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Abstract
Beside their genomic mode of action, estrogens also activate a variety of cellular signaling
pathways through non-genomic mechanisms. Until recently, little was known regarding the
functional significance of such actions in males and the mechanism that control local estrogen
concentration with a spatial and time resolution compatible with these non-genomic actions had
rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of
behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control
mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid
changes in aromatase activity also occur in a region-specific manner in response to changes in the
social or environmental context. Finally, we suggest that the brain estrogen provision may also
play a significant role in females. Together these data bolster the hypothesis that brain-derived
estrogens should be considered as neuromodulators.
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1. Introduction
Estrogens, such as 17β-estradiol (E2), profoundly alter a wide array of physiological and
behavioral processes including gonadotropin secretion, social behaviors, nociception and
cognition [164]. The effects of estrogens are often mediated via binding to their cognate
nuclear receptors, the estrogen receptors alpha and beta (ERα and ERβ), that activate a
chain of intracellular events leading to transcriptional regulation of target genes [42; 274].
To our knowledge, the fastest changes in protein concentration are observed for immediate
early genes. New messenger RNA and protein product of these genes are detected within 5
min and 1 hour respectively [48]. To produce functional responses, most proteins have to
undergo post-translational modifications and translocate to their site of action (e.g. acquire
enzymatic activity, be integrated in functional complexes at the membrane or synapse). As a
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result these processes requiring protein synthesis usually develop slowly (hours-days) and
produce enduring effects associated with the changes in circulating concentrations of
gonadal steroids typical of specific physiological states (e.g. stages of the estrus cycle or the
breeding cycle) [83; 278]. Genomic effects of estrogens on behavior are often ultimately
mediated by changes in the production or action of neurotransmitters in specific brain
circuits resulting for a modification of the transcription and translation of enzymes that
synthesize or catabolize the transmitters or of their receptors [80].

Besides these genomic effects, estrogens can also act on membrane-associated receptors to
activate multiple cellular processes that do not depend on the synthesis of new proteins.
These non-genomic cellular actions occur in a much shorter time scale than previously
anticipated (seconds/minutes) [55; 157]. Such effects have been documented in numerous
cell types including tumor cells ([10; 26; 41; 107; 132; 181; 210]; For review see, [146; 182;
268]). Considering neuronal preparations specifically, acute changes in estrogens’
concentration alter numerous intracellular events in vitro including the modulation of
intracellular calcium concentrations [1; 28; 168] or of cyclic AMP [105; 174] and protein
phosphorylation [179; 281; 283]. In turn, these activated signaling cascades can lead to
modulations of the coupling state of a neurotransmitter receptor with its effector system
[139; 144; 175; 176; 177], of enzymatic activities [198; 205], of neurophysiological activity
[124; 126; 179; 292] or finally to indirect transcriptional activation through the
phosphorylation of transcription factors such as cAMP response element binding protein
(CREB) [2; 3; 33; 295] in specific brain regions. It is thus not surprising that evidence is
emerging in support of a role for estrogens in the acute modulation of physiological and
behavioral responses in vivo [59; 224].

Although prolonged exposure to estrogens can induce non-genomic signaling, the recent
demonstration that membrane initiated effects in neurons desensitize relatively rapidly ([32;
78; 79; 101]; reviewed in [170; 172]) suggests that mechanisms must exist to regulate
estrogen concentration on much shorter time scales. Unfortunately, the question of the
source of these rapid changes in estrogen concentration is rarely considered. Acute effects of
estrogens on cellular, physiological or behavioral processes have been described in both
sexes. The ovaries constitute the major source of estrogens in females which fluctuate
relatively rapidly during the estrus cycle and could thus trigger rapid non-genomic actions of
this steroid ([8; 35; 117; 254; 262; 285]; for review see [172; 278]; but see [55] for a critical
discussion of the time course of fluctuations in gonadal secretions).

Although they circulate at much lower concentrations, estrogens also control many
physiological and behavioral responses in males, sometimes in an acute manner. These
estrogenic effects depend on the neuronal aromatization of androgens into estrogens [12; 87;
158; 235; 241; 269]. Androgen aromatization is a complex enzymatic reaction that plays a
key limiting role for the organization (sexual differentiation) and/or activation of many
neural or behavioral processes in vertebrates. Research on the control of local estrogen
synthesis by brain aromatase has largely focused on changes in enzyme availability taking
place over relatively long time periods following developmental or seasonal changes in
circulating steroid concentrations [50; 109; 115; 201; 236; 245]. However, studies taking
advantage of the high concentrations of the aromatase protein in the avian brain have
recently uncovered a novel mechanism acutely regulating brain estrogen synthesis and thus
offering a time resolution for changes in local concentration compatible with the rapid and
transient effects of estrogens described in vitro and in vivo. Here, we will first review
evidence that estrogens rapidly and reversibly modulate behavior in male vertebrates. Then,
we will discuss the mechanisms that control local brain estrogen concentration and their
functional significance in vivo. Finally, we will suggest that the local tissue-specific
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provision of estrogens might not be a male specific characteristic but may also play a
significant role in the physiology of females.

2. Rapid behavioral effects of estrogens in males
Rapid effects of estrogens suggesting an action that is independent of the transcriptional
activity of liganded nuclear estrogen receptors have now been reported in a variety of animal
species in relation with the control of multiple aspects of behavior. The short latency of
these effects has originally led to the assumption that they relied on non-genomic
mechanisms. However, independent evidence has in many cases been collected in support of
this interpretation. Many of these effects indeed appear to be initiated at the cell membrane
and/or are blocked by inhibitors of intracellular signaling pathways. In the following, we
shall thus qualify the presumptive non-genomic effects of estrogens as rapid if this is the
only criterion that has been formally demonstrated. The qualification of non-genomic will be
limited to effects for which additional information is available.

Studies of the rapid effects of estrogens can be subdivided in 5 main classes according to the
dependent behavioral variable that is measured (see table 1).

2.1. Aggression
In 1991, Hayden-Hixson and Ferris reported that a single injection of 17β-estradiol (E2) in
the anterior-hypothalamus facilitated agonistic behaviors within 20 min in male hamsters
[113]. In beach mice (Peromyscus polionotus) and California mice (Peromyscus
californicus), males are more aggressive during short days mimicking winter conditions than
in long days. In these two species, aggressive behavior E2 acutely (within 15 min) increases
the number of bites while reducing the latency to attack in short but not in long days [270;
271]. Interestingly, a recent study conducted in song sparrows (Melospiza melodia morphna)
found that E2 injections induce changes in intracellular signaling within 15 min, some of
which are season-dependent [114] but unexpectedly these neurochemical changes were not
associated with changes in behavior (aggression, singing, locomotion, maintenance
behaviors).

2.2. Sexual behavior
Cross and Roselli initially found that an intraperitoneal injection of E2, but not testosterone,
increases within 35 min the frequency of anogenital investigations and mounting behavior in
castrated male rats (Rattus norvegicus; [63]). Subsequent studies conducted in castrated
quail (Coturnix japonica) and mice (Mus musculus) treated with a sub-threshold
concentration of testosterone demonstrated that peripheral administration of E2 acutely
stimulates appetitive (a category of variable behaviors that serve to bring individuals into
contact with their mates, often used as a measure of sexual motivation, e.g. courtship [13;
203]) and consummatory (highly stereotyped behaviors resulting in the termination of the
behavioral sequence, e.g. actual copulation [13; 203]) aspects of male sexual behavior.
These effects occur even faster than previously thought (within 10–15 min) and are
transient; they disappear within 30–45 min of E2 administration [56; 264]. Conversely,
blockade of estrogen synthesis with non-steroidal or steroidal aromatase inhibitors,
Vorozole™ and androstatrienedione (ATD) respectively, rapidly and transiently reduces
both behavioral components of male-typical sexual behavior [57; 264]. Several of these
experiments were performed on castrates treated with exogenous testosterone. These
observations thus suggested that the estrogens responsible for this rapid control of male
sexual behavior are synthesized locally in the brain. In the absence of testes, the most likely
site of aromatization was indeed the brain itself.
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Direct evidence of the key role of local brain aromatization was recently provided by studies
employing intracerebroventricular (ICV) injections of E2, ER antagonists or aromatase
inhibitors in the third ventricle of Japanese quail [248]. A first experiment investigated the
effect of acute E2 injections in castrated males chronically treated with testosterone and the
aromatase inhibitor Vorozore™ in order to test the effect of a rapid increase in brain
estrogen concentration. Chronic testosterone treatment allows the expression of all
androgenic effects, while preventing estrogenic effects, and is known to reduce the display
of appetitive sexual behaviors and profoundly inhibit copulation [263]. The ICV injection of
E2 in these subjects chronically deprived from estrogens enhanced appetitive sexual
behavior within 15 min [248]. No consummatory sexual behavior was exhibited by most
subjects regardless of the dose and timing of the acute treatment with E2 suggesting that a
prolonged exposure to E2 is required to prime this behavioral component by the
transcriptional activity of estrogens, as indicated by earlier work in female rodents [133;
171; 172; 277].

