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Phylogeography of Camellia taliensis (Theaceae)
inferred from chloroplast and nuclear DNA:
insights into evolutionary history and
conservation
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Abstract

Background: As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia
taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic
variation and population structure may provide insights into evolutionary history and germplasm conservation of
the species.

Results: Here, we sampled 21 natural populations from the species' range in China and performed the
phylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplast rpl32-trnL intergenic spacer.
Levels of haplotype diversity and nucleotide diversity detected at rpl32-trnL (h= 0.841; π= 0.00314) were almost as
high as at PAL (h= 0.836; π= 0.00417). Significant chloroplast DNA population subdivision was detected (GST = 0.988;
NST = 0.989), suggesting fairly high genetic differentiation and low levels of recurrent gene flow through seeds
among populations. Nested clade phylogeographic analysis of chlorotypes suggests that population genetic
structure in C. taliensis has been affected by habitat fragmentation in the past. However, the detection of a
moderate nrDNA population subdivision (GST = 0.222; NST = 0.301) provided the evidence of efficient pollen-
mediated gene flow among populations and significant phylogeographical structure (NST>GST; P< 0.01). The
analysis of PAL haplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused by
restricted gene flow with isolation by distance, which was also supported by Mantel’s test of nrDNA haplotypes
(r= 0.234, P< 0.001). We found that chlorotype C1 was fixed in seven populations of Lancang River Region,
implying that the Lancang River might have provided a corridor for the long-distance dispersal of the species.

Conclusions: We found that C. taliensis showed fairly high genetic differentiation resulting from restricted gene flow and
habitat fragmentation. This phylogeographical study gives us deep insights into population structure of the species and
conservation strategies for germplasm sampling and developing in situ conservation of natural populations.
Background
Crop wild relatives, which include wild progenitors of culti-
vated plants as well as other closely related species, are im-
portant components of natural habitats and agroecosystem
[1]. They may contain desirable alleles that can enhance
pest/disease resistance and abiotic adaptation, or improve
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nutritional values or flavour of crops, providing plant bree-
ders with a broad pool of potentially useful genetic
resources. Wild relatives have repeatedly served as import-
ant sources of useful traits for genetically impoverished
crops in the past decades [2]. However, these wild species
are subject to an increasing range of threats in their natural
habitats [3]. To design optimal conservation and manage-
ment strategies, it is necessary to trace their evolutionary
histories by better investigating their population structure.
Phylogeographical studies have been emerging as a

powerful tool for understanding population structure
and evolution of plant species [4,5]. By synthesizing the
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Table 1 The sample sizes and geographical locations of
the C. taliensis populations in this study

Population
code

Geographical
origins

Latitude
(N)

Longitude
(E)

Sample
Sizes

rpl32-
trnL

PAL

1. BD Bada, Menghai 21°50´ 100°06´ 8 5

2. CNB Bajiaozhai, Changning 24°45´ 99°47´ 9 7

3. CNC Chashanhe, Changning 24°58´ 99°36´ 9 9

4. CY Shanjia, Cangyuan 23°11´ 99°22´ 10 7

5. FQ Xiangzhuqing, Fengqing 24°36´ 100°09´ 9 7

6. GM Manghong, Gengma 23°33´ 99°35´ 8 5

7. JC Yaoren Mountain,
Jiangchen

22°30´ 102°01´ 7 8

8. MD Lexin, Kachin State,
Myanmar

24°49´ 97°44´ 12 4

9. MJ Yayi, Mojiang 23°11´ 101°43´ 9 7

10. NE Baicaodi, Ninger 23°15´ 100°04´ 7 8

11. SJ Mengku, Shuangjiang 23°41´ 99°47´ 7 6

12. TCB Gaoligong Mountain,
Tengchong

24°55´ 98°45´ 10 6

13. TCD Gaoligong Mountain,
Tengchong

24°56´ 98°44´ 10 7

14. TCH Houqiao, Tengchong 25°17´ 98°07´ 8 6

15. XM Mengka, Ximeng 22°44´ 99°26´ 10 5

16. YD Tanglishan, Yongde 24°02´ 99°13´ 9 7

17. YJ Yangchajie, Yuanjiang 23°40´ 101°45´ 7 6

18. YJM Mengnong, Yingjiang 24°49´ 97°56´ 8 8

19. YJX Xima, Yingjiang 24°42´ 97°44´ 9 5

20. YX Manwan, Yunxian 24°39´ 100°19´ 8 7

21. ZY Shanjie, Zhenyuan 24°07´ 101°14´ 9 7

Total 183 137
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influence of both history and current genetic exchanges,
phylogeography uses genealogical and geographical in-
formation to infer the demographic and historical pro-
cesses that shaped the evolution of populations and
species [5,6]. Recent decades have witnessed increasing
applications of phylogeography in economically import-
ant plants and their wild relatives [2,7-12].
The genus Camellia is composed of over 110 taxa [13],

