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Introduction

Studies on host-microbe interactions have largely focused on 
understanding the molecular mechanisms of pathogenesis of 
infectious diseases, which is not surprising given the considerable 
public health and commercial interest in developing tools for the 
diagnosis of infections, as well as improving vaccination, phar-
macologic, and antibiotic treatments. However, we now know 
that the acquisition of pathogenic bacteria does not always cause 
disease and that microbes classified as non-pathogenic can also 
cause disease in certain susceptible hosts. This is because the out-
come of the bacteria-host interaction depends on the context of 
the communication with the specific host. In normal individuals, 
for instance, large numbers of microbes are found on most sur-
faces of the body, like the skin,1,2 the oral cavity3,4 and the gastro-
intestinal tract,5,6 forming stable communities without causing 
disease. These communities are normally referred to as commen-
sals (derived from Latin “cum mensa,” meaning “eating at the 
same table”). In particular, the intestinal commensals, which are 
the focus of this review, have been demonstrated to play a pivotal 
role in aspects of host nutrition7 and physiology such as develop-
ment of adaptive lymphoid tissue,8 innate immune response,9,10 
healing following mucosal injury,11 development of intestinal 
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Laboratory rodents have been instrumental in helping 
researchers to unravel the complex interactions that mammals 
have with their microbial commensals. Progress in defining 
these interactions has also been possible thanks to the 
development of culture-independent methods for describing 
the microbiota associated to body surfaces. Understanding 
the mechanisms that govern this relationship at the molecular, 
cellular, and ecological levels is central to both health and 
disease. The present review of rodent models commonly used 
to investigate microbial-host “conversations” is focused on 
those complex bacterial communities residing in the lower gut. 
Although many types of pathology have been studied using 
gnotobiotic animals, only the models relevant to commensal 
bacteria will be described.
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angiogenesis,12 energy extraction and storage,13 and pathogenesis 
of autoimmune14 and metabolic diseases.15

Most of the current knowledge of how mammals, includ-
ing humans, interact with their microbial commensals has been 
obtained by way of animal experimentation. Although the criti-
cal role of microbes in human health was suggested as early as 
the 1880s,16,17 it was not until recently that appropriate labora-
tory tools have been developed to directly characterize the funda-
mental mechanisms underpinning bacteria-host communication. 
Probably the two most significant achievements in facilitating 
our understanding of these interactions were the development 
of nucleic acid-based techniques for analyzing complex bacterial 
communities, and advances in germ-free technology to manipu-
late the composition of the microbial environment in experimen-
tal animals.

Like in other life science disciplines such as drug discovery, 
preclinical studies and toxicology, where animal models have 
been a mainstay of basic and applied research, rodent models 
have had a central place in revealing key features of the bacte-
rial communities associated with vertebrates. The present review 
of rodent models commonly used to investigate microbial-host 
“conversations” is limited in scope to those complex bacterial 
communities residing in the lower gut. Although many types of 
pathology have been studied using gnotobiotic animals, only the 
models relevant to commensal bacteria will be described.

Gnotobiotic and Germ-Free Animals

The use of germ-free technology for investigating the interactions 
between the host and its associated microbiota has evolved sub-
stantially since the first conference on germ-free life in 1939.18 
By controlling the microbial composition of the environment in 
which the animals are reared, scientists have been able to obtain 
information about how microorganisms affect the normal physi-
ological functions of the host.

Over the past decades, the terms “gnotobiotic,” “axenic” and 
“germ-free” have been occasionally (and unfortunately) used 
interchangeably. “Gnotobiotic” (from the Greek gnosis mean-
ing “knowledge” and bios meaning “life”) was originally used 
to describe the biological status of animals used in germ-free 
research.19 The terms “axenic” or “germ-free” (GF) refer to ani-
mals devoid of any other contaminating organism (also from 
Greek roots; a, “without”, xenikos, “foreign”).20 Strictly speaking, 
the definition of GF requires the absolute absence of any form of 
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recently delivered her litter, with the expectation she will accept 
the new pups. The GF status of the breeding colony must be con-
firmed and repeatedly tested. Another method, involves embryo 
transfer at the two-cell stage using a pseudo-pregnant GF female 
as recipient.31,32 The donor female is superovulated by inject-
ing gonadotrophin, and then mated. A few hours later, oviducts 
are dissected and embryos flushed out under the microscope. 
Fertilized two-cell stage embryos are washed with antibiotic-
containing medium, and transferred into the oviducts of a GF 
recipient female that had been mated with a vasectomized GF 
male. Again, the GF conditions of the colony must subsequently 
be confirmed. This is generally achieved by culturing fecal pellets 
and skin swabs in universal culture media under both aerobic and 
anaerobic conditions, complemented with PCR on feces using 
bacterial-specific primers.