A second set of experiments conducted in castrated male quail chronically treated with
testosterone and displaying the full range of male sexual behaviors also showed that the
aromatase inhibitors, Vorozole™ and ATD, profoundly reduce both the appetitive and
consummatory components of male sexual behavior within 30 min. Furthermore, E2 injected
15 min after Vorozole™ counteracted the effect of aromatase inhibition thus demonstrating
that this effect does not result from a non- specific effect of the blocker [248]. These data
indicate that a local brain estrogen production is clearly implicated in the rapid activation of
male sexual behavior in quail.

Finally, brain-derived estrogens also rapidly enhance visually guided sexual approaches in
fish [153]. A single systemic testosterone injection to male goldfish (Carassius auratus)
stimulates their approach toward the visual cues of a female within 30–45 min. This effect is
mimicked by E2 within 10 min and blocked by an aromatase inhibitor administered along
with testosterone thus indicating that the behavioral effect of testosterone requires its
aromatization. In the same species, testosterone has recently been shown to rapidly increase
through aromatization milt volume and sperm concentration [159].

2.3. Social communication (vocal production & perception)
Estrogens also rapidly influence social communication by altering vocal communication
and/or the perception of species-typical auditory signals by conspecifics. To our knowledge,
the only demonstration of rapid modulations of vocalizations by estrogens was reported in
the plain midshipman fish (Porichthys notatus). In an anesthetized preparation of this
species, systemic administration of E2 induces a rapid (5min) and transient (25–40 min)
increase in the duration of fictive vocalizations reflecting the rhythmic activity of the vocal
generator pattern in response trains of stimuli delivered to the midbrain [214; 215].

Evidence supporting an acute neuromodulatory role of brain-derived estrogens in auditory
processing was recently provided by two independent groups working on songbirds (for
reviews, see [158; 219]. Using simultaneous single unit extracellular recordings from
neurons of the left and right caudomedial nidopallium (NCM, a telencephalic auditory
region thought to be analogous to secondary auditory cortex in mammals) of awake zebra
finches (Taeniopygia guttata), Tremere and colleagues first demonstrated that E2 delivered
in the vicinity of the recording site increases within 5 min the firing activity evoked by
playback of conspecific songs as compared to recordings made in the contralateral site
where the vehicle was injected. Estrogen receptors (ER) antagonists (Tamoxifen and ICI
182,780 [ICI]) prevented this response and even reduced song-evoked spiking activity
below control levels suggesting that endogenous estrogens may be implicated in this
process. Furthermore, similar effects were obtained following acute blockade of local
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estrogen synthesis (Table 1), confirming that these effects rely on local estrogen provision.
These effects are sustained for at least 2 hours but are no longer present 4 hours after the
injection [272; 273]. Whole-cell patch-clamp recordings in slices revealed that E2 action in
NCM is mediated through changes in GABA transmission probably involving a modulation
of GABA release [272].

Using multi-unit recording coupled with E2 retrodialysis, Remage-Healey and colleagues
subsequently showed that a 30 min provision of E2 in the NCM of anesthetized male zebra
finches selectively increases the firing rate and bursting activity in response to playback of
stimuli containing elements of conspecific songs (bird own song, novel conspecific song or
reversed conspecific song). This effect is no longer detected after a wash out period of 30
min. By contrast, aromatase blockade produces either no change or a decrease in this
selectively depending on the neurophysiological parameter studied [218].

Similarly, Tremere and Pinaud showed that locally produced E2 enhances neuronal
discrimination through the modulation of the information content of auditory signals. These
processes occur within 5 min, are prolonged for at least 2 hours past the initial injection but
vanish within 4 hours [273]. Thus, although there are a few discrepancies in the
characteristics of these effects (see Table 1) most likely due to protocol and technical
differences between studies, together these data provide evidence supporting a role for
locally produced estrogens in the control of auditory processing and more specifically in the
ability of NCM neurons to discriminate between species-specific auditory cues.
Interestingly, similar processes have recently been described in females [221]; see also
below).

Importantly, both the Remage-Healey and the Pinaud and Tremere groups demonstrated that
brain-derived estrogens acutely strengthen the bird’s preference for conspecific auditory
cues. When given a choice between their tutor's or their own song (bird's own song or BOS)
and the song of another conspecific, male zebra finches prefer their tutor's song or BOS. In
2010, Remage-Healey and collaborators first showed that fadrozole retrodialysis in the left,
but not the right, NCM acutely disrupts this preference in awake and freely moving male
zebra finches [218]. Tremere and Pinaud further demonstrated that the bilateral injection of
ER antagonists or aromatase inhibitors in NCM impairs the preference for the tutor's sone
relative to a novel conspecific song. This behavioral preference seems specific for learned
songs since E2 did not affect the birds’ ability to discriminate between female and male calls
[273]. Therefore, these data support the notion that locally synthesized estrogens acutely
control the auditory-evoked spiking neuronal activity, which translates equally rapidly into
changes in behavioral song discrimination. Interestingly, the inner ear of zebra finches also
expresses aromatase and ERα [186] suggesting that the control by estrogens of auditory
performance could take place both centrally and peripherally.

2.4. Locomotion and nociception
In the striatum, estrogens are known to affect in both sexes motor responses controlled by
striatal dopamine [25]. Some of these responses have been shown to occur relatively
quickly. For example, 17β- and 17β-estradiol administered in the striatum potentiate within
4 hours dorsal immobility in both males and females, although males respond better than
females [275]. In males, this response is not mimicked by testosterone [276]. Faster effects
of striatal administration of E2 have been detected in other motor responses (e.g. E2
enhanced sensorimotor performance [24], increased amphetamine-induced rotational
behavior [246]), but these have been investigated in females only (for a review see, [25;
59]). These effects of estrogens appear to rely on the acute and non-genomic potentiation of
dopaminergic activity that in turn enhances sensorimotor processing.
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In both sexes of a variety of species including humans, estrogens are involved in the control
of nociception and analgesia namely through their genomic action on the opioid and
adrenergic systems both at the central and peripheral level [9; 71; 84; 86; 92; 149]. Locally
produced estrogens also rapidly impair the perception of noxious stimuli. Indeed, in quail,
acute aromatase blockade obtained by intrathecal injection of an aromatase inhibitor
increases within 1–5 min the latency for foot withdrawal from a noxious stimulus. This
effect is by-passed by a concomitant injection of E2. This change in pain threshold is
transient as it is no longer detected 30 min post-injection. It is also anatomically restricted
given that intrathecal spinal but not intracerebroventricular injections mimicked the effects
obtained after systemic injections [85].

2.5. Learning and cognition
Estrogens can also influence by non-genomic mechanisms the firing rate, synaptic
transmission and synaptic plasticity in the hippocampus and cortex in mammals ([96; 104;
134; 156; 180; 253; 258; 288, 289; 291]; For review see, [259; 290]). These observations
suggested that acute actions of estrogens might play an important role in learning and
memory processes that are known to be mediated by these structures. This hypothesis was
confirmed by studies from several laboratories that employed a variety of cognitive tests. In
females, systemic or intra-hippocampal administration of estrogens (17β- but, sometimes
also, 17α-estradiol) immediately prior to or after (but not several hours after), the training
session were shown to enhance memory acquisition or consolidation ([22; 88; 102; 110;
121; 147; 148; 155; 195; 196; 204]; for review see: [46; 47; 97; 154; 197]). Although the
hippocampus of males also synthesizes estrogens [116; 240], far less is known about their
acute impact on cognitive processes. In 1996, Packard and colleagues showed that rats that
received intra-hippocampal injections of E2 immediately post-training, but not 2 hours later,
displayed a lower latency to escape in the Morris water maze, a result indicative of enhanced
spatial memory [194]. Other reports support a role for estrogens in learning processes in
males but (1) these studies involve long-term exposures to the steroid precluding any
statement about the temporal resolution of the observed effects and (2) they sometimes
provide contradicting results such that there does not seem to be a consensus supporting a
role of locally synthesized estrogens in males at the moment [99; 143; 161; 178; 187].