of which only one species, C. sinensis (L.) O. Kuntze, is
commercially used as a source of the beverage tea. C.
taliensis is one of the most important wild relatives of the
cultivated tea, and they together belong to the section
Thea. Both them are monoecious, insect-pollinated, and
outcrossing species. They differ primarily in the number
of locules and the size of flowers and leaves. The number
of locules per ovary is five in C. talensis, while C. sinensis
has three. C. taliensis usually grows in the mountainous
evergreen broad-leaved forests at altitudes from 1300 to
2700 m, and is mainly distributed in southwestern Yunnan
of China, as well as adjacent regions including northern
Myanmar and Thailand. Because of its close relationship
with the cultivated tea and fascinated aftertaste, C. talien-
sis also has been consumed instead of regular tea by local
people in parts of Asia, particularly in Yunnan Province of
China [13]. These wild tea germplasms undoubtedly har-
bor abundant gene sources and thus possess great poten-
tials to enhance genetic improvement of cultivated tea in
the future. Unfortunately, recent human overexploitation
to subtropical forests has unavoidably made C. taliensis
suffer the degradation and fragmentation of natural habi-
tats suitable for natural populations of the species. In par-
ticular, the well-known Pu’er tea, made from organic
leaves of wild C. taliensis plants in Yunnan Province,
enjoys a price 10–100 times higher than cultivated tea
trees in the market. For this reason, natural populations of
the species have become endangered due to over-picking
driven by economic incentives. Hence, it is urgently
needed to pay particular attention to making efficient
germplasm conservation of C. taliensis.
The use of molecular markers derived from nuclear

and chloroplast genomes provides an unprecedented op-
portunity to investigate genetic structure and take
insights into population history of a species, particularly
by means of a combined analysis of biparentally inher-
ited nuclear and maternally inherited organelle markers
[4,5,14-16]. In order to better elucidate population gen-
etic structure and the phylogeography of C. taliensis, nu-
cleotide polymorphisms of a total of 21 natural
populations (Table 1) were screened by using the mater-
nally inherited cpDNA rpl32-trnL spacer and biparen-
tally inherited nuclear PAL gene fragment. It was shown
that rpl32-trnL intergenic spacer could offer higher level
of variation than other 33 noncoding regions in the
chloroplast, and thus has been successfully applied in
phylogeography analyses of many plants [17-19]. Phenyl-
alanine ammonialyase (PAL) was reported to involve in
the phenylpropanoid pathway and is encoded by a sin-
gle-copy gene [20]. As a result, it has often been used to
evaluate genetic diversity of cultivated tea and elucidate
the differentiation among cultivars [21-23]. In this study,
we aim to: (i) investigate levels of genetic diversity and
genetic structure of C. taliensis populations; (ii) infer
evolutionary forces that might have shaped the observed
population structure and determine demographic and
evolutionary history; and (iii) propose efficient strategies
for guiding the future germplasm preservation actions
and in situ conservation management.

Results
Haplotype variation and neutrality tests
cpDNA sequences from the rpl32-trnL spacer were
obtained from 183 individuals of C. taliensis and aligned
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to be 858 bp in length. These sequences represented 12
haplotypes with 18 polymorphic sites, including five
insertions/deletions (indels) and 13 substitutions
(Table 2). Of the five detected indels, three were single
nucleotide, while the other two had 5 and 9 bp, respect-
ively (Table 2). Of the analyzed 21 populations, only one
population (CNB) harbored two chlorotypes, while the
other 20 were monomorphic (Table 3 and Figure 1). It is
of interest to find that two chlorotypes, C1 and C2, were
detected in the ten populations from the Langcang River
region. Chlorotype C1 was fixed in six populations
CNC, SJ, GM, CY, XM and BD, and occurred with a
high frequency in the population CNB. With the excep-
tion of a low frequency occurred in the CNB population,
however, Chlorotype C2 was unique to populations FQ,
NE and YX from Lancang River region and one eastern
population JC. Three chlorotypes (C4, C9 and C12) were
present within populations located in eastern range of
the species, while the remaining seven (C3, C5, C6, C7,
C8, C10 and C11) were found in western populations.
The aligned nuclear PAL gene fragments of 627 bp

were obtained from the 137 detected individuals of C.
taliensis. With two singletons and without indels, 18
polymorphic sites were identified from 274 nrDNA
sequences (Table 4). Of them, 13 polymorphic sites were
synonymous, while the other five polymorphic sites were
replacement changes. Among a total of 17 distinct
nrDNA haplotypes found in the species, five haplotypes
Table 2 Twelve haplotypes of C. taliensis identified in the
rpl32-trnL sequences

Haplotypes Polymorphic sites

1 8 9 1 1 1 1 2 2 2 3 4 5 6 6 7 7 8

1 4 0 0 0 4 6 1 5 5 6 0 8 1 2 7 8 1

1 2 6 3 6 1 6 4 7 6 7 3 3 9 9

C1 - T T A * G - C - C A A G A A C - C

C2 T � G � * � - � - � � � � C � � - �
C3 - G � � * � - � - � � � � � � � - �
C4 - � � � * � - � - � C � � � � � - �
C5 - � � � * � - � - � � � � � � T - �
C6 - � � � * � - � - T � � � � � � - �
C7 - G � C * T - T - � � T � � � � - �
C8 - � � � - � - � - � � � � � � � - �
C9 - � G � * � A � - � � � T � C � - T