Perhaps the simplest strategy to understand microbial-host 
functional conversations is to study a particular host function 
in GF conditions, and then evaluate the consequences of add-
ing a single or defined population of bacteria to the GF animal. 
Alternatively, the impact on a given host function could be inves-
tigated during the conventionalization of a GF animal. However, 
one has to be mindful that GF animals are functionally and 
physically immature in many physiological systems (immune and 
non-immune), which challenges comparisons of results obtained 
in GF conditions to those in natural settings. For example, mice 
raised in GF conditions show an immature intestinal pattern of 
high sialyltransferase and low fucosyltransferase activities relative 
to conventional mice;33 the content of intestinal IgA-secreting 
plasma cells is reduced in GF animals34 as is the size and num-
ber of Peyer’s patches.35 These differences are also observed sys-
temically due to soluble bacterial structures being absent in GF 
animals.36 A comprehensive summary of the multiple defects in 
structure and function of different organs in GF animals can be 
found elsewhere.28,32 In most cases, the underpinning mecha-
nisms of these alterations are not fully understood.

In addition, conventional animals have acquired the experi-
ence of living with their microbial communities since they were 
born37 (or maybe even in utero38-40), so it is expected that the 
various systems that are affected directly or indirectly by this 
life-long history of commensalism would respond differently if 
the microbial stimulus is removed. In other words, because some 
functions in GF rodents have not achieved a sufficient level of 
development through life, simply inoculating bacteria into adult 
GF animals during a short period of time may reveal only par-
tially how the microbes impact the physiology of the host.

Notwithstanding these limitations, gnotobiotic animals have 
been instrumental for researchers in understanding aspects of the 
mechanisms behind the assembly of the complex bacterial com-
munity, its implications in numerous diseases, and the evaluation 
of potential therapeutic solutions.

Simplified Microbiota Models

Gnotobiotic mice colonized with a pure bacterial culture (mono-
association) represent the most reductionist approach for obtain-
ing information about host-microbe specificity, the ecological 

life other than the subject animal, which is technically unrealis-
tic. It may be more reasonable, however, to say that the animal is 
GF within the limitations of the current tests for microbial con-
taminants. As pointed out by Robert Fitzgerald, an animal may 
be demonstrably free of detectable known bacteria, yeast, fungi, 
and protozoa, but unless specific tests were also made for new 
viruses and rickettsiae, one would not be justified in concluding 
that the animal is, in fact, germ-free.21 Perhaps because there will 
never be an unequivocal answer to the question of whether a GF 
animal is indeed free of every microorganism, the term gnotobi-
otic becomes more appropriate, meaning that they have known, 
or completely defined microbiota. Nevertheless, accurately defin-
ing the composition of associated microorganisms is not without 
limitations, as will be discussed in the next section.

“Gnotobiotic” has also been proposed to describe GF animals 
deliberately inoculated with one or several microbial species (“ex-
GF”: mono-associated, bi-associated, etc.).22 The definition can 
be further stretched to include animals that lack one or more 
types of microorganisms but harbour an otherwise normal com-
plex microbiota. For instance, using a combination of gnotobiotic 
technology and antibiotic treatment, it was possible to derive a 
colony of Balb/c mice that did not harbor lactobacilli in their gas-
trointestinal tracts but retained a complex collection of microbes, 
functionally equivalent to those of their conventional counter-
parts.23 Animals that are guaranteed to exclude particular patho-
gens are called specific pathogen-free animals, and although not 
strictly gnotobiotic, this animals have been derived from GF 
ancestors and are normally kept under meticulous barrier condi-
tions. In contrast to gnotobiotic animals, animals carrying the 
full (undefined) burden of microorganisms usually associated 
with their species are described as “conventional.”24