3. Identification of membrane estrogen receptors
Because estrogen receptors do not possess any intrinsic trans-membrane domain and are
most often found in the nucleus, it had been originally thought that non-genomic actions of
estrogens were mediated through a novel receptor. Over the years, several such novel
receptors have been discovered that exhibit specific pharmacological properties and are
associated with the neuronal membrane. Functional studies have also indicated that these
new membrane receptors could mediate rapid effects of estrogens. In addition, it has turned
out that, following post-translational modification and protein-protein interactions, a fraction
of the classical nuclear receptors, ERα and ERβ, are translocated to the membrane where
upon binding to estrogens they can activate multiple intracellular signaling cascades. All
these membrane receptors seem to play an important role in the control of rapid behavioral
responses to estrogens and therefore need also to be considered in detail.

The presence of classical nuclear estrogen receptors at the membrane in brain cells had been
first described in the early 1990s [29]. It has been confirmed by more recent studies [112;
173], but, the first indication of ER trafficking to the membrane originated from studies that
employed cancer cell lines and endothelial cells. These experiments showed that ERs
interact with complexes of membrane-associated proteins including caveolin-1 or the
adapter protein shc [199; 210; 211; 212; 255]. It was also demonstrated that membrane-
associated ERs must undergo palmitoylation, a post-translational modification resulting in
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the addition of a lipid-moiety that permits intracellular trafficking and association with
specific subcellular domains such as the caveolar rafts of the plasma membrane [5; 199]. In
these cellular models, the membrane-associated ERs act as G-protein coupled-receptors,
interact with growth factor receptors such as the epidermal growth factor (EGF) receptor and
insulin-like growth factor (IGF) receptor and trigger the phosphorylation of intracellular
messengers ([213; 256]; For review see, [145; 146]). Similarly, recent work demonstrated
that a brief exposure to E2 induces in both sexes the trafficking of ERα and ERβ to the
membrane of neurons and astrocytes involving an interaction with caveolins ([32; 79; 101;
250]; for review, see [171]). At the membrane, ERs can interact with metabotropic
glutamate receptors (mGluRs) whose trafficking to the membrane is influenced by estrogens
in parallel with ERs [32; 67; 79]. E2 action on these membrane-associated ERs results in the
transactivation of mGluRs, that in turn attenuates L-type calcium channel currents and
calcium-dependent phosphorylation of CREB or increases the mitogen activated protein
kinase (MAPK)-dependent CREB phosphorylation [33; 38; 67; 103]. The type of mGluR
and response activated depends on the brain region and the cell type considered (For review,
see [165]). It has to be noted that the function of this interaction has only been studied in
females. Finally, it has also been shown that ERα and ERβ interact with IGF-I signaling
(For review, [82; 167]). Both estrogens and IGF-I share similar signaling pathways, among
which the phosphatidylinositol phosphate-3-kinase (PI3K) and MAPK signaling pathways
are the best characterized. Co-localization between IGF-I receptors (IGF- IR) and ERα has
been demonstrated in the rat brain [36] and a one-hour exposure to E2 induces a transient
association between ERα and IGF-IR in the hypothalamus of ovariectomized females [166].
This interaction has been proposed to regulate estrogen-dependent neuroplasticity [89], the
LH surge [209] and lordosis behavior [81; 209]. To our knowledge, the existence of this
interaction has never been investigated in males. Note that, although rapid behavioral effects
of estrogens have also been identified in birds and fishes (table 1), there is to this date no
evidence demonstrating the presence of nucleus ER at the level of the cell membrane in
these species. Moreover, two isoforms of ERβ have been identified in fishes [200].

Three novel membrane estrogen receptors (mER) have been described to date. ER-X is the
least characterized of them. It has been described in the developing neocortex and uterus of
ERα-knock out (KO) mice. This putative receptor is enriched in caveolar-like microdomains
and activates MAP kinases. Its pharmacological profile differs from ERα and ERβ in that it
is activated by both 17β–and 17α–estradiol whose action is not affected by the ER receptor
antagonist ICI 182,780. It is recognized by antibodies raised against ERα, but its apparent
molecular weight is different from the molecular weight of the main isoforms of the
classical nuclear ERs. The expression of ER-X in the neocortex and uterus is maximal at
post-natal day 7 to 10 (P7–10), then gradually decrease until P21 and is dramatically
decreased in adulthood. ER-X is also up-regulated following brain injury. However, its
molecular identity is still unknown [267].

GPR30 (or GPER) is a G-protein coupled-receptor that works in concert with the EGF
receptor ([90; 222; 265]; for review see [91; 266]). It is found in numerous tissues including
the brain of birds and mammals [6; 34; 108; 122; 238]. In fishes, this receptor has so far
only been reported in the gonads [266]. Questions have been raised about its cellular
location, some have described it at the cell membrane [265] while others have observed it in
the endoplasmic reticulum [192; 222]. Furthermore whether GPR30 actually binds and is
activated by E2 is still subject of debate ([192; 193]; for review, see [140; 190]).
Interestingly, the general ER antagonists ICI 182,780 and tamoxifen act as full agonists on
GPR30 [222; 265]. Unlike ER-X, GPR30 appears stereospecific as it only binds 17β-
estradiol. Recently, an agonist (G1) and an antagonist (G15) that do not cross-react with
classical ERs have become available [31; 66; 185] and have facilitated the demonstration
that this receptor is implicated in several neurophysiological processes [141; 151; 185; 261].
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As these studies were conducted in females, less is still known on the function(s) of this
receptor in males.

Gq-mER is another G-protein coupled-receptor originally identified in the hypothalamus. Its
pharmacological profile is closer to ERα and ERβ than the other two mERs. Indeed, it is
activated by 17β-, but not 17α-estradiol, and is antagonized by ICI 182,780. E2 effects
mediated by Gq-mER are mimicked by the specific synthetic agonist STX, which activates a
PLC-PKC-PKA pathway resulting in the uncoupling of mu-opioid and GABAB receptors
from their effector (G-protein coupled inward rectifying potassium channel, GIRK) in
POMC neurons of the arcuate nucleus [207]. This receptor also reduces the excitability of
GnRH neurons [293] and increases the frequency of their calcium oscillations [127]. Finally,
it was recently implicated in the control of energy homeostasis and thermoregulation [208;
223] as well as hippocampal neuroprotection [142]. Some of the physiological responses
that are characteristic of Gq-mER and mimicked by STX have been reported in double
ERαβ-KO mice [208] suggesting that it is not a product of the genes coding for ERα or
ERβ. Unfortunately, as for ER-X, its molecular structure still remains to be uncovered.

4. Membrane estrogen receptors and male physiology and behavior
With this information in mind, we can now start discussing the nature of the receptors that
might be involved in the regulation of the physiological and behavioral processes described
above. Male sexual behavior is severely impaired in ERαKO [188; 284]; but much less so in
ERβKO mice [30; 189]. Male sexual behavior is also profoundly inhibited in non-classical
ER knock-in (or NERKI) mice with a mutated ERα knock-in that cannot bind to ERE and
consequently signals only through membrane-initiated or ERE-independent genomic
pathways [162]. Combined with the idea that some genomic priming is required to observe
rapid effects of estrogens on male sexual behavior [56; 264], these results suggest that the
acute control of male sexual behavior by estrogens likely involves an integration of non-
genomic and genomic processes depending on ERα, at least in part. Interestingly,
copulatory behavior was facilitated within 48h after the bilateral implantation of E2-BSA in
the medial preoptic area (MPOA) of castrated male rats chronically treated with the
androgenic metabolite of testosterone, dihydrotestosterone (DHT; [119]). This observation
first suggested that estrogen membrane signaling was involved in the control of male sexual
behavior. This has recently been confirmed by studies conducted in quail. Indeed, in
castrated males chronically treated with testosterone and the aromatase inhibitor
Vorozole™, the membrane impermeant analog E2-BSA rapidly restores appetitive sexual
behavior. Moreover, DPN, a specific ERβ agonist and, to a lower extent, PPT, a specific
ERα agonist, produce a similar behavioral activation as estradiol. Conversely, acute
treatment with MPP, a specific ERα antagonist without behavioral activity when
administered alone, completely abrogates the facilitating effect of estradiol on behavior
[249]. Likewise, in castrated males chronically treated with testosterone, the acute inhibition
of appetitive and consummatory sexual behavior resulting from aromatase blockade is
prevented by the administration of E2, its membrane- impermeant analog E2-biotin and DPN
but not PPT [249]. Together, these results suggest that the rapid action of brain-derived
estrogens on male sexual behavior is initiated at the cell membrane and likely involves both
classical ERs. The determination of the relative contribution of each receptor to this
response will require further study. The role of GPR30 and STX in this experimental model
is under investigation.

