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Abstract
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image
registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based
registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of
inconsistent intensities between the two modalities. In this paper, we propose a variant of demons,
called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR.
DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity
correction step on the CBCT image at every iteration step of the demons registration. Specifically,
the intensity correction of a voxel in CBCT is achieved by matching the first and the second
moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is
expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the
intensity consistency between the two modalities. DISC is implemented on computer graphics
processing units (GPUs) in compute unified device architecture (CUDA) programming
environment. The performance of DISC is evaluated on a simulated patient case and six clinical
head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and
intensity inconsistency and significantly improves the registration accuracy when compared with
the original demons.

1. Introduction
Online Adaptive Radiation Therapy (ART) allows real-time treatment adaptations based on
the current patient anatomy and geometry. In a typical online ART process, a computed
tomography (CT) image is usually acquired prior to the treatment course for treatment
planning purposes. Before each treatment fraction, a cone-beam computed tomography
(CBCT) image is then obtained, on which the treatment plan is redesigned to account for
setup errors, deformations of tumor and other organs, as well as the change of their relative
locations. Deformable image registration (DIR) technique plays an important role in this
process to establish a correspondence between voxels in the CT and the CBCT for various
purposes, for instance, transferring the organ contours from the planning CT images to the
daily CBCT images. It is hence desirable to have an accurate and robust DIR algorithm to
facilitate this step.

Among the existing DIR methods, demons (Thirion, 1998) has been proven to be a fast and
robust algorithm and a number of its variants have been developed (Pennec et al., 1999;
Wang et al., 2005; Rogelj and Kovacic, 2006; Yang et al., 2008). However, the demons
algorithm assumes that there exists intensity consistency between two images to be
registered. Therefore, although demons can successfully deal with images of the same
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modality (e.g., CT-CT registration), considerable registration error may present, when it
comes to inter-modality registration problems (e.g., CT-MRI registration), where
corresponding points in the two images to be registered do not necessarily pertain to the
same intensity level (Guimond et al., 2001; Lu et al., 2010; Nithiananthan et al., 2011; Hou
et al., 2011).

CT-CBCT DIR is considered to be an inter-modality DIR problem. Although CT and CBCT
are reconstructed under the same physical principles, the intensity (Hounsfield Units (HU))
consistency between CT and CBCT images is violated due to many reasons. Firstly, almost
all current commercial systems reconstruct CBCT images using the well-known FDK
(Feldkamp et al., 1984) algorithm. As a fundamental limitation of this algorithm, CBCT
quality degrades with increasing of cone angle (Schulze et al., 2011). Second, scatter
contamination also leads to severe cupping, streak artifacts and degrade of image contrast. In
a typical clinical CBCT system for radiotherapy scatter-to-primary ratio (SPR) may even
exceed 100% (Siewerdsen and Jaffray, 2001), although many methods have been proposed
to correct scatter artifacts (Siewerdsen et al., 2006; Rinkel et al., 2007; Maltz et al., 2008;
Zhu et al., 2009b; Poludniowski et al., 2009; Yan et al., 2010; Meyer et al., 2010; Sun et al.,
2011), it is still an open problem. Third, the gantry mounted bowtie filter in CBCT system
may wobble, as the gantry rotates, which can result in crescent artifacts (Giles et al., 2011;
Zheng et al., 2011). Moreover, there are also other factors that contribute to the intensity
inconsistency between CT and CBCT, e.g. different level of noise, beam hardening effects
and motion (Zhu et al., 2009a; Hsieh et al., 2000; Grimmer and Kachelriess, 2011; Li et al.,
2006; Lewis et al., 2011).