The first GF animals were successfully produced at the end of 
the nineteenth century. Using aseptic caesarean section, Nuttal 
and Thierfelder generated GF guinea pigs and maintained 
them for two weeks under axenic conditions.25 The rearing of 
GF rodents through successive generations in axenic conditions, 
however, was not achieved until the 1940s by Reyniers and 
coworkers at the University of Notre Dame26 and by Gustafsson 
and coworkers at Lund University.7,27,28 The approach to gener-
ate the original GF progenitor involved hand feeding pups with 
an artificial diet in a sterile isolator until maturity, after which 
a breeding GF colony was established from these progenitors.29 
The process was hampered by considerable logistical and techni-
cal challenges: it required an understanding of the composition 
of rodent milk, the development of a suitable dietary substitute 
for the pups, a method to sterilize the diet without affecting its 
nutritional value, and devising methods for hand-rearing the 
pups.30

Nowadays, colonies of GF rodents are generated and estab-
lished through two experimental procedures. Some laboratories 
perform a Cesarean section on conventionally raised pregnant 
females at term (whose timing must be carefully calculated). 
Mothers are euthanized, their bodies passed through a germi-
cidal bath, and the pups delivered inside a GF isolator (usually 
Trexler-type plastic isolators under positive pressure). After 
resuscitation, pups are placed with a GF foster mother that has 
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significantly from that in mice colonised with B. thetaiotaomicron 
and Methanobrevibacter smithii, a single predominant archeal 
methanogen in humans.48 In this case, there is an increased 
production of acetate and no diversion to butyrate, indicating 
a specificity of the ecological dynamics in the intestinal tract. 
The quest for successful strategies to manipulate energy har-
vest from the diet has also been directed to the role of acetogens 
and sulfate-reducing bacteria. Using an elegant approach in bi- 
colonized mice, Rey and colleagues characterized the niches 
of two acetogens in the mammalian gut: Blautia hydrogenotro-
phica and Marvinbryantia formatexigens. These microorganisms 
produce acetate from H

2
 and CO

2
 via the acetyl-CoA path-

way in the distal colon, making an important contribution to 
the nutrition of the host.49 The authors demonstrated through 
a combination of transcriptomics and mass spectrometry of 
metabolites that these two species occupy different niches in the 
intestinal tract with their own patterns of substrate utilization: 
B. hyrogenotrophica forages on complex oligosaccharides derived 
from the diet and the host, whereas M. formatexigens consumes 
mono- and oligo-saccharides resulting in a differential impact 
on energy balance.50

A step up in complexity, the association of GF animals with 
5–15 species provides a more complex yet simple enough model 
to investigate host-microbe and microbe-microbe interactions. A 
simplified human intestinal microbiota consisting of seven bac-
terial species harbored in gnotobiotic rats51 showed metabolic 
functions comparable to conventional rats with respect to previ-
ously proposed mucosa-associated characteristics:52 production of 
short-chain fatty acids, conversion of bilirubin to urobilinogen, 
degradation of mucins and β-aspartylglycine, and inactivation 
of trypsin. Genomes of the selected bacterial community are 
publicly available, which has facilitated (as already mentioned) 
further studies at the molecular level. This approach can also be 
used to develop predictive models to speculate on the effect of 
various perturbations in the composition of the bacterial commu-
nity. For instance, changes in species abundance and microbial 
gene expression in response to different diets were studied in a 
model community of 10 sequenced human intestinal bacteria in 
gnotobiotic mice. Transcript levels were used to develop a statisti-
cal model to identify dietary factors responsible for the changes 
in the microbial community and explain the interrelationship 
between diet and the structure of the gut microbiome.53

