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Abstract
In recent years, disturbances in cognitive function have been increasingly recognized as important
symptomatic phenomena in neurodegenerative diseases, including Parkinson’s Disease (PD).
Value-based decision making in particular is an important executive cognitive function that is not
only impaired in patients with PD, but also shares neural substrates with PD in basal ganglia
structures and the dopamine system. Interestingly, the endogenous cannabinoid system modulates
dopamine function and subsequently value-based decision making. This review will provide an
overview of the interdisciplinary research that has influenced our understanding of value-based
decision making and the role of dopamine, particularly in the context of reinforcement learning
theories, as well as recent animal and human studies that demonstrate the modulatory role of
activation of cannabinoid receptors by exogenous agonists or their naturally occurring ligands.
The implications of this research for the symptomatology of and potential treatments for PD are
also discussed.
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Introduction
Disturbances in executive cognitive functions, including decision making, are prominent
clinical features in various psychiatric disorders, such as attention-deficit hyperactivity
disorder, mood and anxiety disorders, schizophrenia and substance use disorders [1]. In
recent years, the notion that cognitive disturbances and impairments in decision making are
important symptomatic phenomena in neurodegenerative disorders such as Parkinson's
disease (PD) has gained increasing interest [2–5]. Interestingly, recent evidence suggests
that these cognitive impairments might arise in the prediagnostic and early stages of PD [6–

© 2012 Elsevier GmbH. All rights reserved.
*Address correspondence to: Dr. T. Pattij, t.pattij@vumc.nl, T +31 20 4448089, F +31 20 4448100 Or Dr. Joseph F. Cheer,
jchee001@umaryland.edu, T +1 410 706 0112, F +1 410 706 2512.
3AML, EBO, JFC and TP contributed equally to the manuscript

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Basal Ganglia. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Basal Ganglia. 2012 September 1; 2(3): 131–138. doi:10.1016/j.baga.2012.06.005.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



8] and are possibly caused by functional loss in the corticostriatal circuitry subserving
cognitive functions [9].

In general terms, decision making refers to the selection of appropriate actions from various
available options based on cost-benefit evaluations and subjective values of the outcomes of
these actions. As such, decision making is a complex mental construct that is composed of
several cognitive functions that should theoretically lead to adaptive behavioral outcomes or
to maintain psychological or physiological homeostasis [10]. These functions and goal-
directed action selection in decision making are driven by various neurotransmitter systems
in the brain and have in particular been associated with dopamine function [11,12]. Over the
last decades there has been a rise in decision making experimental data, partly due to the
development and availability of laboratory tasks assessing aspects of real-life decision
making in humans and preclinical animal models [13]. Altogether, these studies have greatly
increased our understanding of the scientific basis and neurobiology of decision making, not
the least because it is a subject that is studied from multiple disciplines including economics,
psychology, neuroscience and computer science [14].

In addition to dopamine modulation of decision making, there is accumulating evidence of
cannabinoid involvement in executive cognitive functions including decision making
[15,16]. The endocannabinoid neurotransmitter system consists of at least two receptors,
cannabinoid CB1 and cannabinoid CB2 of which primarily the former is highly expressed in
the central nervous system. These Gi/o-protein coupled receptors, of which the vast majority
is expressed presynaptically, are activated by their endogenous signaling molecules, such as
anandamide (AEA) and 2-arachydonylglycerol (2-AG), and in response directly modulate
the probability of release of several neurotransmitters including GABA, glutamate and
indirectly dopamine [17,18]. Moreover, cannabinoid CB1 receptors are densely expressed in
the brain including frontal cortical regions and several nuclei of the basal ganglia such as the
striatum, globus pallidus and substantia nigra [19–21].

Interestingly, despite the cannabinoid CB1 receptor antagonist Rimonabant being withdrawn
from the market, there is large therapeutic potential of cannabinoid mechanisms in several
metabolic, psychiatric and neurodegenerative disorders [22,23].

This review aims at providing more insight into this convergence of cannabinoids, dopamine
and value-based decision making in the context of neurodegenerative disorders and in
particular PD. To this aim, we first will provide background on different theories of
reinforcement learning as a framework for value-based decision making, and we will briefly
discuss the role of dopamine in these processes. Next, we will discuss the involvement of the
basal ganglia and importance of the endogenous cannabinoid system and its interactions
with the dopaminergic system in decision making. Finally, we will review and discuss the
available empirical evidence obtained from both clinical and preclinical studies of
cannabinoid modulation of value-based decision making.