Despite the difficulties caused by the different image intensities, and the availability of
many existing algorithms for multi-modal image DIR, it is still desirable to use demons-type
algorithm in DIR due to its simplicity and hence high efficiency and robustness (Sharp et al.,
2007; Gu et al., 2010). In our previous study (Gu et al., 2010), we had implemented 6
variants of demons algorithm and performed systematic and comprehensive evaluations
which have shown that the GPU-based demons can generate accurate registration results in
seconds. A variety of inter-modality demons methods have been proposed. Some researchers
incorporate more reliable statistical similarity metrics into demons, such as normalized
cross-correlation (NCC) or normalized mutual information (NMI), to measure the similarity
between corresponding anatomical points. For instance, Modat et al (2010) implemented a
diffeomorphic demons using the analytical gradient of NMI in a conjugate gradient
optimizer. Lu et al (2010) has also proposed a variational approach for multimodal image
registration based on the diffeomorphic demons algorithm by replacing the standard demons
similarity metric with point-wise mutual information in the energy function. However, it is
still unclear what alternative metrics is robust for this CT-CBCT DIR problem and how to
incorporate it into demons style algorithms. On the other hand, some researchers focused on
estimating the intensity relation between CT and CBCT images and combining intensity
correction with geometrical transformation. Within this category, Guimond et al (2001)
investigated the functional transformation that maps the intensities of one image to those of
another, and implemented the intensity correction prior to each iteration. However, the
intensity mapping of a polynomial form estimated globally based on the entire image may
not be accurate enough and hence may result in errors in subsequent registration process.
Recently, Hou et al (2011) attempted to correct image intensities by aligning the cumulative
histograms of the two images. Nithiananthan et al (2011) also tried to correct intensities at
each demons iteration by estimating linear transformations for intensity mapping for a few
segmented tissue types. Nevertheless, all these works essentially assume that there exists a
global mapping between the CT and the CBCT intensities, which, however, may not hold
when CBCT is contaminated by artifacts, whose pattern is usually local.
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In this work, we propose and evaluate a modified demons algorithm embedded with a
simultaneous intensity correction step, called Deformation with Intensity Simultaneously
Corrected (DISC). Rather than estimating a global mathematical transformation model
between CT and CBCT images, our method corrects CBCT intensity of each voxel at every
iteration step of demons by matching the first and the second moments of the voxel
intensities inside a patch around this voxel with those in the CT image. Quantitative
evaluations of our method are performed by using both a simulation data set and six clinical
head-and-neck cancer patient data sets. It is found that DISC can handle CBCT artifacts and
the intensity inconsistency issue and therefore improves the registration accuracy when
compared with the original demons.

2. Methods and materials
2.1 The original demons algorithm

Suppose we would like to register two images Im (x) and Is (x), where a vector field v(x)
relates these two images by Im (x + v (x)) = Is (x)). Because Im is gradually deformed to
match Is, it is termed as the moving image, while Is is called the static image. In the demons
algorithm, the vector field v(x) is solved in an iterative fashion and at each iteration the
increment of the vector field dr(x) is determined based on the image intensity at the voxel x.
There are six different variants of the demons algorithm that have been studied by Gu et al
(2010). The difference between them lies in the expression for computing dr(x). Take the
double force demons (Wang et al., 2005; Rogelj and Kovacic, 2006) as an example, the
demons algorithm iteratively performs the following steps. First, calculate the increment of
the moving vector (or the displacement vector) at all voxel points. Specifically,
dr=(dx,dy,dz at a voxel in the double force demons is:

(1)

where the superscript indexes the iteration step,  is the intensity of the moving image at
the kth iteration, Is is the original static image. Second, smooth the resulting incremental
vector field dr by convolving it with a Gaussian kernel. Third, add the incremental
deformation field to the global deformation field v(x) and update the moving image. This
process is iteratively performed until convergence.

2.2 The DISC algorithm
In the context of CT-CBCT registration, the CT image is used as the moving one while the
CBCT image is the static one. Because of the relative better image quality of CT, deforming
CT yields better-controlled numerical error than deforming the CBCT. Due to the intensity
inconsistency between CT and CBCT, the original demons algorithm usually fails in CT-
CBCT DIR. The DISC algorithm presented in this paper solves this problem by integrating a
novel local intensity correction step into the demons framework. The rationale behind DISC
is that, although it is generally difficult to establish a global intensity mapping between CT
and CBCT, there exists such a mapping locally at each voxel to convert the intensity from
CBCT to CT. As such, we insert a CBCT intensity correction step before the first step of the
original demons algorithm. This step estimates an intensity transformation at a voxel x based
on voxels in small cubic volumes centering at x in both CT and CBCT (termed patches).
Then the intensity of the CBCT image is adjusted at each voxel using the estimated voxel-
dependent transformations. By performing the estimation locally on small patches around
each voxel, one can effectively remove image artifacts.
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Suppose at an intermediate step k of the registration process, the moving image is deformed

into . We would like to estimate two parameters a and b at each voxel x, such that the
CBCT intensity Is(x) is corrected into a(x) Is (x) + b(x). This is achieved by comparing the

patches centering at x on  and Is. Let us consider two patches of size n: M{m1, m2, ···,

mn} and S{s1, s2, ···, sn}, both centered at voxel x in  and Is, respectively. It is our
objective to find a linear intensity mapping:

(2)

such that the intensity distributions of S′ are in agreement with M. This can be achieved by
matching the moments of intensity distributions of the two groups of voxels. The p-th order
raw moment (also known as sample moment) of patch X{x1, x2, ···, xn} is defined as:

(3)

In this work, only the first two moments are used:

s.t.

