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Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and to
compare their performance, no clear consensus exists on what is the best method and under which
conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when using
different generators of LRC time series. Here, we compare the performances of four estimators [Fluctuation
Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving Average (BDMA),
and Centred Detrending Moving Average (CDMA)]. We use three different generators [Fractional Gaussian
Noises, and two ways of generating Fractional Brownian Motions]. We find that CDMA has the best
performance and DFA is only slightly worse in some situations, while FA performs the worst. In addition,
CDMA and DFA are less sensitive to the scaling range than FA. Hence, CDMA and DFA remain “The
Methods of Choice” in determining the Hurst index of time series.

complex system, be it ecological, biological, technological, social, economic or financial, is usually embed-

ded in a complex network, which is composed of a large number of interacting heterogeneous constituents

linked via interwoven nonlinear heterogenous ties'. The observed signals of the physical quantities
characterizing a complex system often exhibit long-range correlations®. It is of crucial importance and signifi-
cance to quantify such long-range correlations to have a deep understanding of the dynamics of the underlying
complex systems. More than ten techniques have been invented to detect long-range correlations in time series®>,
such as the rescaled range (R/S) analysis®, the wavelet transform module maxima (WTMM) approach”"!, the
fluctuation analysis (FA)"?, the detrended fluctuation analysis (DFA)", the detrending moving average analysis
(DMA)*, and so on.

Our work focuses on three methods (FA, DFA and DMA) that are very popular especially in the econophysics
community. Consider a time series {x(f) : t = 1, 2, ..., N} with zero mean and its profile y(f) constructed as the
cumulative sum of x(t). The three methods proceed to obtain fluctuation functions F(s) specific to a timescale s.
For long-range correlated time series, we have

F(s)~ s, (1)

where o is a scaling exponent. In FA, the fluctuation function is computed as follows'

E(s)=/([y(t+5)—y(O)), )

which is actually a special case of the structure function in turbulence®. In contrast, both DFA and DMA adopt
detrending techniques. The time series y(f) is covered by Nj disjoint boxes of size s. When the whole time series y(f)
cannot be completely covered by N; boxes, we can utilize 2N; boxes to cover the time series by starting from both ends
of the time series. In each box, a trend function g(f) of the sub-series is determined. The residuals are calculated by

e(t)=y(t) —g(1), 3)

where the trend g(#) is a polynomial function in the DFA algorithm' and a moving average function over s data points
in the DMA method". The fluctuation function F(s) is then obtained as the r.m.s. of the residual time series:
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Figure 1| Scaling plots of (F) against s. Each plot contains four curves obtained from four different analysis methods (FA, BDMA, CDMA and DFA) and
each curve represents a fluctuation function averaged over 100 repeated simulated time series with the error bars showing the standard deviations. The
three rows correspond to three generators (FGN-DH, FBM-RMD and WFBM from top to bottom). Each column corresponds to a fixed Hurst index (Hj,,
=0.1,0.3,0.5, 0.7, and 0.9 from left to right). The curves have been shifted vertically for better visibility.

Note that all these methods have a multifractal version'®** and can be
generalized to handle high-dimensional fractals and multifractals®>*.
When y(f) is a fractional Brownian motion (FBM), the scaling exponent
o is identical to the Hurst index H>.

Several groups have attempted to assess the performance and
relative merits of these techniques. Xu et al.”” compare the perfor-
mances of DFA and DMA on long-range power-law correlated time
series synthesized using the modified Fourier filtering method*, and
find that DFA is superior to different DMA variants. Bashan et al.*’
observe that the centred DMA performs as well as DFA for long time
series with weak trends and slightly outperforms DFA for short data
with weak trends. They conclude that DFA “remains the method of
choice” when the trend is not a priori known. Serinaldi*® uses the
Davies-Harte algorithm to generate fractional Gaussian noises
(FGNs) and FBMs by summing the FGNs», and find that DFA
and DMA have comparable performances. Jiang and Zhou** report
that DFA and the centred DMA perform similarly and both of them
outperform the backward and forward DMA methods, when the
FBMs are generated using the Fourier-based Wood-Chan algo-
rithm®. Huang et al.** find comparative performances of FA and
DFA for FBMs with H = 1/3, which are generated with the Wood-
Chan algorithm®. In contrast, Bryce and Sprague® argue that FA
outperforms DFA, for FGNs with H = 0.3 that are generated using
the Davies-Harte algorithm?".