C10 - G � C * � - � T � � � � � � � - �
C11 - G � C * � - � - � � � � � � � - �
C12 - � G � * � - � - � � � � � � � # �
The number at the top indicates polymorphic sites. Indels are numbered
according to the first position in which they occur. Dots represent nucleotide
variants identical to the first sequence; - indicates absence; *and # denote two
indels (AAATA and AAATATCTA).
were common in the whole set of samples (Table 5 and
Figure 2). The most frequent haplotype was H4
(observed 75 times, 27.4%), while H2 (observed 56 times,
20.4%), H6 (observed 44 times, 16.1%), and H1
(observed 34 times, 12.4%) were present in a total of 14,
18, 11 and 13 populations, respectively. In addition,
Haplotype H3, which had only one mutational step from
H1 and H6, was observed 20 times (7.3%) and appeared
in a total of ten populations. All other haplotypes were
observed 10 times or fewer (≤ 3.6%) and only present in
fewer than two populations.
To investigate whether natural selection on the PAL

may affect the inference of population structure in C.
taliensis, neutrality test was performed by analyzing the
entire dataset. Neither Tajima's D (D=−0.257, P> 0.1)
nor Fu and Li's D* (D*= 0.52565, P> 0.1) rejected the
null hypothesis of neutral evolution. Furthermore, we
found that the minimum number of recombination
events, Rm, was zero at PAL. Since PAL provided suffi-
cient variation without the recombination and neutrally
evolves, patterns of haplotype variation at this locus may
reliably reflect the population history of C. taliensis.

Population genetic structure
Levels of haplotype and nucleotide diversity were inves-
tigated at both the nuclear PAL and chloroplast rpl32-
trnL across all the 21 natural populations of C. taliensis.
On the whole, levels of total haplotype diversity and
overall nucleotide diversity detected at the locus rpl32-
trnL (h= 0.841; π= 0.00314) (Table 3) were almost as
high as at the locus PAL (h= 0.836; π= 0.00417)
(Table 5). In this study, we failed to detect sequence
variation within populations except for the CNB popula-
tion at the locus rpl32-trnL (Table 3). However, it is no-
ticeable that genetic diversity at the locus PAL varied
largely from one population to another, with haplotype
diversity ranging from 0.439 to 0.867, and nucleotide di-
versity varying from 0.0007 to 0.0047 (Table 5). Among
the studied populations, the XM population exhibited
the most abundant genetic diversity (h= 0.86667;
π= 0.00471), while the FQ population possessed the low-
est levels of genetic variability (h= 0.43956; π= 0.0007).
To further investigate population genetic structure of

C. taliensis, genetic differentiation was examined by
detecting sequence variation at both the nuclear PAL
and chloroplast rpl32-trnL across the 21 natural popula-
tions. Chlorotype variation revealed that population dif-
ferentiation was fairly high (GST = 0.988), which was
almost as high as the ordered alleles (NST = 0.989). A
permutation test showed that the difference between
NST and GST was not significant (U = 0.07, P> 0.05).
Nevertheless, we found a significantly larger NST of
0.301 than GST of 0.222 detected at the locus PAL
(U = 3.34, P< 0.01). Analysis of molecular variance



Table 3 Chlorotype distribution and measures of haplotype diversity in C. taliensis populations

Populations Haplotypes S n h π K

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

BD 8 0 1 0 0 0

CNB 8 1 3 2 0.22222 0.00079 0.66667

CNC 9 0 1 0 0 0

CY 10 0 1 0 0 0

FQ 9 0 1 0 0 0

GM 8 0 1 0 0 0

JC 7 0 1 0 0 0

MD 12 0 1 0 0 0

MJ 9 0 1 0 0 0

NE 7 0 1 0 0 0

SJ 7 0 1 0 0 0

TCB 10 0 1 0 0 0

TCD 10 0 1 0 0 0

TCH 8 0 1 0 0 0

XM 10 0 1 0 0 0

YD 9 0 1 0 0 0

YJ 7 0 1 0 0 0

YJM 8 0 1 0 0 0

YJX 9 0 1 0 0 0

YX 8 0 1 0 0 0

ZY 9 0 1 0 0 0

Total 60 32 12 9 10 10 8 9 7 8 9 9 18 12 0.84129 0.00314 2.6531

n represents the number of haplotypes, S represents the number of segregating sites, h represents haplotype diversity, π represents nucleotide diversity, and K
represents average number of differences.
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(AMOVA) further showed that the majority of chloro-
type variation (98.75%, P< 0.001) was found among
populations, and only a small amount (1.25%) was parti-
tioned within populations (Table 6A). A global FST value
of 0.9875 also indicated fairly high differentiation among
the sampled populations at the locus rpl32-trnL. How-
ever, AMOVA exhibited contrastingly different pattern
of genetic differentiation among and within populations
at the locus PAL. Although nucleotide diversity (77.49%)
was mainly attributable to the variation within popula-
tions, significant proportion of diversity (22.51%, P
< 0.001) was partitioned among populations (Table 6B).
FST analysis (FST= 0.225, P< 0.001) also indicate that
considerable differentiation existed significantly among
the sampled populations.
In addition, a significant correlation was detected be-

tween genetic and geographical distances (r= 0.234, P
< 0.001) at the locus PAL, indicative of the isolation by
distance between populations. Nevertheless, there was
no significant correlation between genetic and geograph-
ical distances (r=−0.1134, P= 0.966) for the locus rpl32-
trnL.
Nested clade phylogeographic analysis
A nested cladogram of chlorotypes was constructed
through a TCS network by linking the haplotypes in a
hierarchical manner (Figure 3). Seven one-step and three
two-step clades were revealed with five clades that were
significant under NCPA. In this study, we detected allo-
patric fragmentation in Clades 1–1 and 2–3. Clade 1–1
included chlorotypes C3, C10 and C11 sampled from the
westernmost range of the species, while Clade 2–3 con-
sisted of chlorotypes C2 and C12 distributed in eastern
populations of the species. Clade 1–4 showed a restricted
gene flow but with some extent of long-distance dispersal,
and they distributed in the Lancang River region (Chloro-
type C1), western (chlorotypes C5, C6 and C8) and east-
ern range (Chlorotype C4), respectively. As for Clade 2–2,
we detected restricted gene flow/dispersal but with some
extent of long-distance dispersal over intermediate areas
not occupied by the species or past gene flow/dispersal
followed by the extinction of intermediate populations.
From the entire cladogram, it was inferred that they might
have arisen via long-distance colonization and/or past
fragmentation in (Additional file 1: Table S1).