Theoretical history of reinforcement learning
Reinforcement learning (RL) is a well-supported computational framework for learning
values in order to achieve optimal outcomes, which has gained popularity in the study of
value-based decision making and its neural mechanisms [24]. The modern rendition of RL
has grown from a fairly interdisciplinary history, beginning with animal learning paradigms
of psychology and evolving through mathematical formulations and artificial learning
research [25]. Both Bush and Mosteller’s first formal mathematical model [26] and Rescorla
and Wagner’s subsequent version [27] postulated that learning only occurs at unexpected
events [25,28]. Additionally, in the Rescorla-Wagner model, predictions for a given trial
represent the sum of predictions from individual stimuli [25]. Despite its substantial
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explanatory power, however, the Rescorla-Wagner model could not account for either
second-order conditioning, of which a common example is the conditioned value of money
to humans, or temporal relationships between stimuli within a trial [25].

The solution to these limitations came from two researchers working on artificial
intelligence, who extended the Rescorla-Wagner model such that the decision-making agent
seeks to estimate an average sum of all future rewards, rather than just the one in the
immediate future [24,25]. These temporal-difference models (TD) are much more focused
on goal-directed learning than their predecessors, and redefine the problem from one of
learning values from past events to predicting the values of future events [24]. This
distinction is important for thinking about the stimuli from which RL models learn; while
Bush-Mosteller and Rescorla-Wagner models suggest learning from a weighted average of
past rewards and the immediately experienced reward, TD models would learn from
information that violates the agent’s expectations for the sum of all future rewards [28]. For
this theorized process of learning to occur, the TD model necessitates a neural mechanism
for recording prediction errors.

Dopamine and reinforcement learning
Support from neural data and computational models have converged upon the midbrain
dopamine system as encoding this key signal [29,30]. A substantial amount of research has
implicated the dopamine system as a key player in value-based decision making, especially
in instances of positive reinforcement [31]. Specifically, evidence has accumulated under the
framework of a reward prediction error hypothesis (RPE), which posits that dopamine
neuronal activity encodes the difference between expected and received rewards [29,30].
Within TD models of RL, the RPE embodies an essential mechanism for the proposed trial-
and-error learning process [24,32,33]. The seminal work of Schultz and his colleagues
illustrated this principle through recordings from the midbrain dopamine neurons of awake,
behaving monkeys [30,34]. These recordings showed that when a visual or auditory stimulus
(conditioned stimulus) precedes a fruit or juice reward (unconditioned stimulus), the
dopamine neurons increase their phasic burst firing upon receipt of the reward. However,
this response occurs only during the learning phase. After the animal learns to predict a juice
reward from the visual or auditory cue, an increase in dopaminergic burst firing is seen at
the unexpected cue and not to the subsequently predicted reward. If the predicted reward is
not delivered, a negative prediction error has occurred, and recordings show a corresponding
decrease, or a pause, in the rate of dopaminergic firing [30,34,35]. These findings illustrated
dopamine response to stimuli predicting rewards over the rewards themselves. Moreover,
this pattern of dopaminergic activity specifically conforms to the RPE predicted by TD
algorithms [29,30,36,37]. Further evidence has also shown that dopaminergic responses to
conditioned stimuli are proportional to differing magnitudes and probabilities of predicted
rewards [38–40], as well as rewards delivered after a delay [41–42]. Importantly, functional
magnetic resonance imaging (fMRI) studies in human subjects have supported the biological
and behavioral applicability of RL and TD models [e.g. 43–45].

