , and .
Community-level and individual-level covariates therefore contributed to heterogeneity in

subject responses. Values of  and  were selected to yield the desired within-cluster
marginal correlation (ρk). For treatment and control clusters alike, .

We evaluated the effect of working covariance and augmentation misspecification by
estimating β1 and its variance under different covariance structures and augmentation
models. Two variations of standard GEE were considered: standard GEE with common
exchangeable correlation {Std(Exch)}, and standard GEE with treatment-specific
exchangeable correlation {Std(Exch-TS)}. For the class of augmented GEE, we estimated

 with independence, exchangeable, and treatment-specific exchangeable correlation
structures. Each estimator was evaluated under several augmentation models. The estimator
resulting from fitting the true form of E(Yij|Xij, Ai = k) is denoted by ‘C’ for ‘Correct’.
Alternative augmentation models were defined by forward (F) and backward (B) selection,
and a wrong (W) model. The wrong models were given by E(Yij|Xij, Ai = 1) = η0 +
η1mean_wealthi + η2I(community_typei = 2) + η3I(security1ij = 2) and E(Yij|Xij, Ai = 0) =
η0 + η1densityi + η2ageij + η3I(community_typei = 1) + η4I(security2ij = 4). Augmentation
under the ‘Correct’ model illustrates the largest possible efficiency gain. Alternative model
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fitting techniques were chosen to be representative of methods commonly used when
performing covariate adjustment in analyzing clinical trial data. Forward or backward
stepwise selection may be used by analysts favoring more parsimonious or larger models,
respectively. The ‘Wrong’ model was included for comparison using models that contain
some relevant covariates but omit others. To correct for small-sample variance
underestimation, we applied several modifications to the sandwich estimator as detailed in
Section 3. For the unaugmented estimators, we calculated the sandwich variance (SE1), and
the sandwich variance with bias correction (SE3). Standard errors for augmented estimators
were calculated using SE2 and SE4 as well, which account for ηk-estimation.

Table 3 shows results for m = 30 and 100, , and , which correspond to
approximately 10% and 5% within-cluster correlation in treated and control clusters,
respectively. For Table 4, we raise the level of unexplained similarity among cluster

members by setting  and  for the sample sizes previously considered.

For small-sample and large-sample inference, bias was similar across all estimators.
Working covariance specification affected the variance of the augmented estimator, with
exchangeable (true) correlation structures resulting in smaller average standard errors than
independence. Comparing estimators calculated with an exchangeable correlation structure,
augmented estimators were often more efficient than the standard approach. Monte Carlo
relative efficiency estimates suggest that in the small-sample setting with low levels of
unexplained intracommunity correlation, considerable improvement (5-19%) is observed
even when misspecifying the augmentation model (Table 3). When intracluster correlation
was larger, additional variability associated with automated model selection resulted in loss
of efficiency associated with augmentation (Table 4). Average sandwich standard errors
were overly optimistic in comparing augmented GEE to standard GEE in small samples,
consistently estimating lower variability with augmentation. For large samples, efficiency
gains were not hindered by higher levels of unexplained cluster similarity, with Monte Carlo
efficiency improving by 5-40% (Table 4).

Coverage results show that for small samples, the uncorrected sandwich variance
underestimates the variability of the augmented estimator (Tables 3 & 4). Bias correction
fully recovered small-sample loss of variance for standard GEE. For augmented estimators,
correction was less effective. Coverage was slightly increased by accounting for
augmentation in the sandwich variance but did not quite reach nominal levels. For large-
sample inference, neither adjustment substantially increased coverage, which was already
close to nominal levels for the uncorrected sandwich variance without the nuisance term.

5.2. SIMULATIONS 2
To explore the performance of the augmented GEE for clustered binary outcomes, we again
generated datasets of m clusters with probability of treatment P(A = 1) = 1/2. Cluster-level
variables X1 and X2 were simulated from exponential and multinomial distributions with
mean 0.002 and probabilities p=(0.46, 0.27, 0.07, 0.17, 0.03), respectively. Individual-level

covariates X3, X4, X5, and X6 were generated such that (X3, X4) ~ Normal 
X5 ~ Bernoulli(p = 0.28), and X6 ~ Multinomial{1, p = (0.45, 0.15, 0.30, 0.10)}. We used
the random logistic model to simulate correlated binary outcomes Y. Random intercepts bi
were drawn from the bridge distribution for the logit link [28], Bl(0, 1 – ρ), where 0 is the
mean and ρ is the desired correlation. The bridge distribution was selected to preserve the
logistic shape after marginalizing over random effects and provide a simple scaling
relationship between parameters of the models for E(Y|X, A, b) and E(Y|X, A). Outcome
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generating models were: logit{E(Yij|Xij,Ai = 1, b)} = η10 + η11X3ij + η12X4ij + bi, and

.