Occasionally, standard methods of inoculation of bacteria 
into GF animals do not result in a complete colonisation of a 
microbial set, even for a relatively simple 10-member community. 
However, it has been reported that almost the whole community 
could be successfully established for up to 70 days when single 
bacterial strains were inoculated into individual animals followed 
by grouping the animals to exchange their microbiotas.54 Taking 
advantage of the coprophagic habits of the rodents, a high level of 
microbial colonisation was achieved. Moreover, when GF animals 
were introduced into the colony after a few weeks, they quickly 
acquired a similar microbiota to that of the donors. This suggests 
that the transferred microbiota had already achieved a signifi-
cant level of stability and adaptation to the rodent gut environ-
ment. These observations suggest that the assembly of microbial 

niche of that particular microbe, and mechanisms of pathogenic-
ity, without competition from other species. Ex-GF NMRI mice 
mono-associated with Bacteroides thetaiotaomicron, a normal 
resident of the distal intestine of mice and humans, were used to 
demonstrate specific biochemical factors involved during bacte-
rial colonisation.41 This simple ecosystem reproduces the cellular, 
spatial, and kinetic features displayed by a complete microbiota 
with regards to the utilization of the host epithelial fucosylated 
glycans as a source of energy.42 B. thetaiotaomicron senses the 
availability of fucose in the gut through the repressor FucR, and 
coordinates the expression of enzymes in the l-fucose pathway 
with those that regulate the production of fucosylated glycans 
in intestinal enterocytes. The authors speculated that during 
weaning, when nutrient accessibility becomes critical and fucose 
availability declines, B. thetaiotaomicron is capable of instructing 
the host to produce hydrolysable fucosylated glycans in order to 
ensure a sustained supply of carbohydrates. Similar studies by the 
same group have demonstrated that this organism can vary the 
expression pattern of its genes related to the utilization of poly-
saccharides as a function of the host’s diet: during transition from 
milk to polysaccharide-rich chow at weaning,43 or after switch-
ing from a diet rich in plant polysaccharides to a diet devoid of 
them but rich in simple sugars.44,45 In addition, by simultaneously 
profiling the relative abundance of thousands of B. thetaiotaomi-
cron mutants under various conditions, Goodman and colleagues 
were able to identify genes that are critical for the establishment 
and persistence of this bacterium in the human gut.46 Strictly 
speaking, this is not a mono-associated model, but because all 
mutants belong to the same strain and individual mutants can be 
retrieved and analyzed, the model allows for the identification of 
various microbial functions, including adaptation to the host, in 
one single strain.

The metabolic interactions that occur in the large bowel 
have also been explored using defined microbial communities 
consisting of two or more representatives of microbes naturally 
occurring in humans. If sequenced representatives are chosen, 
predictions of their functions could be made after inspecting 
their genomes as well as how they modulate their gene expres-
sion in response to host stimuli or diet. Studies in a two-member 
human microbiota model (B. thetaiotaomicron and E. rectale in 
NMRI mice) demonstrated the ability of intestinal microbes to 
adapt their environment in the presence of neighboring bacteria. 
For instance, B. thetaiotaomicron upregulates the expression of 
a variety of polysaccharide utilization loci (PUL) to broaden its 
niche and degrade greater variety of glycan substrates, including 
those derived from the host that E. rectale is not able to access. 
In contrast, E. rectale became more selective in its harvest of 
sugars and other nutrients, downregulating a significant num-
ber of genes for carbohydrate metabolism in the presence of its 
neighbor, but increasing the expression of selected sugar and 
amino acid transporters.47 E. rectale utilizes acetate produced by 
B. thetaiotaomicron to generate large amounts of butyrate, which 
in turn is used by the intestinal epithelium. A set of key meta-
bolic genes relevant to energy conservation is also upregulated 
when E. rectale encounters B. thetaiotaomicron. Interestingly, the 
pathway for acetate metabolism observed in this model differs 



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

www.landesbioscience.com	 Gut Microbes	 539

SPF status. However, animals harboring this microbiota have not 
evolved to a widespread model to study microbial-host interac-
tions. Advances in ongoing genome projects coupled with current 
ease in cultivating strict anaerobes would certainly overcome pre-
vious technical hurdles to work with members of this microbial 
cocktail, although to date, this cocktail has not been deposited in 
any official culture repository.