Figure 1 The geographical distribution of 12 rpl32-trnL chlorotypes in the 21C. taliensis populations. The Lancang River is indicated in
blue, while red circle showes the range of the species.

Table 4 Seventeen haplotypes of C. taliensis identified in
nrDNA PAL sequences

Sequence positions

Haplotypes 3 5 7 9 1 1 1 2 2 3 3 3 3 4 4 5 5 6

0 8 9 7 6 6 7 0 0 2 3 5 9 3 8 2 8 1

3 4 2 4 8 6 7 8 1 6 1 0 6 9

H1 C C C C T G T G A G A C C A C A C G

H2 � T � � C � � � G � � � G � � T �
H3 � � � � C � � � � � � � � � � � � �
H4 � T � � C � � � � � � � � G � � T �
H5 � T � � C � � � � � � � � G � � T A

H6 � � � � C � � � � � � T � � � � � �
H7 � T � � C A � � � � � � � G � � T �
H8 � T � � C � � T � � � � � G � � T �
H9 � � � � C � C � � � G � � G � � T �
H10 � T � � C � � � � � � � G T � T �
H11 T � � � C � � � � � � � T � � � � �
H12 � T � � C � � � G � � � � G � C T �
H13 � � T � C � C � � � � � � G � � T �
H14 � T � T C � � � � � � � � G � � T �
H15 T � � � C � � � � � � � � � � � � �
H16 � � � � C � C � � � � � � G � � T �
H17 � T � � C � � � � A � � G � � T �
The number at the top indicates polymorphic sites, and dots represent
nucleotide variants identical to the first sequence.

Liu et al. BMC Evolutionary Biology 2012, 12:92 Page 5 of 13
http://www.biomedcentral.com/1471-2148/12/92
The conversion of statistical parsimony network for
nrDNA haplotypes into a hierarchical nested design
resulted in five one-step and three two-step clades
(Figure 4). In total, NCPA showed that four clades were
significant. In Clades 1–1 and 1–5, we detected restricted
gene flow/dispersal but with some long-distance dispersal
over intermediate areas not occupied by the species, or
past gene flow followed by extinction of intermediate
populations. Contiguous range expansion could account
for the distribution of genetic variation within the Clade
2–3. Meanwhile, restricted gene flow with isolation by dis-
tance could be inferred, which might have shaped patterns
observed within the total cladogram in (Additional file 2:
Table S2).
The net pairwise cpDNA divergence (dA) between

three pairs of two-level clades was estimated to be
0.006245 (2–1 vs 2–2), 0.004753 (2–1 vs 2–3) and
0.001488 (2–1 vs 2–3), respectively. Assuming 1.0-
3.0 × 10-9 s/s/y for synonymous cpDNA in seed plants
[24], clade 2–1 and 2–2 might diverge approximately
1.04-3.12 MYA, the time of divergence between clade 2–
1 and 2–3 could be dated to 0.79-2.38 MYA, and the di-
vergence time between clade 2–2 and 2–3 was estimated
to be 0.24-0.74 MYA.

Discussion
Genetic diversity and population structure
Of the 34 regions surveyed in the chloroplast genomes,
rpl32-trnL intergenic spacer was previously proven to be



Table 5 PAL haplotype distribution and measures of haplotype diversity in C. taliensis populations