Much less is known about the receptor types involved in the acute estrogen effects on the
other social behaviors. No information is available regarding the receptor underlying the
rapid action of estrogens on aggression. However, long-term exposure to both PPT and DPN
significantly alters different aspects of aggressive behavior suggesting that both classical
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receptors might be involved [270]. As for communication, it was recently demonstrated that
the membrane-impermeant E2- biotin produces the same effect as E2 on auditory processing
in songbirds [221] thus indicating that these acute effects are initiated at the membrane. The
auditory cortex expresses both types of nuclear estrogen receptors [27; 123; 169] as well as
GPR30 [6] suggesting that the three receptors might contribute to this effect. There is
however no evidence so far that ERα and/or ERβ associate with the cell membrane in this
brain area of songbirds.

Recent evidence also supports an involvement of these three receptors in the control of
nociception and analgesia. First, in females, E2-BSA mimics the inhibition of the ATP-
induced increase in intracellular calcium concentrations induced by E2 within 5 min in the
dorsal root ganglia (DRG) that contains a subset of nociceptive neurons [39]. This inhibition
is detected in mice lacking ERβ but not in those lacking ERα indicating that this non-
genomic modulation of DRG signaling is mediated through ERα [40]. Moreover, it is
attenuated by blockade of group II mGluRs [37] suggesting that this response might be
mediated through the transactivation of mGluRs. Secondly, morphine-induced anti-
nociception in females is acutely blocked by the general ER antagonist ICI 182,780, the
selective ERα and ERβ antagonist, MPP and PHTPP respectively, and the specific GPR30
antagonist G15 [150] suggesting that several receptor types are involved in the control of
this response. Finally, the acute mechanical hyperalgesia induced by E2 injection into the
hind paw of male rats is mimicked by the GPR30 antagonist and by the general ER
antagonist ICI 182,780 indicating a role for GPR30 [138].

Finally, analyses of the intracellular events involved in the effects of E2 on hippocampus-
dependent tasks in females suggest that they might be mediated by ERβ activation, initiated
at the cell membrane and depend on the activation of the extracellular signal-regulated
kinase/mitogen-activated protein kinase (ERK/MAPK) pathway [88; 148]. In addition, it
might be inferred from the absence of stereoselectivity observed in some studies [155; 156]
that ER-X might be at play, yet more work is needed before a firm conclusion can be drawn.
A similar conclusion can be drawn from the potentiation of tonic immobility induced by
both 17α- and 17β-estradiol [275; 276].

5. Interaction with genomic effects
The mechanisms controlling behavior involve chains of molecular and neurophysiological
events precisely organized in time and space (from the intracellular space to neuronal
networks controlling motivation or motor patterns). One can thus assume that, in vivo, the
non-genomic effects of estrogens should produce observable effects on behavior after
slightly longer latencies than the intracellular events (triggered within a few seconds to
minutes [55]) that underlie them. As illustrated in preceding sections, multiple experiments
have identified physiological or behavioral responses triggered by estrogens that occur after
a few minutes to an hour. These effects should be regarded as extremely rapid when
compared to genomic effects of estrogens on behavior that are typically detected following
several days of treatment. Given this very short time course and their activation by
membrane impermeant estrogen analogs, it is thus very likely that they rely on a non-
genomic action rather than on a regulation of gene transcription.

Although the cellular events initially triggered by E2 acting at the cell membrane do not
involve protein synthesis, the intracellular cascades activated by these events very often lead
to indirect transcriptional activation [3; 114; 272] and both types of events might be required
for the expression of a given behavior. One of the best-studied examples of such cooperation
between non-genomic and genomic effects of estrogens concerns the control of female
sexual receptivity (reviewed in [59; 172; 278]. In brief, numerous studies conducted by
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independent research groups indicate that, early events activated by E2 at the cell membrane
affect an intracellular chain of events that ultimately facilitate lordosis but also trigger long
lasting effects that likely result in the indirect modulation of protein synthesis (indirect
genomic mechanisms involving pCREB binding to cAMP response elements (CRE) sites on
the DNA; [3; 33]). These membrane-initiated effects of E2 also interact with classical
genomic actions involving the interaction with estrogen-response elements (ERE; e.g.
activation of progesterone receptor transcription required for progesterone action) or ERE-
independent sequences (Reviewed in [163]).

As far as we know, the existence of membrane-initiated indirect genomic activation by E2
and its role in the control of physiological and behavioral processes has never been
investigated in males. The existence of a major sex difference in the rapid intracellular
signaling activated by estrogens has been suggested in gonadectomized mice: E2 action was
in this study enhancing CREB phosphorylation within an hour in females but not in males
[4]. Yet, recent studies showed that acute administration of estrogens also results in CREB
phosphorylation in males of avian or rodent species [114; 148]. One explanation for the
apparent lack of effect of estrogens previously reported in male rodents [4; 33] is that these
effects might require long- term exposure (priming) by androgens. Indeed, the studies that
failed to identify an E2-induced CREB phosphorylation in males were carried out on
gonadectomized males while others used gonadally intact subjects with or without chronic
treatment with an aromatase inhibitor to deprive them of estrogens while maintaining
normal concentrations of circulating androgens.

Finally, it should be noted that the changes in cognitive behavior described previously
develop over the course of several days following repeated injections with estrogens [155;
156; 194]. It could thus be hypothesized that these effects reflect transcriptional activation
rather than non-genomic actions. However, the timing of E2 injections relative to cue
exposure and testing was shown to be critical: estrogens facilitate learning and memory
when administered before or immediately after but not two hours after training. It can thus
be concluded that the resulting cognitive changes depend, at least in part, on non-genomic
mechanisms for which a short-term exposure to the active hormone is sufficient. Of course,
any exposure (short, prolonged or repeated) to estrogens also activates genomic effects that
likely participate in the long- term modifications of synaptic plasticity and cognitive abilities
arising in these learning paradigms [148].

6. General features of non-genomic behavioral effects of E2 with a special
emphasis on active doses

In summary, as illustrated in table 1, collectively, these studies demonstrate the implication
of membrane-initiated effects of estrogens in multiple physiological and behavioral
endpoints in a variety of vertebrate species. Most of these effects are detected within 5 min
to an hour of the injection and last for a limited period of time. Such latencies can be
considered to be extremely short when compared to the typical latencies required to detect
behavioral effects resulting from genomic activation. There seems to be no rule relating the
latency of the effects to the species analyzed nor to the type of behavioral response under
investigation. It is likely that variations in the latency of estrogen action relates to the
diversity of the underlying signaling pathways. More studies would obviously be needed to
confirm this hypothesis.

The transient nature of these non-genomic behavioral actions of estrogens also contrasts
with the enduring effects typical of genomic actions. Importantly, some of these effects are
clearly region specific. Finally, these effects do not occur independently from genomic
actions. In some cases, membrane-initiated actions potentiate genomic actions [277], while
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in others some genomic priming seems required to allow expression of non-genomic effects
[248; 249]. These effects thus seem to share important properties: they occur across a wide
range of species from fishes to mammals, they are rapid, often transient, anatomically
confined and integrated with genomic action.

The active dose of estrogens mediating acute regulation of behavior requires a more
elaborate discussion. It was originally assumed that non-genomic effects of estrogens would
only be observed after injections of very large doses of the steroids. The reasoning was that
non-genomic effects of estrogens are largely, if not exclusively, mediated by actions at the
synapse of steroids produced at the pre- synaptic level and thus present in extremely high
concentrations locally at the synapse but that were impossible to measure by available
technologies. It was therefore necessary to inject very large doses that were obviously non-
physiological in the periphery to mimic at the synaptic level a concentration that was
actually physiological. The first studies investigating effects of exogenous estrogens on male
sexual behavior accordingly employed fairly high doses of steroids (e.g., [54; 63; 214]) and
thus seemed to support this interpretation. Some of these papers (e.g., [54]) additionally
included dose-response studies indicating that the high doses (e.g. 500 µg/kg in quail) were
actually required to obtain a fast behavioral response.