The Human Flora-Associated (HFA) Rodent Model

The inoculation of GF mice or rats with fecal suspensions origi-
nating from human donors was conceived as a strategy to cir-
cumvent the variability introduced by environmental and genetic 
factors in human studies, or when ethical or practical reasons 
limited the study of the gastrointestinal communities directly 
on human volunteers. Investigators had hoped that HFA rodents 
would mimic the microbiota of the human intestinal tract, there-
fore being a more relevant model than their conventional coun-
terparts for predicting the situation in humans. However, much 
controversy has been generated over the adequacy of HFA ani-
mals as surrogates for studying the ecology and metabolism of 
the human microbiota, with valid arguments on each side of the 
debate.64

The likelihood of successfully transferring human fecal bacte-
ria into recipient rodents is questionable. Early reports indicated 
that the composition of the intestinal microbiota of HFA ani-
mals was similar to that of donor human inocula when classical 
microbiology techniques were employed.65,66 We now know that 
microbial cultures largely underestimate the complexity and size 
of intestinal microbial communities;67,68 therefore, conclusions 
from those observations may be biased, as they merely consider 
a subset of the full microbial load administered to the animals. 
But even with these technical limitations, scientists have noticed, 
in some cases, that not all members of the initial inocula could 
be implanted, in particular bifidobacteria and lactobacilli.69-71 
Recent publications adopt a more critical perspective by conclud-
ing that the composition of microbial communities from human 
donors resembles that of their corresponding HFA rodents only 
at the predominant species level.72,73 Difficulties in achieving 
an exact match in microbial profiles between feces from recipi-
ent animals and human donors are not unexpected: reciprocal 
inoculation experiments in related vertebrates show that the host 
environment plays an important role in determining the micro-
bial makeup.74 This was challenged, however, when scientists 
from the Gordon group published the results of a transplanta-
tion study of human intestinal communities into GF animals.75 
Using multiplex pyrosequencing of the bacterial 16S rRNA 
genes and statistical models to compare the degree of similar-
ity of the fecal bacterial communities, the authors demonstrated 
that human fecal microbiotas were successfully transplanted to 
GF mice with a significant preservation of their structure and 
diversity, even when the starting material was frozen feces. All 
bacterial phyla, 11 out of 12 bacterial classes, and 88% (58/66) 
of the genera detected in the donor sample were detected among 
the recipient mice, and this structure was stable for up to one 
month. Interestingly, the humanized mouse microbiota could be 

communities is governed, among other factors, by niche-related 
deterministic processes.

The Specific Pathogen-Free Animal

There is considerable evidence that infections and general wellbe-
ing in laboratory animals influence a variety of biological param-
eters that in turn significantly affect the outcomes of scientific 
experiments. Over the years, governmental, academic, and pro-
fessional organizations have recommended programs for health 
monitoring of breeding colonies with the intention to harmonize 
procedures,55-57 and although local circumstances and historical 
practices may affect how these recommendations are actually 
applied, almost all commercial breeders are currently able to sup-
ply laboratory rodents with certified specific pathogen-free (SPF) 
status. This label is used only to indicate that the colony from 
which they originated tested negative for certain pathogens or 
perhaps opportunistic agents that are known to result in sub-
clinical infections. SPF rodents are produced in barrier rooms 
in uncovered cages, and because of their exposure to microor-
ganisms in the environment (air, food, humans and litter), they 
soon become colonized with commensal bacteria, the diversity of 
which is yet to be accurately defined.31 The inadequate character-
ization of the “normal” microbial community structure in SPF 
rodents has considerable implications for the relevance of such 
animals as a standard model for the investigation of bacteria-host 
interactions.