Haplotypes S n h π K

Populations H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17

BD 5 1 3 1 5 4 0.71111 0.00291 1.82222

CNB 2 3 8 1 6 4 0.64835 0.00249 1.56044

CNC 5 12 1 5 3 0.50327 0.00139 0.86928

CY 4 1 1 6 2 6 5 0.75824 0.00393 2.46154

FQ 4 10 1 2 0.43956 0.0007 0.43956

GM 2 3 3 2 5 4 0.82222 0.00397 2.48889

JC 1 8 7 2 3 0.59167 0.00104 0.65

MD 2 2 4 2 3 0.71429 0.00159 1

MJ 3 10 1 6 3 0.47253 0.00361 2.26374

NE 4 1 2 9 7 4 0.64167 0.00444 2.78333

SJ 2 3 1 6 5 4 0.71212 0.00309 1.93939

TCB 2 1 9 4 3 0.43939 0.00145 0.90909

TCD 1 3 10 5 3 0.47253 0.00161 1.01099

TCH 2 7 3 6 3 0.62121 0.00394 2.4697

XM 1 3 2 2 2 8 5 0.86667 0.00471 2.95556

YD 4 5 3 1 1 8 5 0.79121 0.00464 2.91209

YJ 1 1 2 4 3 1 8 6 0.84848 0.00462 2.89394

YJM 3 1 7 4 1 6 5 0.75 0.00355 2.225

YJX 2 1 1 6 6 4 0.64444 0.00269 1.68889

YX 1 6 4 3 6 4 0.73626 0.00375 2.35165

ZY 2 5 5 1 1 7 5 0.76923 0.0034 2.13187

Total 34 56 20 75 1 44 7 10 3 3 2 2 1 4 4 1 7 18 17 0.83639 0.00417 2.61555

n represents the number of haplotypes, S represents the number of segregating sites, h represents haplotype diversity, π represents nucleotide diversity, and K
represents average number of differences.
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suitable for the population-level phylogenetic studies
[17], and thus has been successfully applied in phylogeo-
graphy analyses of plants [18,19]. In comparison to mean
estimate of cpDNA diversity (hT= 0.67) detected by vari-
ous cpDNA markers in 170 plant species [4], our study
showed that C. taliensis possessed an abundant variation
in the chloroplast rpl32-trnL intergenic with cpDNA di-
versity (h) of 0.841. In addition, levels of total haplotype
diversity and overall nucleotide diversity within natural
populations of C. taliensis at rpl32-trnL (h = 0.841;
π= 0.00314) (Table 3) were higher than the three culti-
vated populations of C. taliensis (h =0.610, π= 0.00225),
indicating the reduction of genetic diversity during the
domestication [25]. However, nucleotide diversity within
C. taliensis in this study appears as high as that of nine
cultivated populations of C. sinensis var. assamica from
Yunnan, China (h =0.728, π= 0.00469) [25].
By using rpl32-trnL intergenic spacer and PAL gene

fragment as markers, we estimated genetic structure of
C. taliensis populations across its distribution range in
China. cpDNA data suggest that the differentiation
among the C. taliensis populations was rather high
(GST = 0.988; NST = 0.989), placing it among the surveyed
plant species with the highest cpDNA differentiation [4].
Partitioning of genetic variability showed that, on aver-
age, merely 1.25% of cpDNA variation was distributed
within C. taliensis populations and up to 98.75% among
populations (Table 6A). In comparison with the above-
described cpDNA data, it is of interest to uncover that
nrDNA PAL data showed a contrastingly different gen-
etic structure of C. taliensis populations. Genetic differ-
entiation (GST = 0.222, NST = 0.301) shows that, on
average, up to 69.9-77.8% of nrDNA variation was parti-
tioned within C. taliensis populations and merely 22.2-
30.1% among populations. The estimates were slightly
higher than the mean value of Gst of 0.184 for the other
77 angiosperms species [4]. In this study, we found that
NST was significantly higher than GST, suggesting that
pairs of different nrDNA haplotypes from the same
population have more similar sequence than pairs of dif-
ferent haplotypes from markedly different populations.
AMOVA analysis further revealed that the majority of
PAL nucleotide diversity (77.49%, P< 0.001) was signifi-
cantly attributable to the variation within populations



Figure 2 The geographical distribution of 17 PAL haplotypes in the 21C. taliensis populations. The Lancang River is indicated in blue,
while red circle showes the range of the species.
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(Table 6B). The lack of genetic differentiation in the nu-
clear genes probably results from ancestral polymorph-
isms maintained by a larger effective population size, or
high dispersal possibilities of nuclear genes [5]. As for
the wild tea tree of C. taliensis, it is likely that smaller
effective population size of organelle DNA than nuclear
DNA results in strong genetic drift and high levels of
population differentiation [4,5]. Because of the nature of
cpDNA maternal inheritance in angiosperms, seed dis-
persal often plays an important role in shaping popula-
tion genetic structure of maternally inherited cpDNA. C.
taliensis usually generates heavy nut fruit with short-dis-
tance seed dispersal, and thus, rather limited abilities of
seed dispersal among populations might lead to the ob-
servation of high cpDNA population subdivision.
Table 6 AMOVA analysis of the 21C. taliensis populations by

(A)

Source of variation d.f. Sum of squares

Among populations 20 75.668

Within populations 162 0.889

Total 182 76.557

(B)

Source of variation d.f. Sum of squares

Among populations 20 31.327

Within populations 253 82.841

Total 273 114.168

* P< 0.001.
Demographic history of C. Taliensis
NCPA in this study indicates that restricted gene flow
and effects of the past fragmentation appear to be of sig-
nificance in together shaping the observed patterns of
chlorotype variation in C. taliensis. Allopatric fragmenta-
tion was apparently detected in clades 1–1 and 2–3 of
the chlorotype network. The most likely explanation is
that the species has recently suffered the degradation
and fragmentation of natural habitats in consequence of
recent human overexploitation to subtropical forests.
Our field surveys particularly found that, driven by mar-
ket incentives, a number of natural populations of C.
taliensis have been seriously destroyed and thus become
endangered in small effective population sizes caused by
over-picking of organic leaves from natural populations
using rpl32-trnL (A) and PAL (B) sequences

Variance components Percentage of variation (%)

0.43397 98.75*

0.00549 1.25

0.43946

Variance components Percentage of variation (%)