(4)

where a(x) and b(x) for the voxel x can be obtained by solving the above equations (see
Appendix) as:

(5)

(6)

where STD(·) is the standard deviation operator. Let A and B denote two vectors of length N
(number of voxels in Im or Is) with entries a and b, respectively. Strictly speaking, the
estimation of a(x) and b(x) in Equations (5) and (6) are valid only when the two voxels

 and Is(x) are at the same anatomical location. Yet, due to the apparent violation
caused by the image deformation, this estimation is not always reliable. In practice, we only

estimate those a and b when  and Is(x) belong to the same tissue class and limit a and
b in a certain range to avoid false correction. Specifically, we first define a mask:

(7)

where HU0 is the threshold in Hounsfield Unit to identify if two voxels in CT and CBCT
images belong to the same tissue class. amin and amax are the lower and upper bounds of a.
The way of choosing the parameters HU0, amin and amax will be discussed in Section 2.3.
For voxels with ξ = 1, the values of a and b cannot be reliably calculated using Equations (5)
and (6); instead, they are estimated by interpolating/extrapolating from the a and b values for
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voxels with ξ = 0. Initially, we set a(x) = 0 and b(x) = 0 for ξ(x) = 1. We then estimate a(x)
and b(x) values for voxels with ξ = 1 by computing a weighted average of all a and b values
of voxels inside a small cubic region T centering at x:

(8)

(9)

(10)

where ωi is the weighting factor determined by the intensity values of Is(i). The underlying
assumption is that voxels of similar intensities should have similar a and b values. h is a
parameter that adjusts to what extent we would like to enforce the similarity. This
interpolation/extrapolation step may need to be performed for multiple times since for some
voxels, the values of ξ may be 1 for all voxels in their neighbor T. We need to point out that
this interpolation/extrapolation procedure does not change the values of a and b for for
voxels with ξ = 0.

As soon as a and b are available at all voxels, an intensity correction is performed to update
the image intensity of the original static image Is(x) to yield an intensity corrected static
image I′s (x) = a(x)Is(x) + b(x), which is thus ready for the displacement calculation using
the original demons algorithm. We would like to point out that any variants of the original
demons can be implemented in DISC in a similar way.

2.3 Implementation of DISC
Before starting the DIR procedure, a global intensity transformation is first performed to
shift the CBCT intensity by a constant (denoted as ΔHU) to match the mean intensities of
CT and CBCT. This is to correct the average HU difference between the two images to a
certain extent.

Then, a multi-scale strategy is adopted so as to reduce the magnitude of the displacement
with respect to voxel size. The iteration starts with the lowest resolution images, and the
moving vectors obtained at a coarser level are up-sampled to serve as initial solution at a
finer level. In this study, we considered two different resolution levels. Further down-
sampling was found not to improve registration accuracy nor efficiency.

Before the moving vector field calculation at each iteration, A and B are estimated using
Equations (4)~(10). Some parameters need to be first determined. We notice that HU0 is a
parameter affected by the degree of intensity inconsistency and complexity of artifacts, and
therefore is proportional to ΔHU. In this study, ΔHU is about 100 HU for simulation data,
and about 100~300 HU for clinical data. We empirically choose HU0 = 2ΔHU. For amin and
amax, we can learn from Equation (5) that a is actually the standard deviation ratio of the two
patches. Thus, A is calculated before starting DIR and the median value am of A is used to
determine the range of a in the subsequent steps. We let amin = 0.5am and amax = 1.5am. As
for the size of T in the interpolation/extrapolation procedure to get the masked a(x) and b(x),
we choose a relative small size 7×7×3 to balance the efficiency and accuracy.

One of the most commonly used stopping criterion to judge whether the moving image has
been correctly deformed to the static image is the cross correlation coefficient (Wang et al.,
2005; Sharp et al., 2007; Yang et al., 2008; Samant et al., 2008). However, such a similarity
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metric does not work well in this CT-CBCT DIR context. We therefore use a convergence
criterion based on the difference between successive deformation fields. We define a relative
norm l(k) = Σ|dr(k+1)|/Σ|r(k)|, and use l(k − 10) − l(k) ≤ ε, where ε = 1.0 × 10−4 as our stopping
criterion. This measure is found to have a closer correspondence with spatial accuracy than
correlation coefficient as DIR is stopped when there is no ‘force’ to push voxels any more
(Gu et al., 2010).