We notice that these studies concentrate on DFA versus DMA or
DFA versus FA and report what appears to be contradictory results
when considered together. A careful reading unveils that these stud-
ies cannot be directly compared because they have adopted different
synthesis algorithms (or generators) for the long-range correlated
time series to be tested. Indeed, comparing the performances of
long-range correlation detection methods is not an easy task for
the following reasons. Firstly, there are many algorithms to generate

FGNs and FBMs*, and one should be careful not to draw too rapid
conclusions on the relative performance of long-range correlation
detection methods that may be sensitive to the micro-structure of the
generated time series that depend on the specific synthesis algorithm.
Secondly, real time series may contain a priori unknown nontrivial
trends**°, which complicates significantly the detection of long-
range correlations, because trends and long-range correlations often
lead to similar signals. Thirdly, there is no consensus on an objective
determination approach of the scaling range, which plays a crucial
role in the estimation of the scaling exponents. Often, studies use
quite short scaling ranges (a decade or less), which is an hindrance for
determining the genuine presence of long-range correlations* ~*.

In this work, we focus on comparing FA, DFA and two versions of
DMA, where a linear detrending is adopted in DFA and the back-
ward and centred versions of DMA (denoted BDMA and CDMA
respectively) are investigated since the forward DMA performs the
worst according to the literature. The comparison between FA, DFA
and two versions of DMA is conducted on time series generated
using three different algorithms, thus generating a 3 X 4 matrix of
comparisons: (1) FGNs using the Davies-Harte algorithm (FGN-
DH)* so that we can compare with the analysis by Bryce and
Sprague®, (2) FBMs using a wavelet-based generator (WFBM)*,
which input Hurst indexes are very close to the estimated DFA
exponents even when H < 0.5%, and (3) FBMs using the random
midpoint displacement algorithm (FBM-RMD)*, because the
numerical results of the generated time series are in excellent agree-
ment with the analytical results for DMA*®. Besides, we do not con-
sider trends or other hidden nonlinear structures.

Results

Fluctuation functions. Figure 1 compares the fluctuation functions
calculated with four different scaling analysis methods (FA, BDMA,
CDMA, DFA) on time series generated using three different gene-
rators (FGN-DH, FBM-RMD and WFBM). We notice that panel (b)
confirms the results in Ref.[35], which compares the performances of
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Figure 2 | Local slopes of the fluctuation functions. Each plot contains four curves obtained from four different scaling analysis methods

(FA, BDMA, CDMA and DFA) and each curve represents a slope function averaged over 100 repeated simulated time series with the error bars showing
the standard deviations. The three rows correspond to three generators (FGN-DH, FBM-RMD and WFBM from top to bottom). Each column
corresponds to a fixed Hurst index (H;, = 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right). The horizontal dashed lines indicates the exact value of the Hurst

index used to generate the synthetic time series.

FA and DFA on FGNs with H;,,. One can also notice that the error bar
increases with s for each curve.

When the scale s is small and the Hurst index Hj, is small, the
curvature of the fluctuation function for DFA is remarkable, while
the FA curve looks quite straight. In addition, the DMA curves also
exhibit some mild curvature. With the increase of the Hurst index
Hj, of the analysed time series, the curvature of the DFA and DMA
curves decreases. We thus confirm that FA performs best in most
cases and DFA performs worst at small scales.