0.09512 22.51*

0.32743 77.49*

0.42255



Figure 3 Nested cladogram of 12 chlorotypes across the 21C.
taliensis populations. Circles in colors denote different haplotypes,
and the size of each circle is proportional to that haplotype
frequency across populations. Each branch between the haplotypes
represents a mutational step. The dotted lines indicate independent
mutation events converging on a shared haplotype. The squared
loops show the nested clades or haplotypes in the network, which
were resolved by nested clade phylogeographic analysis (NCPA).
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of C. taliensis (Gao and Liu, unpublished data). More-
over, the range of C. taliensis in China covers western
region of Yungui Plateau, which is adjacent to the south-
east of Qinghai-Tibetan Plateau with an average eleva-
tion of approximately 4,500 m above sea level, the
largest and highest plateau in the world [26]. The ex-
tremely complex topography and climates were formed
during the uplift of the Plateau especially in the
Figure 4 Nested cladogram of 17 nrDNA haplotypes across the
21C. taliensis populations. Circles in colors denote different
haplotypes, and the size of each circle is proportional to that
haplotype frequency across populations. Each branch between the
haplotypes represents a mutational step. The dotted lines indicate
independent mutation events converging on a shared haplotype.
The squared loops show the nested clades or haplotypes in the
network, which were resolved by nested clade phylogeographic
analysis (NCPA).
southeastern region of Qinghai-Tibetan and Yungui plat-
eaus. As a result, significant increase in geological and
ecological diversity has largely enhanced rapid diver-
gence and speciation in small and isolated populations
[27]. In addition to the recently fragmented habitats as a
result of human destruction, the estimated range of sep-
aration times of 0.24-3.12 MYA among clades in this
study post-dates the most recent uplift the Tibetan Plat-
eau around 3.4 MYA [28,29]. The species may have
experienced habitat fragmentation possibly as a result of
the uplift of Qinghai-Tibetan Plateau and subsequent
larger-scale drainage. The past fragmentation may have
resulted in the observed chlorotype structure of C.
taliensis, although there is a lack of direct evidence to
strongly support such an association of geographical pat-
terns with the unspecified historical events. NCPA also
detected the restricted gene flow in Clade 1–4 which
included individuals from a total of eleven populations.
It is true that the C. taliensis plants often produce heavy
nut fruits with short-distance seed dispersal and thus the
gene flow is fairly restricted among populations. The ser-
iously fragmented habitats together with their endan-
gered status indeed have largely accelerated the
restricted gene flow among the small surviving natural
populations detected in the species. However, one im-
portant characteristics of chlorotypes distribution was
that Chlorotype C1 was found in the seven populations
resided in the Lancang River region without exception.
Such a geographical distribution of Chlorotype C1 sug-
gests that the Lancang River might have provided north-
wards or southwards natural corridors for the long-
distance dispersal of C. taliensis in China.
Hybridization is expected to have served as a possible

driver of the observed patterns of chlorotypes. Geo-
graphic distribution of C. taliensis mostly covers the ex-
tensively growing range of C. sinensis. As previously
documented in Baiying Mountains, Yunnan Province,
hybrid zone which consists of a number of populations,
called as “Er’Ga’Zi Tea”, was found to have formed be-
tween these two species (Chong-ren Yang, personal
communications). However, the extent and effects of
hybridization which might affect levels genetic variation
and patterns of geographic population structure of C.
taliensis remains largely unsettled and stays to be further
studied.
It is our discovery that populations with geographical

proximity did not share closely related geographical
chlorotypes. For example, although TCB and TCD popu-
lations were geographically close with only 10 km dis-
tance apart, they were fixed for the distinct chlorotypes
of C5 and C6, respectively. Such a pattern of cpDNA
variation may come from incomplete lineage sorting of
polymorphisms. As a kind of stochastic process ran-
domly allocating ancestral polymorphisms into different
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populations or species, lineage sorting has been proven
to be a major factor for the lack of associations between
genealogical relationships of haplotypes and their geo-
graphical distributions [2]. Another possible explanation
is that the past and recent habitat fragmentation of an-
cestral populations has led to the observed patterns of
chlorotype structure in the species.
Isolation by distance can be tested through both the

correlation of genetic and geographical distances and the
nested clade phylogeographic analysis [30]. In this study,
Mantel tests exhibited a significant correlation between
genetic and geographical distances of PAL haplotypes,
supporting the isolation by distance model across the
study populations in C. taliensis. Moreover, the total
cladogram of PAL haplotype network also showed the
evidence of restricted gene flow with isolation by dis-
tance. Overall, both the correlation of genetic and geo-
graphical distances and NCPA together demonstrated
that the population genetic structure of the species fitted
the model of isolation by distance. Nevertheless, Man-
tel’s tests failed to detect significant correlations between
genealogical relationships of chlorotypes and geograph-
ical distances. The discrepancy between the nrDNA PAL
and cpDNA phylogeography of C. taliensis could result
from different transmission mechanisms of nuclear and
organelle genes, and/or their different tempos of lineage
sorting through drift [5].

Implications for the germplasm conservation
As the most popular non-alcoholic beverage throughout
the world, a large number of tea germplasms have been
collected and ex situ preserved in China, Japan, India
and Kenya [31]. Unlike cultivated tea varieties, their wild
relatives have cold tolerance and are resistant to com-
mon diseases infecting cultivated tea tree, and thus they
constitute valuable gene resources for local and inter-
national tea tree improvement programs in the future.
Although efforts have been made to preserve cultivated
tea germplasms, it is vital that more attention to be paid
to the conservation of their wild relatives has been
largely neglected so far. Knowledge of genetic variation
between and within populations of rare and endangered
species is extremely useful for making appropriate man-
agement strategies directed towards their conservation
[32]. Of these wild species, C. taliensis is one of the most
important wild relatives of the cultivated tea and is sub-
ject to increasing threats as a result of the overexploita-
tion and deforestation. The uncovered genetic profile
presented here not only helps to gain important insights
into genetic structure of C. taliensis populations, but
also has critical implications for taking appropriate strat-
egies of the conservation and germplasm management.
Comprehensive understanding of regional genetic