In this work, we use the compute unified device architecture (CUDA) architecture with an
NVIDIA GPU card as the implementation platform. In order to efficiently parallelize DISC
in the CUDA environment, the data parallel portions of the algorithm are identified and
grouped into the following kernels: 1) an intensity correction kernel to compute and
interpolate A and B; 2) a Gaussian filter kernel to smooth images and moving vectors; 3) a
gradient kernel to calculate the gradient of images; 4) a moving vector kernel to calculate
and update moving vectors; 5) an interpolation kernel to deform images with moving
vectors; and 6) a comparison kernel to stop the program based on the stopping criteria.

Considering all the components mentioned above, we summarize the DISC algorithm in
algorithm A1:

2.4 Evaluation
2.4.1 Synthetic data: MC simulation—To validate our algorithm, we have generated a
test dataset based on two CT images of a head-and-neck cancer patient. The first CT image
is called planning CT acquired before the treatment while the second CT image was
acquired half way in the treatment course for re-planning purpose and is called treatment CT
here. Then, a CBCT image with realistic image artifacts is synthesized using the treatment
CT image. DISC is applied to perform DIR between the planning CT image and the
synthesized CBCT image and to correct the CBCT intensity. This approach offers us the
ground truth for the evaluation of DISC: the treatment CT can be regarded as the scatter-free
CBCT image and the deformation vector field between the planning and treatment CT
images obtained using the original demons algorithm is the ground truth deformation vector
field.

To synthesize a realistic CBCT image using the treatment CT image, we first convert the CT
image into a digital phantom by assigning each voxel with a density value and a material
type. CBCT projection images at 360 equally spaced directions covering an entire 2π
angular range are then calculated using an in-house developed software tool (called gDRR)
(Jia et al., 2012) under a realistic projection geometry for a Varian Onboard-Imaging system
(OBI) (Varian Medical Systems, Inc., Palo Alto, CA). In this package, the primary
component in a projection image is calculated by a ray-tracing algorithm, while the scatter
component is obtained by Monte Carlo simulations followed by an image smoothing process
to suppress noise. Both the primary and the scatter calculations consider a variety of effects
occurred in a realistic CBCT scan including the energy spectrum, the source fluence map,
and the detector response, etc.. Once the projections are generated, an FDK reconstruction
algorithm is invoked, yielding the CBCT image with exactly the same anatomy structures as
in the treatment CT image but with all major CBCT artifacts such as scatter.

2.4.2 Clinical data—The performance of DISC is further assessed using clinical CT and
CBCT data of six head-and-neck cancer patients. Each patient has a planning CT image and
a CBCT image. The CBCT images were acquired 1–7 weeks after the first fraction of
treatment on a Varian OBI system integrated in a Trilogy™ linear accelerator (Varian
Medical Systems, Inc., Palo Alto, CA) using full-fan mode with a full-fan bow-tie filter on
site.
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For the planning CT images, the image resolution in the transverse plane is 512×512 and the
slice thickness is either 1.25 or 2.5 mm. The pixel size in the transverse plane varies from
0.74 to 1.07 mm. For all the CBCT images, the image size in the transverse plane is
512×512 and the slice thickness is 2.5 mm. The pixel size in the transverse plane is 0.47
mm.

The number of transversal slices ranges from 140 to 220 for a CT image and is
approximately 70 for a CBCT image. Therefore, the field of view of the planning CT is
generally larger than CBCT. The planning CT image is then cropped and re-sampled to
match the dimension and resolution of the CBCT image after rigid registration. Both CT and
CBCT images are down-sampled to half of their original size in the transverse plane. Hence,
the image resolution for both CT and CBCT images after rigid registration is 256×256×68
(Cases 1, 2, 5, 6) or 256×256×52 (Cases 3, 4), and the voxel size is 0.94×0.94×2.5 mm3.

2.4.3 Quantification of registration performance—Three similarity metrics are used
in this work to quantify the DIR results. They are chosen based on two considerations. First,
the metric should be observer-independent. Second, the metric should be insensitive to
intensity inconsistency.