Limitations of the dopamine RPE hypothesis
Despite the accumulation of support for the dopamine RPE hypothesis, there are also
noteworthy limitations which include contradictory data [46,47], as well as overarching
problems concerning, for example, the treatment of Pavlovian vs. instrumental learning
paradigms, limitations of the simple behavioral tasks currently in use, and facets of
dopamine function that extend beyond its short-latency phasic firing [46]. Within the broad
RL framework itself, the role and expression of a dopaminergic RPE are couched in subtly
varying theories of value learning and action selection [32,33,48–50]. Additionally, there are
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several alternate theories that posit non-RPE explanations for dopamine function, with
varying degrees of empirical support [31]. Such alternatives include the salience [51],
incentive salience [52,53] and agency [54] hypotheses, which propose dopamine responses
to salient stimuli, separate systems for “wanted” compared to “liked” stimuli, or sensory
prediction errors that reinforce agency and novel actions, respectively. These hypotheses of
dopamine function have proven difficult to disentangle, perhaps due in large part to a more
general problem in the experimental treatment of latent variables, such as “rewards,”
“predictions,” or “salience,” which are not directly observable and must therefore be related
to an observable variable [55].

The axiomatic approach and its advantages
Caplin and Dean proposed an axiomatic approach as a solution to clarify the role of
dopamine in decision making, and more specifically RL [55]. Borrowed from economics,
this standard methodology encapsulates core theoretical tenets in compact mathematical
statements [56]. These axioms then serve as testable predictions, the criteria to which
empirical data must conform in order to admit the theory in question. Caplin and Dean
applied this method to the RPE hypothesis of dopamine function [28,55–57].

Experiments conducted under the axiomatic framework addressed the major problems
attributed to traditional regression-based tests [55,57]. Importantly, the axioms
nonparametrically define latent variables in terms of the variable of interest, namely the
dopaminergic response, in order to avoid jointly testing auxiliary assumptions concerning
the operationalization of latent variables and to allow categorical rejections of the entire
class of RPE models if the data violate any given axiom [57]. Additionally, the strict
mathematical formalization of relevant variables facilitates the differentiation between
alternate explanations of dopamine activity [55,57]. Moreover, the axiomatic approach
allows for hierarchical testing so that axiomatic representations can also be made for more
refined sub-hypotheses. Finally, if the data violate one or more axioms, these axioms can
become focal points for precise revisions to the model, creating a close link between theory
and data [55].

Thus far, experiments conducted within this axiomatic framework have supported an RPE
model of dopamine function in various areas of the brain. The first formal axiomatic test of a
dopamine RPE found such a signal in the activity of the nucleus accumbens, a principal
target of midbrain dopamine neurons discussed below [58]. Additionally, fMRI scans of the
caudate, putamen, amygdala, medial prefrontal cortex, and anterior cingulate cortex showed
that activity in these regions also satisfied the axiomatic RPE model [59]. Meanwhile, the
anterior insula was found to be in strong violation of the RPE axioms, and seems to encode
salience instead [58,59]. These parallel findings illustrate a common theme in theories of
dopamine function, which emphasize that dopamine needs not be restricted to serving only
one function, nor that a particular function can be served only by dopamine [28,31]. It
should be noted that while the regions imaged have been identified as receiving direct
dopaminergic projections, the blood oxygen level dependent (BOLD) fMRI signal is not a
corollary of dopamine activity alone. Furthermore, BOLD signals in the midbrain dopamine
structures did not provide evidence for an RPE model, although the researchers note that this
finding may be partly due to the difficulty of imaging these structures [58]. Nevertheless,
these experiments provide proof of method for the axiomatic approach. Furthermore, the
axiomatic approach can be applied to any data series, including BOLD or
electrophysiological recordings, such that future studies can effectively build upon these
initial findings [57].
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In summary, Caplin and Dean’s axiomatic approach to the reward prediction error
hypothesis addressed several central complaints against RPE. Also, the successful use of this
axiomatic model illustrates the advantages of a neuroeconomic approach and, in general, the
increased power that can be leveraged through cross-disciplinary interaction [14,60]. The
development of RL theories similarly exemplifies the benefits of interdisciplinary
cooperation in advancing the study of decision making. RL theories and the axiomatic
approach also share another common characteristic in that both investigational frameworks
exhibit a close interplay between theory and empirical evidence, particularly in
demonstrating the role of dopamine in value-based decision making. In RL theories, the
convergence of computational models and neural data enhanced the study and understanding
of RL and helped identify the dopamine system as encoding an RPE in accordance with TD
models [29,30,48]. Additionally, while axiomatic methods have been applied most
extensively to the dopamine RPE model, the advantages of this approach can be extended
more broadly to different components of decision making as well as different neural systems
[57].