Since that time, fast behavioral effects of estrogens obtained with much lower doses (2–20
µg/kg) have been reported in both sexes in at least two different classes of vertebrates. As
can be seen in figure 1, the range of behaviorally active doses is extremely wide and no
general rule seems to emerge from the comparison of these high and low doses. They are not
obviously associated with the sex of the subjects, nor with the type of behavior under
consideration. Higher doses have usually been used in birds, which might be related to their
higher body temperature and thus metabolism, but there are also studies in mammals
(homeotherms with a lower body temperature) or fish (poikilotherms) that use doses in the
same range.

The comparison of doses used in experiments based on central injections show a similar or
even a broader degree of diversity (see Figure 2). It makes no sense in this case to relate
these doses to the body mass of the animals that are treated and absolute values of amounts
injected are directly presented. As can bee seen, these doses range from 27 pg to 50 µg that
is more than a million (106) fold difference. Here again, no rule seems to govern these
differences: high and low doses have been used successfully in birds and in mammals
irrespective of the behavioral response that was investigated.

In conclusion, while the existence of rapid behavioral effects of estrogens can no longer be
denied today given the large number of experiments that have successfully identified them, a
major question remaining is to determine what are the active doses and why they differ so
much from one experiment to another. It seems likely that these differences will relate to the
type of membrane receptor and/or to the intracellular signaling cascade mediating the
response. However, to this date, the available data do not permit a test of these hypotheses.

7. What is the source of estrogens?
Males are not exposed to the dramatic changes in circulating concentrations of estrogens
experienced by females across the estrus cycle. Although prolonged exposure to estrogens
can induce non-genomic signaling, membrane-initiated effects in neurons desensitize
relatively rapidly ([32; 78; 79; 101]; reviewed in [170; 172]). Moreover, estrogen receptors
are likely to be present in a fairly stable manner in the brain. Together, these observations
suggests that if estrogens induce rapid and transient behavioral effects in males, mechanisms
must exist to regulate local estrogen concentrations on much shorter time scales. Brain
aromatase, which is expressed and active especially in brain regions controlling aggressive
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and sexual behaviors [14; 49; 93; 137; 226; 227; 229; 233; 234; 280; 282] but also in the
hippocampus [14; 226; 229; 233; 239; 240; 260; 282], was thus considered as a potential
local source of estrogens. However, due to their lipophilic nature, estrogens cannot be stored
in synaptic vesicles before rapid release like classical neurotransmitters or neuropeptides.
Therefore, in order to achieve rapid changes in local concentrations, it becomes necessary to
invoke the existence of regulatory mechanisms that are able to change the local synthesis
and bioavailability of estrogens in a dynamic manner, very much as is the case for gaseous
neurotransmitters [19].

Estrogens are synthesized from androgens by aromatase, a P450 enzyme traditionally
associated with microsomes. The enzyme is mainly expressed in the ovaries but is also
found in many other tissues including the brain. In reptiles, birds and mammals, brain
aromatase expression is restricted to specific neuronal populations mainly located in the
hypothalamic/preoptic area (HPOA) including the medial preoptic nucleus and in the limbic
system [11; 49; 60; 93; 136; 137; 169; 226; 227; 228; 229; 233; 234; 240; 260; 280; 282]. In
songbird species, aromatase is found in another neuronal population located in the
caudomedial nidopallium NCM, a pallial area (homologous to secondary auditory cortex in
mammals) adjacent to the song control nucleus HVC (acronym used as proper name [14;
240; 251]). In teleost fishes, aromatase is abundantly expressed but specifically in glia ([73;
94]; For review, see [72; 95]). Finally, both the aromatase protein and activity are also
detected in pre- synaptic terminals of various species [61; 183; 202; 225; 230; 244],
suggesting that E2 synthesis may be achieved with a spatial subcellular specificity similar to
neurotransmitters and neuromodulators [19; 242]. The presence of active aromatase in
synapses of discrete brain regions indicates that estrogen provision can be modulated with a
high spatial resolution independently from changes occurring in the periphery and/or
surrounding brain regions.

As alluded to in the introduction, brain aromatase is known to play a key role in the control
of a variety of physiological and behavioral endpoints including sexual behavior,
neuroprotection and synaptic plasticity. However, until recently most studies investigated
relatively slow, presumably genomic, effects of estrogens and, correlatively, most research
on the regulation of aromatase activity focused on the genomic regulation of the enzyme
concentration in parallel with relatively slow and enduring changes in reproductive states
(seasonal changes). In the following sections, we will provide evidence gathered both in
vitro and in vivo that aromatase activity can vary in a much shorter time scale that could
produce variations in estrogen availability compatible with their rapid non-genomic actions.
Rapid fluctuations in local estrogen concentrations can theoretically arise from variations in
the enzymatic substrate concentration (testosterone) or in the catalytic ability of the enzyme
(its efficiency), two mechanisms that are not mutually exclusive. The resulting changes in
local estrogen provision could simultaneously provide answers to the issue of the source of
rapid changes in their bioavailability and offer the spatial resolution that fits with the
behavioral results described above.

8. Rapid changes in gonadal secretions
One way through which brain estrogens concentrations could be rapidly modulated involves
rapid changes in peripheral androgen concentrations that would be available for local
aromatization. Thus, short-term (min to hours) fluctuations in testosterone secretion from the
testes in response to the pulsatile release of the luteinizing hormone from the pituitary may
theoretically result in changes in local estrogen concentration in brain region expressing
aromatase. Moreover, a sharp increase in plasma testosterone has been reported in response
to social encounters such as territorial intrusion or sexual interactions (for review see [111;
191; 287]. Although most of these changes in gonadal secretions occur relatively slowly (for
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extensive review, see [55; 100; 286]), the fastest effects occur within 5–15 min [7; 23; 206;
237]. Interestingly, social stimulations, such as aggressive encounters, can also rapidly up-
regulate the local synthesis of androgens in the brain [205]. Such rapid increases in the
concentration of aromatizable androgens could translate into rapid and transient changes in
local estrogen production by neural aromatization (reviewed in [55; 59]). This is for
example the case in goldfish in which we have seen that an acute injection of testosterone,
mimicking the rapid increase in androgen secretion occuring in the context of reproduction,
facilitates visually guided sexual behavior and induces a rapid increase in milt volume and
sperm concentration through aromatization [153; 159]. By contrast, in quail, two
independent studies recently showed that the plasma testosterone concentration drops after
sexual encounters but these changes do not seem dynamic enough to drive the rapid
behavioral effects of estrogens [58; 65].

9. Rapid regulation of aromatase activity
In vitro studies taking advantage of the high concentrations of the aromatase protein present
in the avian brain have recently demonstrated that aromatase activity (AA) can be rapidly
modulated. In preoptic area/hypothalamus (HPOA) explants from Japanese quail, an acute
increase in extracellular K+ concentration results in a rapid (5 min) and reversible reduction
of AA (Figure 3A) [16]. A similar effect is obtained after incubation with thapsigargin, a
sesquiterpene lactone that increases the intracellular pool of Ca2+. Several experiments
subsequently tried to determine whether the K+-induced enzymatic inhibition is mediated by
Ca2+ from extracellular origin or derived from intracellular stores (e.g. by incubating the
hypothalamic blocks in a Ca2+-free medium or by producing a K+ depolarization in the
presence of Ca2+ channel blockers) but additional work would be needed to draw final
conclusions on this question [16]. It remains that collectively, these results show that a
transient depolarization induced by elevated K+ extracellular concentration markedly and
reversibly inhibits aromatase activity presumably by modulating intracellular Ca2+

concentrations.

Similar enzymatic down-regulations are also triggered by glutamate [16]. More specifically,
the ionotropic glutamate receptor agonists AMPA, kainate and, to a lesser extent, NMDA
rapidly (within 5 min) and reversibly decreased AA [18]. The effect of kainate was
antagonized by the glutamate receptor antagonists CNQX and NBQX (Figure 3B) [18].
Calcium removal from the medium had no effect on the decrease in AA induced by
glutamate suggesting that the effect of the activation of glutamate receptors on AA is not
mediated by extracellular calcium influx into the neurons but by another signaling
mechanism possibly including the release of calcium from intracellular stores [16].
Electrophysiological recordings demonstrated that aromatase-expressing neurons are
sensitive to glutamate, a finding consistent with the view that glutamatergic inputs on
aromatase cells acutely regulate AA [52; 53].