The first metric is normalized mutual information (NMI), ranging from 0 to 1 with 1
representing the highest image similarity. The second metric is called feature similarity
index (FSIM) (Zhang et al., 2011; Yan et al., 2012), which tries to model the mechanism of
the human visual system by capturing the main image features such as the phase congruency
of the local structure and the image gradient magnitude. Detailed definition and description
of FSIM are given in (Zhang et al., 2011). In this work, FSIM is calculated at each pair of
corresponding transverse slices between two 3D data sets, and the average value and
standard deviation are calculated. The FSIM score varies between 0 and 1 with 1
representing the most image similarity.

The third metric is the root mean squared error (RMSE) between two edge images:

(11)

where  and  are the binary Canny edge images of image I1 and I2, respectively
(Canny, 1986). When two images are perfectly aligned, RMSEedge should be zero.

3. Results
For clarity, following symbols are used to represent different images used in the algorithm
evaluation: CToriginal and CBCToriginal are the CT and CBCT images before registration,

respectively.  and  are the deformed CT images using the original
demons algorithm and the DISC algorithm, respectively. CBCTcorrected is the intensity
corrected CBCT image using DISC. In the simulation study, CToriginal refers to the planning
CT before registration; CBCToriginal is the synthesized CBCT using the treatment CT before
registration. CBCTno artifacts is the treatment CT and regarded as the primary part of

CBCToriginal before registration;  and

 are the deformed CT images to match CBCTno artifacts and

CBCToriginal using the original demons algorithm, respectively. 
is the deformed CT image to match CBCToriginal using DISC.
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3.1 Synthetic data
Figure 1 shows the results for the simulation case. Figure 1(a) is the planning CT image
before registration; Figure 1(b) is the synthesized CBCT image before registration, in which
intensity variations due to scatter artifacts can be clearly observed inside the yellow dashed
circle. Figure 1(c) is the scatter-free primary component of CBCToriginal before registration.
The comparison of vertical intensity profiles through the image center between CBCToriginal
and CBCTno artifacts is shown in Figure 1(g).

Registration between CToriginal and CBCTno artifacts (Figure 1(a) and Figure 1(c)) using the
original demons algorithm can be regarded as the ground truth which yields

 (Figure 1(d)). When the original demons algorithm is applied
to deform the original CT to the original CBCT, we can see that in

 (Figure 1(e)) soft tissue and bone inside the yellow dashed circle
are significantly distorted after registration due to the intensity inconsistency mainly caused
by scatter artifacts. We can also see the significant intensity difference between

 and  in the intensity profile
comparison in Figure 1(h). In contrast, DISC can yield correct result, as shown in Figures
1(f) and 1(h).

Checkerboard comparisons are shown in Figure 2. Misalignment is evident before
registration (Figures 2(a)-1~3). The original demons algorithm unrealistically distorts the
tissues after registration, especially in those central regions with severe scatter artifacts
(Figures 2(b)-1~3). Results of DISC are shown in Figures 2(c)-1~3 and Figures 2(d)-1~3.
As we can see, DISC is robust against the artifacts and able to match the two images well
without distortion (Figure 2(c)-1~3). Checkerboard boundary between CBCTcorrected and

 can hardly be seen since CBCTcorrected has similar intensity
distribution as the deformed CT (Figure 2(d)-1~3).

The improvement of DISC over original demons can be further examined by inspecting the
difference of the moving vector fields (Figure 3). Because of the absence of artifacts in
CBCTno artifacts, it is expected that the original demons algorithm is functional when it is
used for DIR between CToriginal and CBCTno artifacts, and the resulting deformation vector
field r0 can be regarded as the ground truth vector field. We further denote the vector field
obtained by the original demons algorithm and DISC between CToriginal and CBCToriginal by
r1 and r2. The errors in terms of vector field in these two cases are hence characterized by
the difference between |r1 − r0| and |r2 − r0|, which are shown in Figure 3. We can see that
the original demons produces incorrect deformation vector field when artifacts exist (Figure
3(a)), while the DISC algorithm can yield almost the same deformation vector field as the
ground truth (Figure 3(b)).