For low association between Y and X, we set η0 = (3.4, –0.6, 0.03, 0.5)T and η1 = (2.5,
−0.62, 0.86)T. Coefficients η0 = c(2.0, −0.9, 0.03, 0.5)T and η1 = (1.5, −0.62, 0.86)T were
used for a high association. We again compared small-sample versus large-sample
performance by implementing standard and augmented GEE under m = 30, m = 100, and m
= 250 clusters. We also considered two levels of intracluster correlation (ρ=0.05, 0.20).
Results for m = 250 are included in Appendix C of the supplementary material.

We applied the augmented GEE under independent and exchangeable correlation structures
and evaluated different methods of fitting the augmentation term. To guarantee improved
efficiency relative to standard GEE, we fit augmentation models E(Y|X, A = k) using OLS.
We contrast this approach with logistic regression, which correctly specifies the form of the
relationship between Y and X, but is not guaranteed to improve efficiency under model
misspecification. For each model fitting technique, we fit the correct augmentation model
(C), a forward selection model (F), and two wrong models (O & W). Wrong models denoted
by ‘O’ contained one baseline covariate. Specifically, the models fit were E(Yij|Xij, A = 1) =
g(α10 + α11X4ij) and E(Yij|Xij, A = 0) = g(α00 + α01X3ij). Wrong models ‘W’ are given by
E(Yij|Xij, A = 1) = g(α10 + α11X5ij + α11X2i) and E(Yij|Xij, A = 0) = g(α00 + α01X4ij +
α02X1ij + α03X5ij).

Results were similar to those obtained for the continuous outcomes in the first set of
simulations (Tables 5 & 6). Bias was similar across all methods of estimation for small- and
large-sample inference, and correct specification of the working covariance resulted in more
efficient estimation for augmented estimators. Small-sample results suggested that for low
association of baseline covariates and outcome, small gains are possible for reasonably
specified models (2%-10%), but for automated model selection and poorly specified models,
efficiency loss occurs (−17%- −3%) because of additional variability introduced by model
selection and estimation of the augmentation terms. Efficiency increased by 8%-35% when
baseline covariates were more strongly related to the outcome, and unexplained intracluster
correlation was low. For higher intracluster correlation, efficiency gains were lower (−5% -
12%, Table 6), with loss of efficiency for automated model selection. Similar to the
continuous outcome, standard error adjustments were partially effective in recovering
nominal coverage. When 100 clusters were sampled, augmentation increased efficiency by
1%-35% for high association or low intracluster correlation. With low association between
X and Y and high intracluster correlation, augmentation decreased efficiency for poorly
specified and automated models. Considering 250 clusters, augmented estimators were more
efficient than unaugmented estimators across the levels of intracluster correlation, degree of
X,Y association, and methods of model fitting that were considered (see supplementary
material).

In summary, large-sample results suggest improvement with augmentation, whereas results
for small-sample estimation are less consistent. Across the number of clusters evaluated,
augmentation was less beneficial as the degree of intracluster correlation increased.

Regarding augmentation fit, the variability of  was similar when comparing augmented
estimators resulting from predictions from OLS and ML.

6. DISCUSSION
This paper demonstrates the use of methodology based on semiparametric theory to improve
efficiency of inferences in randomized studies with correlated outcomes through augmenting
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the standard GEE. This method extends the work of [17] by focusing on multivariate
outcomes, and is the first application of this approach to a cluster randomized trial.

The binary outcome analysis illustrates an additional advantage of augmented GEE - double
robustness. Results from standard GEE may result in misleading estimates in settings where
randomization has led to imbalance in important predictors. Augmentation involves
specifying a conditional model E(Y|X, A) that corrects for imbalances and therefore
recovers unbiased estimates of treatment effects, even when randomization does not result in
independence of X and A in the observed data. Alternative methods for correction, such as
IPTW using a predictive model for the probability of treatment given baseline covariates,
may not perform well given the cluster-level assignment. Predictive models for treatment
only make use of cluster-level information; individual-level covariates may be averaged by
cluster to create cluster-level covariates, but this data-coarsened approach can lead to poorly
specified models. Generally, inference on the probability of treatment will be poor given the
small number of randomized units. Alternatively, augmentation exploits relationships among
individual-level covariates and outcomes. Since there are multiple individuals per cluster,
there is more information available for estimating E(Y|X, A) compared to P(A = 1|X).
Estimation of E(Y|X, A) may consequently result in a better estimator of β1.