SPF rodents currently available have been derived from pre-
viously GF ancestors that were associated with a few bacterial 
isolates originating from the feces of a healthy mouse. The origi-
nal experiment was performed by Russell Schaedler and his col-
leagues during the mid-1960s.58,59 They used pure cultures of 
four bacterial species (lactobacilli, anaerobic group N strepto-
cocci, bacteroides, and coliform bacilli) to inoculate GF mice in 
their laboratory at the Rockefeller Institute. The animals were 
maintained in plastic isolators where they were given food con-
taminated with the bacterial isolates. The experiment was ini-
tially conceived to assess the consequences of associating fecal 
isolates with GF mice, but given that the animals became pro-
tected against acquisition of opportunistic bacteria, the research-
ers subsequently supplied animal breeders with this “cocktail” 
of microorganisms for use in colonizing their rodent colonies.60 
A few other attempts to include extremely oxygen-sensitive fusi-
form (EOS) bacteria in defined microbiotas were later used for 
gnotobiotic studies. EOS bacteria constitute the predominant 
microbiota of mice but are technically challenging to manipu-
late in the laboratory.61 One of those microbiotas, the altered 
Schaedler flora (ASF), reached great popularity in the late 70s 
and 80s when the National Cancer Institute decided to stan-
dardize the microbiota used in their rodent colonies and those of 
their contractors.62 The ASF consisted of eight bacterial species: 
Lactobacillus acidophilus, Lactobacillus salivarius, Bacteroides dis-
tasonis, four extremely oxygen sensitive bacteria, and one spiral-
shaped bacterium. Over the years, breeders of mice and rats63 
around the world have adopted the ASF and kept the animals 
for generations under strict barrier conditions to maintain their 
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Despite its limitations, the HFA mice model continues to 
stand as a useful tool for studying the ecosystem and metabo-
lism of the human microbiota in conditions similar to those of 
the human intestinal tract. It is a useful substitute for human 
volunteers, especially when it is difficult to control for genetic, 
environmental, dietary and statistical factors that usually chal-
lenge conclusions from clinical studies.

The Microbiota of Conventionally Raised  
and Feral Animal

While gnotobiotic mice are colonised with simple, defined col-
lections of microorganisms, conventional animals carry a full, 
usually undefined, community of microbes associated with their 
species. It has been discussed previously that even the most strict 
barrier conditions cannot prevent SPF animals from acquiring 
environmental bacteria, and that microbiological monitoring 
of these animals only aim at documenting that they are free of 
pathogens without providing an inventory of the actual micro-
bial population. Given that the environmental conditions under 
which SPF animals are raised are considerably different to those 
used for conventional mice, it is highly likely that the microbiota 
that becomes adapted through successive generations in each 
type of animal is also different. Similarly, one could speculate 
that the microbiota of conventional laboratory mice do not truly 
represent the “normal” biota of mice. Husbandry is, therefore, an 
important consideration for host-microbe interactions.90-92

The composition of the fecal bacteria in feral or “wild” mice 
was determined by Wilson et al.93 using 16S rRNA gene sequence 
analysis, and compared with that of SPF animals. Wild animals 
harbored a much larger proportion of bacteroides and lactoba-
cilli, whereas the majority of sequences found in laboratory mice 
belonged to anaerobic clostridia. Although the study was not suf-
ficiently powered to justify a broad conclusion (only 2 feral and 
3 laboratory mice were used), these observations suggest that for-
eign microorganisms may have replaced the indigenous biota that 
co-evolved with mice in nature.

Understanding the evolutionary processes by which mammals 
have been interacting with their bacterial commensals and the fac-
tors that affect community makeup have been the aims of large 
programs, like the multinational MetaHIT94,95 initiative and the 
Human Microbiome Project96,97 supported by NIH. Although 
reviewing the scientific evidence that supports these concepts is 
out of the scope of this review, it is important to recognize their 
implications for the selection of an animal model for studying 
host-bacteria interactions. If we accept that mammals have co-
evolved with microbes and therefore did not need to develop func-
tions that are provided by bacteria, including the ability to extract 
energy and nutrients from the diet,98 it is fair to assume that the 
physiological functions of laboratory mice are likely to differ from 
those naturally occurring in feral mice. Of course, this may be 
an oversimplified conclusion as we now know that even distantly 
related vertebrates share similar microbiotas, at least at a shallow 
phylogenetic level,37 and that considerable functional redundancy 
of the gut microbiota has been reported.99-101 Nevertheless, as more 
sophisticated metagenomic tools are becoming readily available, it 

transmitted to a second generation of mice without a significant 
reduction in diversity.