On the other hand, the efficacy of CBCT intensity correction is demonstrated in Figure 4,
where difference images between CBCTno artifacts and CBCToriginal, and between
CBCTno artifacts and CBCTcorrected are shown. CBCTno artifacts is considered as the CBCT
image without any artifacts and thus with correct intensity. Before DIR, the scatter artifact is
evident in CBCToriginal and hence a large deviation is observed from CBCTno artifacts (Figure
4(a)). As DISC proceeds, the CBCT intensity is corrected gradually and the CBCTcorrected is
resulted, which has relatively small intensity inconsistency when compared with
CBCTno artifacts (Figure 4(b)).
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3.2 Clinical cases
The performance of the DISC algorithm is further assessed on six head-and-neck cancer
patient cases. An example result (Case 2) is shown in Figures 5 and 6. Misalignment is
evident before registration (Figures 6 (a)-1~3). The results from the original demons
algorithm are shown in Figure 5(c) and Figures 6(b)-1~3. As we can see, the anatomical
structures in the deformed CT image are significantly distorted due to intensity
inconsistency. This effect is more severe in regions that are dominated by artifacts (as
indicated by arrows in Figure 5(c) and Figures 6(b)-1~3). The DISC algorithm (Figure 5(d)
and Figures 6(c)-1~3), on the other hand, yields undistorted CT image that matches well

with the original CBCT, which can also be seen from the comparison between  and
CBCTcorrected as shown in Figures 6(d)-1~3. This can be also verified by examining the

histograms of CToriginal, CBCToriginal, , and CBCTcorrected (Figure 7). We can see
the remarkable histogram difference between CToriginal and CBCToriginal before DISC, and

almost the same histogram distributions between  and CBCTcorrected. This
indicates that the patch-based DISC algorithm can achieve a global match of intensity
distribution, although the operations are purely local at each voxel.

In terms of DIR accuracy, the DISC algorithm is quantitatively evaluated using NMI, FSIM

and Canny edge RMSE between CToriginal and CBCToriginal,  and CBCToriginal,

 and CBCToriginal, and  and CBCTcorrected, as shown in Tables 1, 2 and
3. Both the original demons and DISC algorithms increase NMI (for all six cases) and
reduce Canny edge RMSE (except for case 3 and 6 where the original demons algorithm
generates even larger Canny edge RMSE) between CT and CBCT images. The FSIM for all
six cases are increased after DISC. Interestingly, except for Case 2, the FSIM is decreased
after DIR using the original demons algorithm. This is because the original demons
algorithm distorts tissues significantly after DIR, which can be easily observed by human
visual inspection but hard to be detected by NMI or Canny edge RMSE. It is much easier for
FSIM to detect such changes, since it scores the similarity by mimicking how the human
vision works. For all six cases, the average NMI increases from 0.62±0.02 to 0.63±0.02, the
average FSIM increases from 0.91±0.04 to 0.94±0.02, and the average edge RMSE
decreases from 0.24±0.03 to 0.21±0.03, when comparing DISC with the original demons
algorithm.

3.3 Effect of patch size
The patch size in DISC has a considerable impact on the registration performance. Figures

8(a)-(l) show part of the  with different patch sizes in an example clinical case.
This part of image is contaminated by artifacts most severely. As the patch size increases,
the bones become distorted and the edges become blurred. When the patch size gets even
larger, soft tissue region is distorted as well (Figures 8(g)-(l)). This effect is also observed in
other clinical cases. The reason is that, as the patch size increases, it is more likely to have
different structures included in the same patch, resulting in errors in intensity correction.
Figure 9(a)-(l) show part of the CBCTcorrected with different patch sizes of the same case.
We can also observe that as the patch size increases, the image quality of CBCTcorrected
decreases. Therefore, we use 3×3×3 patch size in this work for all simulation data and
clinical data, and the patch size is kept constant at each image resolution level.

3.4 Variable a and b
Figures 10(a) and 10(b) show one transversal slice of the distribution of the parameters a and
b at the last iteration of DISC. Figures 10(c) and 10(d) are the patch standard deviation in Im
and Is at the last iteration of DISC. In fact, a is the ratio of the pixel value in Figure 10(c) to
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that in Figure 10(d) (see Equation (5)), and it controls the slope of the intensity
transformation in each voxel. The value of b represents a shift of the mean intensity value in
a patch in Is to match that in Im. We can see that the region with relatively high values of b
indicated by an arrow in Figure 10(b), showing a large shift is applied to change the mean
intensity value of the patch, corresponds to the region where the large artifacts present in the
original CBCT image. Figures 10(e) and 10(f) depict the evolution of the average value of a
and b during the DISC iteration. We can see that both a and b converge nicely at both image
resolution levels.