Simulation studies explored the possibility of efficiency gains using the augmented GEE in
small- and large-sample settings. For large samples, the augmented GEE improved
efficiency compared to the standard GEE for marginal treatment effects, which ignores
baseline covariates. In the small-sample setting, efficiency gain was less consistent; low
levels of between-community heterogeneity and high degrees of association between
baseline covariates and outcomes were required to benefit from augmentation. Gail et al.
[14] found a similar trend in their studies of permutation inference, noting that covariate
adjustment did not improve efficiency when between-community variability was high.
These results highlight the importance of measuring all covariates that contribute to within-
community similarities in response. Interpreting the results from the Young Citizens study
using the insight obtained through simulations, the low intracluster correlation (0.02)
suggests improvement in efficiency when adjusting for baseline covariates. The degree of
improvement, however, may be overstated by sandwich standard errors. Small-sample
estimation also resulted in coverage slightly below nominal levels, even after standard error
adjustment. The standard error modifications used only consider first-order approximations
to the sandwich variance and nuisance parameter distributions. The simulation results
suggest second order effects of nuisance parameter estimation may impact variance
underestimation. The shortcomings of this approach in small samples motivate investigation
into the use of augmented estimators with permutation-based inference.

We implemented augmentation using separate models for treatment and control, with ML
and OLS for binary outcomes, and OLS for continuous outcomes. Asymptotically,
treatment-specific OLS including an intercept term is guaranteed to be at least as efficient as
the unadjusted estimator [22, 12]. As discussed by Zhang and Gilbert [23], data splitting can
be inefficient in finite samples compared to fitting a common model for E(Y|X, A). For
studies involving relatively few randomized units, fitting a common conditional model may
better utilize covariate information. The effect of data splitting in finite sample inference has
not yet been examined in practice. To guarantee efficiency gain over unadjusted methods
when fitting a common model, van der Laan’s empirical efficiency maximization approach
[29] may be used. This method estimates nuisance parameters by empirically minimizing the
asymptotic variance of a scalar targeted parameter. It results in fitting adjustment models
with a weighted least squares procedure, in which weights depend on treatment
probabilities.
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Although the simple augmented GEE improves estimation in large samples, it is not the
semiparametric efficient estimator for our restricted mean model for multivariate outcome
data, even under correct specification of E(Y|A, X). Nonetheless, the simple augmented
GEE builds upon standard GEE in an intuitive way and provides insight into how
augmentation may be used with multivariate data to improve efficiency. Development of a
locally semiparametric efficient estimator for restricted mean models for multivariate data
and an understanding of its behavior remain important research questions. A locally efficient
estimator is an estimator that remains consistent and asymptotically normal under the
restricted mean model, and that achieves the semiparametric efficiency bound for the model
at the submodel where nuisance parameters are correctly specified. When model
misspecification of nuisance parameters is present, it is not clear whether the locally
efficient estimator will still improve efficiency compared to standard techniques. Additional
modification of the locally efficient estimator is needed to ensure improvement relative to
standard GEE. Further research is warranted in this area.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2
Marginal Treatment Effect Analysis with Binary Outcome: Parameter sandwich
standard error estimates

Std: unaugmented GEE, Aug: augmented GEE. Ind: independence, Exch: exchangeable correlation with
single parameter, Exch-TS: exchangeable with treatment-specific correlation parameters. GLM, OLS:
generalized linear model or ordinary least squares augmentation. ARE: square of the sandwich SE of the
Std(Exch) estimator divided by the square of the sandwich SE of the indicated estimator. Confidence intervals
(CIs) and ARE based on adjusted sandwich standard errors. Adjusted Logistic GEE-Model 1: logit(P (Yij = 1))
= η0 + η1Mean_wealthi, Model 2: logit(P (Yij = 1)) = η0 + η1Mean_wealthi + η2I(Ethnicij = 1) + η3I(Wealthij

= 0). IPTW: logit(P (Ai = 1)) = η0 + η1Know_leaderi + η2Good_floori.

Estimator β̂1 SE 95%CI ARE

Standard GEE

Std Exch −0.238 0.275 (−0.777,0.300) 1.000

Std Exch TS −0.219 0.266 (−0.74,0.301) 1.069

Augmented GEE

Aug Ind -GLM −0.062 0.215 (−0.484,0.361) 1.627

Aug Exch - GLM −0.079 0.21 (−0.491,0.332) 1.716

Aug Exch -TS - GLM −0.065 0.204 (−0.465,0.335) 1.811

AugInd-OLS −0.023 0.22 (−0.454,0.408) 1.561

AugExch-OLS −0.062 0.214 (−0.481,0.358) 1.648

AugExch-TS-OLS −0.047 0.206 (−0.451,0.358) 1.773

Adjusted Logistic GEE

Model 1 −0.093 0.167 (−0.420,0.234) 2.712

Model 2 −0.044 0.179 (−0.396,0.308) 2.349

IPTW Logistic GEE

Model 3 −0.293 0.236 ( −0.756,0.170) 1.354
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