structure of C. taliensis in this study is required to
design an appropriate conservation scheme. In view of
abundant genetic diversity resided within C. taliensis
populations, an appropriate strategy for both germplasm
sampling and developing in situ conservation of those
populations with a higher variation on behalf of different
geographical regions is needed. In order to capture the
considerable genetic variation harbored among popula-
tions, ex situ germplasm collection should have suffi-
cient sample size from each population. Since at least
22% genetic diversity of PAL nucleotide diversity distrib-
uted among populations, germplasm collections should
be sampled from extensive geographic origins. The ob-
servation that the majority of PAL variation was distribu-
ted within populations of this species is instructive for
adopting a plan of involving fewer populations but more
individuals within populations. Apparently, the popula-
tions with abundant haplotype diversity, such as XM, YJ,
GM, YD, ZY, CY, and NE (Table 5), may be more at-
tractive for both in situ conservation and ex situ germ-
plasm collections. The populations with the unique PAL
haplotypes, such as CNB, JC, TCH, XM, YD and YJ,
should be given conservation priority (Table 5). The
observed chlorotype structure showed an allopatric frag-
mentation in C. taliensis such as between Clades 1–1
and 2–3. Notably, three chlorotypes (C3, C11 and C10)
distributed in the westernmost range of C. taliensis,
while other two (C2 and C12) was found in eastern
populations of the species (Figure 3), further implying
that both germplasm sampling and setting in situ con-
servation localities should take different geographical
origins and the observed chlorotype structure into
consideration.
Considering that the most remnant populations of C.

taliensis are turning into smaller as a result of human
destruction, however, it is quite possible that the process
of habitat fragmentation will lead to a loss of genetic di-
versity by dramatically increasing mating opportunities
between relatives within small populations. The C.
taliensis populations may have suffered habitat fragmen-
tation due to either the uplift of Tibetan Plateau or re-
cent deforestation, and thus brought about the observed
chlorotype structure in C. taliensis. However, NCPA sug-
gest that restricted gene flow/seed dispersal may have
resulted in smaller effective population sizes of the out-
crossing plant species due to the recently fragmented
habitats and long-distance colonization. Consequently,
conservation and restoration genetics should concen-
trate on the maintenance of historically significant pro-
cesses such as strong gene flow/seed dispersal as well as
large effective population size in the species.

Conclusions
Our phylogeographic study has revealed abundant gen-
etic diversity and moderate genetic differentiation of
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natural populations of C. taliensis from the whole range
of China. The data are indicative of taking effective con-
servation actions of these precious tea tree germplasm.
However, it should be noted that samples from the entire
range of the species are not represented in the present
study. Therefore, a full picture of population genetic
structure for the species as well as further understanding
of evolutionary history and forces could be better out-
lined if extensive studies are completed in the seeing fu-
ture. In addition, further detailed studies on reproductive
biology should also help to explain the observed popula-
tion structure of the wild tea tree species. Undoubtedly,
such efforts will be critical for taking effective conserva-
tion of precious genetic resources of wild C. taliensis.
Last of all, conservation consideration should be set to
habitat management because human destruction of the
species’ habitats has led to the species’ endangerment.
Recent human destruction of wild C. taliensis popula-
tions driven by economic incentives plus the overexploi-
tation and deforestation in subtropical regions have
together led to the degradation and fragmentation of
habitats suitable for natural populations of these species.
Thus, the genetic diversity of remaining populations of
the species has to be dynamically maintained in change-
able environments, and long-term habitat protection is
the most important to prevent genetic variation from fur-
ther loss and a reduction of effective population size.
Without a shred of doubt, successful conservation will
largely rely on the scale of protection range of natural
habitats and indeed the amount of positive participation
by governments and local communities.

Methods
Material sampling and DNA extraction
In this study, a total of 185 individual plants from 21 wild
populations of C. taliensis were sampled, representing al-
most the entire range of the species in China (Table 1;
Figures 1 and 2). For each population, young, healthy
leaves were collected from seven to thirty individual
trees, depending on population size. To ensure adequate
population coverage, random samples were taken from
trees at an interval of about 3–100 m across the whole
studied population. Voucher specimens were collected
and deposited in the Herbarium of Kunming Institute of
Botany, Chinese Academy of Sciences (KUN). Leaves
were individually harvested in the field and silica-dried
for subsequent DNA extractions. Genomic DNA was
then isolated from liquid-nitrogen ground leaf tissues
according to a CTAB method described by Doyle and
Doyle [33].

PCR amplification and DNA sequencing
The extracted DNA was dissolved in 100 μL TE buffer
and then used as the PCR templates. In this study,
primer pairs used by Shaw et al. [17] were adopted to
amplify the rpl32-trnL noncoding spacer of cpDNA
(TRNL: 5' -CTG CTT CCT AAG AGC AGC GT -3',
RPL32: 5'-CAG TTC CAA AA A AAC GTA CTT C-3').
In addition, a pair of primers (PAL F: 5'-TGC CAC AAT
CAG CCA CAA G-3', PAL R: TGG TTG GTT ACA
GGA TTG GC) was designed based on cDNA sequence
from C. sinensis due to the unavailability of the entire
genomic structure of PAL in C. taliensis.
DNA amplifications were carried out in a T1 thermo-