3.5 Computational efficiency
All the experiments in this study were conducted on an NVIDIA Telsa C1060 card with a
total number of 240 processors of 1.3 GHz. It is also equipped with 4 GB DDR3 memory,
shared by all processors. In the CUDA implementation of intensity correction kernel in
DISC, the computation corresponding to each voxel is handled by a thread, which loops
over all voxels in the patch centered at the voxel. Consequently, the computational time is
highly dependent on the patch size. The most time consuming step in the calculation is the
iterative interpolation/extrapolation procedure to get a and b values for voxels with ξ = 1.
Currently, there is no efficient way for sparse data interpolation. Compared to ~20s needed
with the original demons algorithm, the DISC algorithm takes about 69s for a patch size of
3×3×3 and an image size of 256×256×68.

4. Discussion and Conclusions
A fast, accurate, and robust CT-CBCT DIR algorithm is a key step in ART. Though many
methods had been studied specifically for inter-modality image registration, which might be
applied directly to CT-CBCT DIR, it is still tempting to use a more accurate and efficient
intensity-based algorithm, such as demons, to deal with the DIR problem for CT and CBCT
images. Other than modifying the DIR similarity metric, which is not straightforward in
demons, we presented in this paper a patch-based intensity correction method that is
performed in conjunction with demons, namely DISC, and evaluated it comprehensively
with simulated data and clinical patient data. By incorporating the intensity correction at
every iteration step, the DISC algorithm can robustly estimate the spatial transformation
while guaranteeing the intensity consistency between CT and CBCT image.

It is technically possible to use different patch sizes at different parts of the image. One
practical approach is to adjust the patch size according to the local image content. For
instance, a relatively large patch size can be used in those homogeneous regions, while a
small patch size can be adopted in those regions with more image details. The patch size can
be thus determined adaptively by calculating the standard deviation of a specific region,
which might help the convergence of the algorithm. This idea will be studied in the future
work.

Note that in Case 2, the CToriginal has been truncated. This is because the CBCT has a
limited field of view (FOV) due to the limited size of the image detector. In this work, we
first rigidly register the CT with this truncated CBCT and then crop the CT outside the FOV,
which results in a cropped CT image after registration. Undoubtedly, this cropped CT image
cannot be used for dose calculation afterward in ART, as it may introduce significant errors.
This truncation problem is not unique to DISC but a common issue for all DIR algorithms.
Yang et al (2010) proposed to assign those missing voxels outside of the FOV with NaN
(not-a-number) value. This simple method makes it possible to avoid the cropping of the CT
image. We are developing a more mathematically strict method to modify DISC for the DIR
problem between CT image and truncated CBCT image.
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Most previous studies focused on CBCT images without severe artifacts, in which case
simple histogram matching (Hou et al., 2011) or polynomial transformation model
(Nithiananthan et al., 2011) might be sufficient to describe the intensity relationship between
the CT and CBCT image. In our DISC algorithm, intensity correction is performed on a
voxel-by-voxel basis and the correction parameters are estimated by considering the voxels
nearby. It is advantageous to do so, because usually, obtaining an ideal mathematical model
to describe the intensity relation is not easy, if not impossible, when considering the
existence of severe artifacts in CBCT images. While estimating the intensity transformation
locally, one is able to make use of the prior information from CT image, and correct the
intensity in CBCT image voxel-wise. By this means, we try to equalize the intensities
distribution (the sample moments) inside each small patch with its corresponding patch in
the other image, which is physically sensible. Embedding this additional correction step into
the original demons, the intensity consistency requirement can be guaranteed.

Another merit of the DISC method is that it can yield the intensity corrected CBCT image at
the end of the DIR. This intensity corrected CBCT image can be regarded as a CBCT image
produced by the primary radiation. Hence, the DISC method, potentially, can be applied to
the area of CBCT scatter removal and hence other clinically relevant tasks, e.g. radiation
dose calculation based on CBCT.

The intensity correction method in DISC can be easily incorporated into other intensity-
based DIR algorithms, such as optical flow based algorithms (Lucas and Kanade, 1981), fast
free form with calculus of variations (Lu et al., 2004), etc., where intensity consistency
between two images is assumed. This method is effective in correcting the intensity of
CBCT images because of the modality similarity between CT and CBCT images. For more
challenging multi-modality DIR tasks, such as CT to MR DIR, our intensity correction
method needs to be modified since same anatomical structures in the MR image may have
totally different or even opposite image intensity with those in the CT image.