However, the conclusions are very different at large scales. The
DFA curves have the smallest error bars, the centred DMA curves
show the second smallest error bars, and the FA curves exhibit the
largest error bars. More significantly, the DFA and CDMA curves are
very straight, while the FA and BDMA curves exhibit some clear
curvature with the magnitude of the curvature becomes larger with
the increase of the Hurst index Hj,,.

These observations are qualitatively the same for different time
series generators.

Local slopes. Figure 2 compares the local slopes, which are the esti-
mates of the Hurst exponent, calculated with four different scaling
analysis methods on the time series generated using three different
generators. Comparing the three plots of each column, it is found
that the relative performances are qualitatively the same for the three
time series generators. For each scaling analysis method, the error
bars become larger with the increase of the scale for each fixed Hurst
index Hj, or with the increase of the Hurst index Hj, at fixed scale.
Again, the error bars of the DFA curve are the largest in each plot.

At large scales, we find that FA is the worst in the sense that the FA
curves have the largest error bars and deviate the most from the
theoretical line (Hyy) = Hi,. In contrast, DFA and CDMA have
comparable performances and perform best.

At small scales, the order of performance, as measured by the
proximity of the estimates of the scaling exponents to the true
Hurst values and by the size of the error bars, is FA>CDMA >

BDMA >DFA for H;, = 0.1 in the first column, CDMA >FA >
BDMA >DFA for H;, = 0.3 in the second column, CDMA ~FA >
BDMA >DFA for Hy, = 0.5 in the third column, FA>BDMA >
CDMA>DFA for Hy, = 0.7 in the fourth column, and FA>
BDMA >CDMA ~DFA for H;, = 0.9 in the fifth column, where
A>B means that A is superior to B.

Effect of scaling range. In order to perform the scaling analysis onto
real systems using any of the above methods, it is of crucial
importance to determine the scaling range. This is because the
estimate of the scaling exponent may vary dramatically if one
changes the scaling range. We now investigate the effect of the
scaling range on the estimation accuracy of the Hurst index
performed with the four scaling analysis methods applied to time
series synthesized by the three different generators.

Let us first consider the FGNs. We find that the FA gives accurate
estimates when H;, < 0.5, while the estimated indexes deviate more
and more from the theoretical values when Hj, increases in the
persistent time series range, for all nine scaling ranges. The DFA
estimates are not accurate only when sygn = 999 (first row) and
H;, < 0.5 and DFA outperforms FA for all the other cases. More
intriguingly, CDMA gives very accurate estimates of the Hurst
indexes and performs the best almost in all situations. Overall,
DFA outperforms BDMA and FA is the worst estimator.

For the time series generated with FBM-RMD and WFBM, the
relative performances of the four scaling analysis methods are qua-
litatively the same. When H;,<0.5, FA>>BDMA > CDMA >DFA.
For other situations, DFA and CDMA give very accurate estimates of
the Hurst indexes and perform the best, while FA performs the worst.

Taking all these observations together, we conclude that COMA
has the best performance and DFA is slightly worse. When the scal-
ing range is properly determined, DFA and CDMA have similar
performances. In contrast, FA has the worst performance, especially
in the sense that it cannot provide accurate estimations of the Hurst
index for persistent time series.

| 2:835 | DOI: 10.1038/srep00835



o DFA o BDMA CDMA > FA
04 0.4 0.4
& oo2f FEEEEREIA g pRRRRRR (o rERERR- 7
L O_E;“_;_I_D_Q_Q_Q_!_ 0_“‘_;_5_54_9_;_@_;_ ok ﬁL;JL F?‘%‘@“““
°—02} 848 e pepyg] 02l 3 Lawsepys| 020 ieyygqys
= _p4lla) g4l L p4lle) i
"0 02040608 1 0 02040608 1 "0 020406 0.8 1
04 0.4 0.4
E: Oz—:-p—o—!—!—?—@—@—?— 02—!—!—?—5—&—@—?—%—%— 0.2—!—9—?—@ - i: ? ¥—y
Ig = L L3 . Q_Q_g_ O_ta_g_g_i,_é_?_?_%_ 0(2)— —%—Q—i} - ? %—:
© 70.2_ﬁ_|_;_._§_;_¢_ _] *0.2_5_;_,_;_?_;_?_ o] VY |t i § 9
R [ T o4l ] gale 13
0 02040608 1 0 02040608 1 0 02040608 1
_ 04 0.4 0.4
S I F s S A N P RS R a o e
LR ot 0P EEERR
5. 7| 70'2*‘**?%%9* ] 70.2_.1;9_(,_!,_?%;_3_3_
= 4l L A D) T oali) Ty
002040608 1 0 02040608 1 0 02040608 1
Hin Hin Hip