cycler (Biometra), programmed for an initial 4 mins at
97 °C; followed by 35 cycles of 50 s at 95 °C, 50 s at 52 °
C (rpl32-trnL) or 55 °C (PAL), 1 min at 72 °C; and an
additional extension for 10 mins at 72 °C. Reactions
were performed in 50 μL reaction volumes containing
50 mM KCl, 10 mM Tris–HCl (pH 8.3), 1.5 mM MgCl2,
200 μM of each dNTP, 0.1 μM of each primer, 30–50 ng
of template DNA, and 1U Taq polymerase (TaKaRa).
Amplification products were run on 0.8% agarose gels
and subsequently purified with UNIQ-10 kit (Shanghai
Bioengineering). PCR products were sequenced by ABI
3730 at Beijing Genomics Institute (BGI) –Shenzhen.
Although PAL was reported to be a single-copy nu-

clear gene in C. sinensis, it is possible that lineage-spe-
cific duplication occurred in C. taliensis. To exclude the
possibility of paralogous loci in C. taliensis, we selected
and cloned 15 heterozygous PCR products using pGEM
T-easy vectors. For every selected heterozygous PCR
product from a single individual, as expected for the
amplification of a single locus from a diploid organism,
no more than two different alleles were detected. There-
fore, it was confirmed that all these haplotypes detected
in our data set correspond to the same PAL locus. All
sequences reported in this study were deposited in the
GenBank database under accession numbers JX161616-
JX161644.

Data analyses
Because some of the SNPs used in this study were dis-
covered within close proximity to one another, they
could not be treated as independent markers. For each
set of linked SNP loci, we employed a Bayesian statistical
method implemented in Phase version 2.1.1 [34,35] to
resolve the gametic phase of PAL sequences with mul-
tiple heterozygous single nucleotide polymorphisms
(SNPs). This program uses allele frequencies and fre-
quencies of known SNP haplotypes in each population
to infer the probabilities for each possible haplotype
from a group of linked SNPs. A total of five independent
runs of 100 iterations each were performed with other
parameters as default. The goodness-of-fit values were
very similar among different runs, indicating that their
run lengths were sufficient in the present study. For each
newly ‘phased’ locus, we selected the two haplotypes for
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each sample that had the highest probability as assessed
by PHASE. These haplotypes were then used as multi-al-
lelic genotypes for further analysis. Only those alleles
and genotypes resolved with> 95% posterior probabil-
ities were remained for subsequent analyses. Sequences
were proofed and aligned by using CLUSTAL _X [36] as
implemented in BioEdit [37]. Indels in the cpDNAs were
treated as substitutions by following Caicedo and Schaal
[2].
Global and population nucleotide diversity (π) [38],

haplotype diversity (h), average number of nucleotide
differences between the whole sequences (K), and the
number of polymorphic sites (S) were calculated using
DNASP 4.10 [39]. Tajima's D [40] and Fu & Li's D* [41]
neutrality tests were applied to determine whether a
locus evolves in a neutral manner. The minimum num-
ber of recombination events (RM) was assessed using the
algorithm of Hudson and Kaplan [42] in the DNASP
4.10 program.
Nested clade phylogeographic analysis (NCPA) was

performed by following the approach [43] in the pro-
gram ANeCA [44]. Significantly parsimonious connec-
tions were then constructed by using the program TCS
[45], with a 95% parsimony connection limit. On basis
of the resulting network, nested clades were further
defined following the rules of Templeton et al. [46] and
Templeton & Sing [47]. In the study, the program GEO-
DIS [48] was used to test whether there is geographic
associations of clades as well as nested clades or not
under the null hypothesis, with a 95% confidence level
and with 10,000 permutations. If significant values were
detected, the inference key of Templeton [49] was used
to explain their likely population processes and/or his-
torical events within these clades.
The approximate divergence times between clades

defined by nested clade phylogeographic analysis were
estimated following Yuan et al. [50], using T = dA/2 μ,
where T is the divergence time and μ is the rate of nu-
cleotide substitution [51]. The net pairwise divergence
per base pair (dA) was calculated using MEGA4 [52]
under the Kimura two-parameter model [53]. In this
study, considering that a substitution rate had not yet
been estimated for the cpDNA genome of Camellia, 1.0-
3.0 × 10-9 substitutions per site per year for synonymous
cpDNA sites in seed plants [24], were taken as a rough
evolutionary rate for rpl32-trnL intergenic spacers to
date their divergence times.
An analysis of molecular variance (AMOVA) [54] was

carried out with Arlequin 3.1 [55] to determine the par-
titioning of variation within and between populations.
Two measures of population differentiation GST and NST

were compared by using U-statistic implemented by the
program HAPLONST [56]. GST values were estimated
by haplotype frequencies, while NST was obtained by
considering similarities between haplotypes (i.e. the
number of mutations between haplotypes). An NST

which is significantly larger than a GST, indicates the
presence of a phylogeographical structure with closely
related haplotypes being detected more frequently in the
same area than remotely correlated ones.
The Mantel test implemented in the program Arlequin

3.1 [55] was applied to examine the correlation between
the natural logarithm of the geographical distance and
Slatkin's measure M [M= (1/FST− 1)/2], a measure of
the extent of gene flow under an island model at equilib-
rium [57]. Statistical significance was also tested with 10,
000 permutation tests by using the program Arlequin
3.1.

Additional files

Additional file 1: Table S1. Chain of inference from the nested clade
analysis of the chlorotype data in C. taliensis using Templeton’s (2004)
inference key.

Additional file 2: Table S2. Chain of inference from the nested clade
analysis of the PAL haplotype data in C. taliensis using Templeton’s (2004)
inference key.
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