Another potential application of this intensity correction method might be in the field of
image segmentation. Medical images often suffer from various imaging artifacts and the
image intensity may not be homogeneous in regions where image homogeneity should exist.
This issue may result in the failure of some intensity-driven segmentation methods (e.g., Li
et al., 2011; Shahvaran et al., 2012). To solve this problem, our intensity correction method
may be incorporated into a more sophisticated framework based on the combination of
simultaneous registration, segmentation, and intensity correction using artifact-free prior
images.
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Appendix. Derivation of Equations (5) and (6)
Given two groups of points M{m1, m2, ···, mn} and S{s1, s2, ···, sn}, it is our objective to
match the first and the second moments after a linear transformation. Specifically, we seek
for constants a(x) and b(x) for the intensity transformation
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(A.1)

s.t.

(A.2)

(A.3)

Because these two equations lead to

(A.4)

taking the standard deviations on both sides of (A.1) yields

(A.5)

Hence

(A.6)

(A.7)
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Figure 1.
Simulation and registration results. The yellow dashed circles indicate the regions which
severely suffer from the scatter artifact. The green arrow indicates the DIR between
CToriginal and CBCTno artifacts using the original demons algorithm; the red arrow indicates
the DIR between CToriginal and CBCToriginal using the original demons algorithm; the blue
arrow indicates the DIR between CToriginal and CBCToriginal using DISC. (g) and (h) are the
corresponding vertical intensity profiles through the image center.
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Figure 2.
Checkerboard comparisons of the DIR results based on the simulation dataset. Columns:
transverse, coronal and sagittal images, respectively. (a): CToriginal and CBCToriginal; (b):

 and CBCToriginal; (c):  and

CBCToriginal; (d):  and CBCTcorrected. The insets show the
zoomed-in views.
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Figure 3.
Difference of the deformation vector fields (display window: −20~20 voxels): (a): between

 and ; (b): between

 and .
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Figure 4.
Difference images (display window: −500~500 HU): (a) between CBCTno artifacts and
CBCToriginal; (b) between CBCTno artifacts and CBCTcorrected.
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Figure 5.

(a): CToriginal; (b): CBCToriginal; (c): ; (d): . The arrows indicate the
region contaminated by artifacts (b) and the region with geometrical distortion (c).
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Figure 6.
Checkerboard comparisons of Case 2. Columns: transverse, coronal and sagittal images,

respectively. (a): CToriginal and CBCToriginal; (b):  and CBCToriginal; (c): 

and CBCToriginal; (d):  and CBCTcorrected. The insets show the zoomed-in views,
and the arrows indicate the regions contaminated by artifact or with geometrical distortion.
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Figure 7.

Histograms of CToriginal, CBCToriginal,  and CBCTcorrected.
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Figure 8.

Effect of patch size on the deformed CT images. (a)–(l) are part of  obtained with
patch size of 3×3×3, 5×5×3, 7×7×3, 9×9×3, 11×11×3, 13×13×5, 15×15×5, 17×17×5,
19×19×5, 21×21×5, 23×23×7, 25×25×7. The arrows indicate the regions of deterioration as
the patch size increase.
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Figure 9.
Effect of patch size on the intensity corrected CBCT images. (a)–(l) are part of
CBCTcorrected obtained with patch size of 3×3×3, 5×5×3, 7×7×3, 9×9×3, 11×11×3,
13×13×5, 15×15×5, 17×17×5, 19×19×5, 21×21×5, 23×23×7, 25×25×7. The arrows indicate
the regions of deterioration as the patch size increase.
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Figure 10.
(a) and (b): Distributions of parameters a and b on one transversal slice, respectively. The
arrow indicates where the artifact presents in the original CBCT image; (c) and (d): Standard
deviation of image intensities in each patch in Im and Is at the last iteration; (e) and (f):
Evolution of average a and b values with iteration at two image resolution levels,
respectively. The results are for Case 2.
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Table 4

Algorithm A1

Globally adjust the intensity of CBCT

Initialize the moving vector r to zero

Down-sample the images to the coarsest resolution

Repeat for each resolution level

 while l(k − 10) − l(k) ≤ ε, do

  1. Compute a and b for each voxel using patches in  and Is (Eqs. (5), (6));

  2. Interpolate/extrapolate a and b to where ξ = 1;

  3. Obtain I′s by applying the estimated linear transformation at each voxel;

  4. Compute dr for each voxel (Eq. (1));

  5. Add dr to the total moving vector r;

  6. Regularize r by applying a Gaussian kernel;

 Up-sample the moving vector r to a finer resolution level

Until the finest resolution is reached
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