Figure 3 | Impacts of the scaling range on the Hurst index estimates. Each plot has a different scaling range [sicf Sright], where s = 4, 10, 20 from left

column to right column and s;jgn, =

999, 1992, 5000 from top row to bottom row. In each plot, there are three clusters of curves. Each cluster corresponds

to the three generators (FGN-DH, FBM-RMD and WFBM from top to bottom). The top and bottom clusters have been shifted vertically by +0.25 and
—0.25 respectively for better visibility. In each clusters, there are four sets of points with their error bars that are obtained from four different analysis
methods (FA, BDMA, CDMA and DFA). Each point shows the average slope of the Hurst index estimates over 100 simulated time series. The error bars

show the standard deviations.

Discussion

We have investigated the performances of four estimators (FA, DFA,
BDMA, and CDMA) for the characterization of long-range power-
law correlated time series synthesized with three different generators
(FGN-DH, FBM-RMD and WFBM). We have illustrated that, over-
all, CDMA and DFA are the best and exhibit comparable perfor-
mances, while FA performs the worst. In particular, CDMA and DFA
are less sensitive than FA to the choice of the scaling range. We depart
significantly from the conclusion of Ref.[35] that FA is superior to
DFA, by showing that this statement holds only for very special cases
(FGNs with Hj, = 0.3) that cannot be extended to other situations.

An important issue is the effect of the length of time series on the
results and conclusions, especially for short time series*. We repeated
the analysis by generating time series of length 500 and 2000, respect-
ively. A time series of length 2000 corresponds to time windows of 8
years of trading at the daily scale, or less than a week of data sampled
at the minute time scale. The analysis comparing the results for
windows of 500 and 2000 time steps to those for windows of 20000
time steps is presented in Supplementary Information and confirms
that the conclusions remain unchanged, because the corresponding
plots for the two cases with different time series lengths are almost
indistinguishable, except that the results for shorter time series have
larger fluctuations as expected™.

When analysing real world data, one might confront many com-
plicating factors. The behaviors of many factors have been studied for
synthetic time series and real-world data, such as strong trends®**,
nonstationarity®, nonlinearity*’, and Hurst exponent being larger
than 1*%*. There are also a lot of efforts to improve the estimators
making them more suitable for real data®°. These topics are how-
ever out of the scope of the current work.

Methods

Description and preprocessing of the data. For each generator (FGN-DH, FBM-
RMD or WEFBM), we synthesize 100 time series of length 20000 for a given Hurst
index Hj,. These time series are used in all the analyses. The discrete values of the

fluctuation function F(s) of each time series for each scaling analysis method are
calculated at 32 s-values logarithmically sampled in the interval [4, 5000].

Figure 1 details. Each point ((F(s)), s) shows the average of 100 F(s) values over the
100 time series for each H;, at scale s for a given generator and a given estimator.

Figure 2 details. For each time series, we calculate the local slope of In F(s), which is
the centred difference using two adjacent data points. Each point shows the average
and the standard deviation estimated over the corresponding 100 local slopes.

Figure 3 details. For each time series, we calculate the slope of In F(s) using the data
points within the chosen scaling range. Each point shows the average and the
standard deviation over the corresponding 100 slopes.
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