These rapid changes of aromatase activity are most likely mediated by post- translational
modifications of the enzymatic protein rather than transcription- dependent modulations of
its concentration. Post-translational modifications such as phosphorylations are a common
mechanism of control of protein activity in the brain [184]. The transfer of the terminal
phosphate group from ATP to specific amino acid residues (tyrosine, threonine, serine) of
the protein (i.e. phosphorylations) is catalyzed by specific kinases and often critically
depends on divalent cations such as Mg2+ and Ca2+. Pre-incubation of male quail HPOA
homogenates with high but physiological concentrations of ATP, Ca2+ and Mg2+

significantly inhibited AA. This effect was prevented by EGTA, a Ca2+ chelator, (Figure
3C; [16]) and by different kinase inhibitors (Figure 3D) thus strongly suggesting that this
rapid regulation of aromatase catalytic ability is regulated by calcium-dependent
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phosphorylation processes [16; 17]. Direct evidence that aromatase itself is targeted by
phosphorylation(s) rather than another co-existing protein that could secondarily regulate
aromatase was provided in cultured cells transfected with human aromatase in which
phosphorylated residues were detected on the immunoprecipitated protein after incubation
with ATP/Mg/Ca [17; 43]. Importantly, AA is also rapidly and reversibly inhibited by KCl-
induced depolarization. This response is blocked by kinase inhibitors thus demonstrating
that the depolarization-induced changes in AA, described in HPOA explants, are likely
mediated by phosphorylation processes (Figure 3E). The quantification of the enzymatic
protein confirmed that this rapid enzymatic down-regulation does not result from protein
degradation thus confirming the hypothesis that aromatase is regulated by conformational
changes that do not involve new transcription [43]. Together these data strongly suggest that
these phosphorylations directly cause the rapid decrease of enzymatic activity.

A bioinformatic analysis of the quail and human aromatase coding sequences identified
several potential phosphorylation sites [17; 43]. Targeted mutagenesis of selected residues
failed to identify one residue specifically involved in the acute regulation of aromatase
activity (Figure 3F) [43] suggesting that another residue or a combination of several
phosphorylated residues is likely required to control AA (for further discussion of these data
see [43; 45]).

Interestingly, the phosphorylation-dependent inhibition of AA is observed in both male and
female quail HPOA and in the songbird telencephalon [61; 130]. In addition, the rapid
inhibition of AA by calcium-dependent phosphorylations is not specific to neuronal
aromatase as similar effects were recently described in the ovary [43] and in neuronal or
non-neuronal cell lines stably expressing human aromatase [43]. These data show that the
regulation of aromatase by phosphorylations is a general process, found not only in birds,
but also presumably in humans and other mammals. Finally, recent evidence suggests that
these phosphorylating conditions preferentially affect synaptic aromatase compared to the
enzyme isolated from microsomes, leading to the provocative idea that rapid changes in
estrogen synthesis would mainly occur at the synapse allowing a precise spatial resolution
for estrogen provision ([61], see also below).

In conclusion, these studies demonstrate that AA is rapidly controlled via post- translational
modifications. This basic effect is observed in several tissues that express aromatase as well
as in a variety of species, including humans and thus seems to be robust. Although much
remains to be discovered with respect to the molecular mechanisms that mediate these
effects, these rapid enzymatic changes must result in fluctuations of estrogen availability
with a time and spatial resolution consistent with the non-genomic behavioral effects
described earlier.

10. Aromatase activity is rapidly modulated in vivo
As demonstrated in the first part of this review, acute blockade of aromatase activity rapidly
alters numerous physiological and behavioral processes (Table 1). This observation suggests
that rapid modulations of estrogen synthesis similar to these described in vitro must also
occur in vivo in functionally relevant contexts. The first evidence supporting this hypothesis
came from work carried out in Japanese quail [54], that has recently been confirmed and
expanded ([65; 68; 69; 70]; for review see also [62]). An important body of work supporting
this idea is also provided by work on songbirds primarily in the context of social
communication [43; 216; 217; 220; 221] for review see [219; 242]).
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10.1. Effect of sexual interactions
A first study demonstrated that the enzymatic activity measured in HPOA homogenates is
modulated in a time-dependent fashion following both visual access to or copulation with a
female. However, against all expectations, these sexual interactions resulted in a decrease in
AA that was detectable after 1 min and reached its maximum after 5 min. The amplitude of
this effect (20% change) is much less dramatic than the enzymatic changes observed in vitro
(nearly complete inhibition). This discrepancy can be explained by the fact that the HPOA
contains several populations of aromatase-containing cells that may be differentially
controlled by behavioral interactions. This might result in a dilution of large effects located
in discrete regions or in changes occurring in opposite directions that might partially cancel
each other out. This former hypothesis was confirmed by a follow-up experiment
investigating the time course of the effect of copulation on AA measured specifically in the
different populations expressing high levels of aromatase activity that were in this case
dissected by the Palkovits punch method adapted for quail [60; 247]. This second
experiment identified rapid enzymatic inhibitions in the medial preoptic nucleus (POM) and
the tuberal hypothalamus [65]. The fastest change was detected in the tuberal hypothalamus
after only 2 min of interaction (-25%) and was followed at 5 min by a similar drop (−28%)
in the POM (Figure 4A). Both effects developed progressively for at least 15 min at which
point the maximal inhibition of activity reached about 40%. These data thus confirm that
sexual interactions result in a rapid reduction in AA and demonstrate that these enzymatic
changes occur in specific brain regions.

The comparison of the time course of these enzymatic changes with the pattern of sexual
activity displayed by these males revealed that sexual activity terminates before the drop in
AA becomes detectable [65] implying that this enzymatic response is a consequence rather
than the cause of changes in behavior. Moreover, submitting all subjects to 2 min long
interactions (during which most of the sexual activity takes place) and collecting brains after
different latencies post- copulation did not reveal any change in AA suggesting that this
enzymatic down- regulation is not related to sexual performance but requires the presence of
the female for a more extended period of time [65]. This conclusion is supported by the
observation that simply seeing the female induces the same enzymatic response in the POM
(but not in the tuberal hypothalamus) as copulation, providing further support to the idea that
rapid changes in AA do not depend on behavior display but on the female's presence.
Although the functional significance of such a reduction in brain aromatase activity is still
debated, these data provide evidence that aromatase activity is rapidly modulated in
behaviorally relevant situations in specific brain areas and in a time scale compatible with
non-genomic effects of estrogens.

It must be stressed that these enzymatic changes cannot reflect local changes in testosterone
or co-factor availability since all samples were incubated with the same concentration of
enzymatic substrate (3H-androstenedione) and co-factor (NADPH). Therefore, such changes
demonstrate either a reduction in the concentration of the enzyme due to degradation or a
reduction in its catalytic ability due to post-translational modifications that are presumably
similar to those described in vitro. It was recently shown that the enzymatic inhibition
induced by a 5 min interaction is no longer detected 2 hours after this interaction [65]
indicating that the enzymatic down-regulation unlikely relies on protein degradation (re-
synthesis would take more time) but rather depends on post-translational modifications.

In male rats, sexual interactions are accompanied by a rise in extracellular glutamate
concentration in the preoptic area [77]. As alluded to earlier, in rodents and birds, preoptic
neurons, including aromatase neurons, are sensitive to glutamate [52; 53; 125]. It could thus
be hypothesized that a female-induced rise in preoptic glutamate could result in a transient
down-regulation of aromatase activity following copulation in quail. Although it is not yet
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known whether a similar glutamate release occurs in the avian POA, it is worth noting that
in rats, glutamate controls the release of dopamine in the POA [75; 76]. Similar changes in
extracellular dopamine concentration have been reported in male quail POA during
copulation or visual interaction with a female [128; 129]. Only males that eventually
engaged in behavior showed elevated dopamine levels but, in males who copulated, no
difference in dopamine was observed between sampling periods during which copulation did
or did not occur suggesting that the dopamine response is driven by the male's motivational
state not by its copulatory activity [129]. Based on what is known in rodents [120], it is
conceivable that these changes in extracellular dopamine concentrations in quail also reflect
an increased glutamatergic release. Since glutamate was shown to inhibit AA within minutes
in hypothalamic brain explants [18], these postulated changes in glutamate release would
perfectly match and could explain the variations in enzymatic activity observed after sexual
interactions in the quail brain.