From a metabolic standpoint, it may also be questioned 
whether the enzymatic activities tested or the metabolite pro-
files assessed represent valid readouts to determine a successful 
transfer of microbial activity from human donors to rodents. A 
limited set of gastrointestinal enzyme activities (β-glucosidase, 
β-glucuronidase, nitrate reductase, nitroreductase) are generally 
measured, and levels of some putrefactive products or short chain 
fatty acid are reported.76-78 In any case, bacterial metabolism in 
the intestine of HFA mice reflected that of human feces only with 
respect to some metabolic activities, probably due to changes in 
the bacterial composition or a different intestinal environment in 
the recipient animals compared with that in the donors. Recent 
data indicate that it is possible to cluster microbial communities 
based on their gene content and infer pathways involved in their 
metabolism to better compare transmissibility of their function.75 
One report suggests that it is possible to reproduce the functions 
and composition of the human gut microbiota with remarkable 
similarity out of its readily culturable members using anaerobic 
culture conditions. When transplanted to gnotobiotic mice, the 
complete fecal set was comparable to the cultured community 
in its colonization dynamics, distribution and responsiveness to 
dietary changes.79 It would be interesting to investigate how the 
metabolic functions of transplanted microbiotas compare with 
those developed by the microbiotas that co-evolved with their 
hosts.

Diet can have a profound effect on the resulting bacterial 
composition following inoculation of mice with fecal slur-
ries. Since rodents and humans have different dietary habits, 
it should come as no surprise to find that failure to stabilize 
human-derived microbiotas in mice could be due to substan-
tially different nutrient profiles. Standard chow diets normally 
administered to rodents are low in fat but rich in complex poly-
saccharides generally originating from plants; a stark difference 
to typical Western-like human diets, high in fat and simple 
sugars. Studies feeding rodents with human diets indicate that 
mice and rats show high adaptability to changes in their diets, 
although not without major impact on their metabolism.80,81 
Consequently, feeding HFA rodents with human diets as a 
strategy to stabilize their human-derived microbiota should be 
measured against how well the animals are able to maintain a 
normal metabolism.

It may be less debateable though, that the simulation of human 
gastrointestinal conditions in HFA mice represents a suitable and 
reliable approach for the investigation of colonisation resistance 
against pathogenic bacteria,82,83 impact of the consumption of 
toxic compounds,84 or carcinogens,85 and the efficacy of thera-
peutic drugs. HFA animals have been used to assess the effects 
of antibiotics on human intestinal microbiota86,87 and the risks 
associated with DNA transfer from food-borne genetically modi-
fied microorganisms.88 Colon cancer biomarkers have also been 
studied in HFA animals.89 The characterization of the microbiota 
configuration and its variations along the length of the gut, even 
when the gastrointestinal tract of rodents is not exactly the same 
as humans, is an example of a practical use of the model.75
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intestinal tract.106 This is not the case for lactobacilli in rodents, 
where they can form stable and specialized communities; there-
fore, having a different impact on the host.

Final Remarks

Human health could be thought of as the collective property of 
human-associated microbiota, and experimental tools to decor-
ticate the mechanisms that govern this interaction are becom-
ing increasingly necessary. Gnotobiology coupled with molecular 
genetics provide an excellent technology to create and manipulate 
bacterial ecosystems to investigate fundamental questions about 
us and our intestinal symbionts. Although one single model may 
not suffice to unravel the complexity of these interactions, thor-
ough consideration of the limitations inherent to each model will 
certainly allow us to articulate the right questions.
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may be possible to detect even subtle functional differences in the 
host-microbe relationship, suggesting that selecting the appropri-
ate model is, after all, not a trivial decision.

The identification and differentiation of “autochthonous” 
(resident) microbes from “allochthonous” (transient) micro-
bial members of the intestinal community have been challeng-
ing tasks. The concept of autochthony has been extensively 
reviewed,102,103 and raises fundamental questions concerning the 
ecological role of a given species in the complex intestinal envi-
ronment. For instance, autochthonous species are specialized to 
occupy a defined physical niche and form stable populations dur-
ing long periods of time, whereas transient species may behave 
more unpredictably depending on the endogenous or exogenous 
factors, such as the diet of the host. Native microorganisms can 
develop a remarkable host specialization, which has implications 
on the model of choice if the aim is to study these microorgan-
isms in their native habitat: several reports indicate that some spe-
cies of lactobacilli are not native to the human large bowel,68,104,105 
originating probably from ingested foods or other regions of the 
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