10.2. Effect of stress
Evidence is also accumulating in support of a role for stress in the acute modulation of AA.
Indeed, exposing male quail to acute restraint stress for 15 min or an acute injection of
corticosterone 30 min prior to brain collection results in a significant increase in AA
measured in HPOA homogenates [20]. As observed in the case of sexual interactions, the
effect of stress is region-specific as the enzymatic up- regulation is detected only in the
POM and to a lesser extent in the ventromedial nucleus of the hypothalamus [68]. In the
POM, the increase in AA reaches 150% of control values within 5 min of stress exposure
(Figure 4B). This elevated activity persists as long as the stressor is present and returns to
control levels within 30 min after stress cessation. Interestingly, females also exhibit a
moderate increase in AA in the POM and profound enzymatic reduction in the tuberal
hypothalamus (60% of controls). In contrast to males, female responses are not as fast and
are sustained beyond stressor cessation [68].

Although stress induced a significant increase in circulating corticosterone (CORT) levels,
no correlation was found between individual CORT concentrations and AA measured in any
brain region considered [68]. Since circulating corticosterone cannot explain by itself the sex
and regional specificity of the enzymatic responses, other candidates were also considered.
Experiments looking at the role of different components of the hypothalamic-pituitary-
adrenal axis recently suggested that CORT, arginine-vasotocin (AVT) and corticosterone-
releasing factor (CRF) all play a role in the control of stress-induced changes in AA in the
POM but not in other regions [69]. More work is thus warranted to unravel the mechanisms
of regulation of aromatase by stress.

Interestingly, the rapid changes in AA induced by stress occur in brain nuclei that play a
critical role in the control of reproduction. Although little is known about the functional
implications of local changes in estrogen synthesis in brain regions other than the POA,
these results suggested that rapid changes in aromatase activity might mediate acute effects
of stress on behavior and fertility. Surprisingly, male or female sexual behavior was not
affected by 15 min of acute restraint stress, but fertilization was slightly reduced in stressed
females [70]. Stress (15 min) or copulation (5 min) alone induced the same effects on AA as
previously described. Yet, when presented in sequence, sexual behavior reversed the
enzymatic up- regulation induced by stress in the male POM (Figure 4C). Likewise, the
stress- induced decrease in AA in the female tuberal hypothalamus (presumably homologous
to the arcuate nucleus of mammals) was reversed following pairing with a male. Strikingly,
a clear anatomical specificity emerged when considering the profile of response to stress and
mating. In some regions, such as the male POM or the female Tuber, aromatase seems
responsive to both stimuli, while the enzyme appears exclusively sensitive to one stimulus in
other regions [70].
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Although the functional consequences of these region-specific enzymatic changes induced
by stress remain unclear (for further discussion of this issue, see [62; 68; 70]), together these
data provide compelling evidence that changes in the social and environmental context
induce rapid changes in AA in specific brain regions in vivo. Importantly, the fast time
course and reversibility of most of these effects strongly suggest that the underlying
mechanism(s) relies on post-translational modifications of the enzyme in vivo. This idea is
strongly supported by the reversal within 5 min of stress-induced changes by copulation.

10.3 Social communication
10.3.1 Mechanisms of control of aromatase in the caudo-medial nidopallium
(NCM)—As mentioned earlier, the caudo-medial nidopallium (NCM, analogous to the
mammalian auditory cortex) of songbirds such as zebra finches contains a dense population
of aromatase-expressing cells [240; 251] and is accordingly one of the brain regions with the
highest aromatase activity measured in any vertebrate species [44; 252]. This region,
thought to play a role in the recognition of species-specific auditory information [98], thus
constitutes an excellent locus to study the regulation of brain estrogen synthesis in vivo. To
this end, Remage-Healey and colleagues developed an in vivo microdialysis system to
quantify the extracellular concentration of estrogens in the NCM of awake zebra finches
[216]. Using this approach, they first showed that local estrogen concentration and, thus
probably local synthesis as well, is inhibited in vivo by the retrodialysis of glutamate in
NCM [216] thus bolstering the conclusions drawn based on in vitro experiments in quail
[16; 18]. Together these data suggest that the acute control of aromatase by glutamate is not
limited to the HPOA but likely extends to other brain regions where the enzyme is
expressed.

Additionally, in agreement with the effect of KCl-induced depolarization on AA measured
in vitro [16; 43], estrogen concentration in NCM is rapidly reduced by KCl retrodialysis
[220]. This effect is blocked by ω-conotoxin, a specific inhibitor of N-type Ca2+ channels
predominantly expressed in presynaptic terminals [220]. Together with the recent
identification of a preferential sensitivity of synaptic as compared to microsomal aromatase
to phosphorylating conditions in zebra finch telencephalic homogenates [61], this finding
strongly suggests that the rapid regulation of estrogen synthesis specifically occurs at the
synaptic level in vivo.

10.3.2 Social cues involved in aromatase regulation in NCM—Investigations of
the control and functional significance of these rapid fluctuations of brain-derived estrogens
first demonstrated that playback of conspecific songs induces within 30 min a rise in
extracellular E2 concentration compared to white noise when the microdialysis probe is
implanted within but not outside of NCM. E2 returns to control concentrations within 30
min of female removal indicating that this effect is also rapidly reversible. No such
fluctuations in estrogen concentrations are elicited by playback of female chirps or sounds
from the colony suggesting that locally produced estrogens are specifically controlled by
and potentially implicated in the auditory processing of specific social cues [216]. NCM
estrogen synthesis is affected by songs of conspecific males in females as well [221].

Interestingly, a similar rapid and reversible elevation of E2 is induced by visual presentation
of a female [216]. The absence of a correlation between the number of songs produced by
males exposed to a female and the increase in E2 retrieved from the dialysate suggested that
this female-induced increase in brain- derived estrogens is not a result of singing behavior
but simply of seeing the female [216]. This possibility is in apparent contradiction with the
higher enzymatic activity measured in the posterior telencephalon of males that sang when
presented to a female compared to males that did not [217]. However, it could be argued that
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this effect does not reflect a rapid up-regulation of the enzymatic activity but a pre- existing
condition (i.e. a higher expression of the enzymatic protein), which may have a facilitating
role for singing behavior. This being said, the enhancement of local estrogen concentration
and probably synthesis by visual stimuli was recently confirmed following E2 microdialysis
in males presented with videotapes of behaving males or females. Importantly, elevated E2
was only detected in the NCM of males exposed to female conspecifics but not male
conspecifics or heterospecific females (Bengalese finches) reinforcing the idea that this
increased E2 synthesis is specific to visual cues from conspecific females [221]. In females,
no such increase in E2 production is induced in NCM upon visual presentation of a male
video.

10.4. Aggressive behavior
Rapid changes in AA and E2 content have also been examined in microdissected brain
regions of the “social behavior network” of male white-crowned sparrows that experienced a
simulated territorial intrusion for 30 min [44]. This stimulation leading to an intense
aggressive response resulted in reduced E2 concentrations in the hippocampus, the
ventromedial nucleus of the hypothalamus and the bed nucleus of the stria terminalis (BST),
but surprisingly no change in aromatase activity was detected. Furthermore, no correlation
was found between aromatase activity and local estradiol concentrations. Together, these
data provide another example of the existence of rapid changes in estrogen availability in
vivo but also highlight the complexity of the regulatory mechanisms of local estrogen
concentration taking place within the 30 min interval between behavioral events and brain
collection (See [44] for an in-depth discussion of the potential explanations of these results).

Overall, these studies that employed a variety of approaches confirm that the rapid changes
in estrogen synthesis first described in vitro also take place in vivo in biologically relevant
contexts and relate to changes in neuronal activity (K+ induced depolarization or glutamate
release). They are also probably regulated by biochemical mechanisms identified in vitro
although more work is still needed to firmly establish this last proposition. They also
provide clear evidence that these processes are highly dynamic, occur in a region specific
manner and might even be restricted to the synaptic terminals.

11. Role of brain aromatase in females?
Because females exhibit high circulating concentrations of estrogens, originating mostly
from the ovaries, both genomic and non-genomic effects of estrogens are usually attributed
to ovarian steroids in this sex. However, the female brain expresses a substantial amount of
enzymatically active aromatase, even if it is less active than in males [15; 51; 60; 106; 131;
202; 225; 226; 229; 231; 232; 243]. Although the role of brain-derived estrogens has rarely
been examined in females, a few studies suggest that it also contributes to normal ongoing
physiological processes.

In ovariectomized musk shrews, receptive behavior is activated by the implantation of
estradiol benzoate in the MPOA or VMN [279]. Effects are mimicked by implantation of
testosterone, but not dihydrotestosterone or cholesterol, suggesting that local aromatization
of testosterone contributes to the activation of female receptivity. Accordingly, in
ovariectomized hamsters, aromatase blockade specifically in the VMN prevents the
activation of lordosis by testosterone [118]. It has also been suggested that slices of female
hippocampus secrete estrogens in vitro and this local estrogen synthesis is involved in
synaptogenesis [135; 294]. Acute intrathecal injections of the estrogen receptor antagonist
ICI 182,780 or the aromatase inhibitor fadrozole were recently shown to rapidly modulate
morphine-induced anti- nociception in female rats thus demonstrating the involvement of
spinal estrogen synthesis in nociception in female (Table 1; [150]). Finally, a recent study
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revealed that long-term systemic aromatase blockade results in increased depressive-like
behavior in ovariectomized females as measured in the forced swim test [64]. These
behavioral effects are likely due to a blockade of brain aromatase since subjects of this
experiment had no ovaries. They also raise the interesting possibility that the substrate for
aromatization (testosterone or another aromatizable androgens) supporting the behavior
might be produced directly in the brain, which we know possesses all the enzymatic
machinery to synthesize steroids de novo [73; 74; 152].

In parallel, it was recently reported that brain estrogen synthesis can be rapidly modulated
by phosphorylating conditions in vitro in the female quail HPOA or zebra finch
telencephalon as it is in males [61; 130]. Aromatase activity in the female zebra finch brain
is also modulated by biologically relevant stimuli in vivo [68; 70; 221].

Together, these data thus bolster the notion that in females local estrogen provision impacts
brain function and behavior independently from ovarian steroids. Substrates for
aromatization are clearly present in females since they have substantial concentrations of
circulating androgens produced either by their ovary or adrenal gland and can additionally
produce androgens directly in their brain. However, the evidence remains scarce and the
relative importance of peripheral vs. central- produced estrogens still needs to be
determined.

12. Conclusions
Besides their slow and enduring effects, mounting evidence strongly indicates that estrogens
also exert rapid, probably non-genomic, effects on various physiological and behavioral
endpoints including social behavior, sensory processing and cognition. These non-genomic
of effects of estrogens are generally characterized by their short latency of occurrence, their
reversibility and some degree of regional specificity. In males, these effects are triggered by
dynamic fluctuations in estrogen concentrations resulting from the local aromatization of
testosterone in specific brain regions. Estrogen synthesis is indeed rapidly modulated by
processes that depend on neuronal activity both in vitro and in vivo in a time scale
compatible with their rapid behavioral actions. This acute control of estrogens provision
seems to prevail in the presynaptic terminals putting estrogens in a perfect position to
regulate synaptic transmission with great spatial specificity. It is argued that acute
fluctuations of local estrogen concentrations also participate in the regulation of brain
function in females independently from peripherally derived steroids. Together with the
observation that the non-genomic effects of estrogens rapidly desensitize [170; 172] and the
existence of mechanisms for the rapid elimination of estrogens ([21; 160; 257; 296] for
further discussion see [55]), the data reviewed here provide further evidence supporting the
hypothesis that brain derived estrogens should be considered as neuromodulators [19; 242].

Although there is clearly an increasing interest in the study of the behavioral effects of
brain-derived estrogens over the past few years, the cellular mechanisms regulating the
synthesis and action of estrogens on specific brain circuits remain largely unknown.
Understanding these cellular mechanisms and how the non-genomic and genomic effects of
these brain-derived estrogens interact with those produced by steroids circulating in the
blood to activate complex behaviors at present constitutes a major challenge for behavioral
neuroendocrinology.
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FiN – Highlights

- estrogens rapidly affect a variety of behavioral processes in several
vertebrates

- aromatase activity is rapidly regulated by Ca2+-dependent phosphorylations
in vitro

- aromatase activity rapidly varies in vivo in behaviorally relevant contexts

- brain estrogens’ provision may also play a significant role in females

- brain-derived estrogens should be considered as neuromodulators
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Figure 1.
Comparison of the doses of estradiol expressed in µg/Kg that were shown to modulate after
short latencies (15 to 60 min) the expression of behavior. The different bars are color coded
to reflect the type of behavior under study as explained in the insert. References to the
relevant work (X axis) are in blue for studies performed in males and in red for studies
performed in females. One study carried out on both sexes is indicated by both colors. The
class of vertebrates in which the study was performed (mammals, birds or fishes) is
indicated at the top of the bars by a schematic drawing as well as the range of doses when
multiple doses were used in a given study.
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Figure 2.
Comparison of the doses of estradiol injected centrally (ICV) in pg/subject that were shown
to affect after short latencies (15 to 60 min) the expression of behavior. Note the logarithmic
scale on the Y axis. The different bars are color coded to reflect the type of behavior under
study as explained in the insert. References to the relevant work (X axis) are in blue for
studies performed in males and in red for studies performed in females. One study carried
out on both sexes is indicated by both colors. The class of vertebrates in which the study was
performed (mammals, birds or fishes) is indicated by a schematic drawing at the top of the
bars as well as the range of doses when multiple doses were used in a given study.
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Figure 3.
Rapid changes in aromatase activity (AA) observed in hypothalamic- preoptic (HPOA)
explants cultured in vitro (A-B), in HPOA homogenates (C-D) and in HEK293 cells
transfected with human aromatase (E-F). All values are presented as mean ± SEM.
In explants, AA is inhibited within 5–10 min by a K+-induced depolarization (A) or by
exposure to the glutamate receptor agonist kainate (B). This latter effect is blocked by co-
exposure to the glutamate antagonist NBQX. The values observed in control conditions in
the absence of any pharmacological treatment are indicated by the blue area. C. A 15 min
pre-incubation of HPOA homogenates in the presence of ATP, Mg2+ and Ca2+ markedly
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inhibits AA, but these compounds alone have little or no effect. This inhibition is blocked by
EGTA, a compound that chelates divalent ions such as Ca2+. D. The inhibition of AA
produced in HPOA homogenates by the addition of ATP/Mg/Ca is largely blocked in the
presence of EGTA or of the kinase inhibitors staurosporine (STAU, a Serine Threonine
kinase inhibitor), Bisindolylmaleimide (BIS, a protein kinase C [PKC] inhibitor) or H89 (a
protein kinase A [PKA] inhibitor. E. AA expressed by HEK293 cells is inhibited by a K+-
induced depolarization and this effect is largely blocked by exposure to the protein kinase
inhibitors staurosporine (STAU) or genistein (GEN). F. Effects of single amino acid
mutations in the human aromatase expressed by HEK293 cells on the AA expressed in
control conditions (black bars) and after pre-incubation with 2 mM Ca2+10 mM Mg2+, and 2
mM (pink bars) or 8 mM (red bars) ATP. AA in phosphorylating conditions is expressed as
percentage of the mean activity compared in control conditions. No significant effect of the
mutations is observed on the response to phosphorylating conditions (S=serine; A= alanine).
* p < 0.05 vs CTL in (C), * and *** p <0.05 and 0.001 respectively vs No KCl conditions,
same treatment in (E). Redrawn from data in [16] (A, C), [18](B), [17] (D) and [43](E,F)
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Figure 4.
Rapid changes in aromatase activity (AA) observed in the medial preoptic nucleus of male
quail that have been exposed for various durations (2 to 15 min) to a female and allowed to
copulate with her (A)or submitted to an acute restraint stress for 5 to 30 min, indicated by
the red bar on the X axis (B) or exposed to stress for 5 min and then immediately allowed to
copulate with a female (Stress+Sex) for 5 min (C). In panel B, birds exposed to restraint
stress for 30 min were also sampled 30 min after the cessation of stress (time point marked
60 min). (*) and * p < 0.1 and 0.05 respectively vs Ctl (control), (†) and † p < 0.1 and 0.05
respectively vs 2 min. Redrawn from data in [65](A), [68](B) and [70](C).
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