Striatal involvement in value-based decision making
In addition to the well-established involvement of prefrontal cortical regions in decision-
making [9,61], rodent studies have provided a vast amount of evidence supporting the
pivotal role of the ventral striatum in decision making processes involving cost-benefit
assessments. For example, excitotoxic lesions of the nucleus accumbens impair effort-based
and delay-based decision making, as well as decision making under risk as has been
excellently reviewed elsewhere [13]. On the other hand, lesioning the dorsal part of the
striatum, does not seem to affect value-based decision making in rats [62].

Neuroimaging studies in healthy volunteers also strongly suggest that the ventral striatum
represents an important component of the decision-making circuit. More specifically, the
subjective value of delayed rewards in intertemporal choice paradigms is represented in the
nucleus accumbens [e.g. 63–68]. In one of these studies, however, evaluations related to
effort were found not to require ventral striatal activation [68]. Nevertheless, task-related
activity of the ventral striatum has also been observed in decision-making under risk [69]
and uncertainty [70].

Thus, the role of the basal ganglia in value-based decision-making stemming from BOLD
studies, seems largely restricted to the ventral striatum/nucleus accumbens. In this regard, a
recent primate study indicates that the caudate nucleus might also be important for cost-
benefit analyses. With their experiments, involving single-neuronal recordings in rhesus
monkeys, Cai and colleagues revealed that neurons in both the ventral and the dorsal
striatum encode reward value during an intertemporal choice task [71]. Taken together,
currently available data primarily highlight a pivotal role of the ventral striatum in the
corticostriatal circuitry subserving value-based decision-making.

Cannabinoids have a modulatory role on dopamine systems in a manner
that is relevant to value-based decision making

As pointed out previously, an accumulating body of evidence suggests that dopamine plays
an integral role in value-based decision making [11,12]. While the precise behavioral
outcome resulting from dopamine release likely varies depending on the pattern of
dopaminergic neural activity and the postsynaptic target [13,72], subsecond bursts of
mesolimbic dopamine release in the core region of the nucleus accumbens are theorized to
modulate cost-benefit assessments by carrying information concerning reward value [73].
When animals are required to make value-based decisions using predictive environmental
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information (i.e., cues) for example, the concentration of subsecond dopamine release
increases as a function of the expected reward magnitude [40,74–76]. These cue-evoked
dopamine release events are sufficient in concentration to occupy low-affinity dopamine D1
receptors within the nucleus accumbens [77,78] and, through subsequent modulatory
actions, are thought to strengthen reward seeking in a manner resulting in the procurement
of larger reward [79–81].

Cannabinoid CB1 receptor agonists modulate subsecond dopamine release by disinhibiting
midbrain dopamine neurons. Both the primary psychoactive component of Cannabis sativa,
Δ9-tetrahydrocannabinol (Δ9-THC), and synthetic compounds that exhibit a high affinity
for the cannabinoid CB1 receptor (e.g., WIN 55,212-2) increase subsecond dopamine
release events [82,83]. These exogenous cannabinoids are unable to directly stimulate
dopaminergic neural activity however, due to an absence of cannabinoid CB1 receptors on
midbrain dopamine cell bodies [84]. Rather, they are thought to increase bursts of
dopaminergic neural activity by suppressing GABAergic release and, thereby, indirectly
disinhibit dopamine neurons [85]. In support of this theory, applying cannabinoid CB1
receptor agonists to ventral tegmental area (VTA) brain slices decreases GABAergic
inhibitory post-synaptic currents in a GABAA receptor dependent manner [86], while the
expected increase in dopaminergic neural activity is blocked by pretreatment of GABAA
receptor antagonists [87].

The finding that exogenously administered cannabinoid CB1 receptor agonists modulate
dopamine signaling related to value-based decision making implies that the endogenous
cannabinoid system might also contribute. 2-AG, an endogenous cannabinoid and full CB1
receptor agonist [88], is an ideal candidate to modulate subsecond dopamine release during
value-based decision making. The synthetic enzymes (e.g., diacylglycerol lipase-α(DGL-
α)), required to generate 2-arachydonlylglycerol [89,90] are abundantly expressed in
midbrain dopamine neurons [91] and are activated exclusively during periods of high neural
activity [92], as occurs during cue-evoked dopamine signaling. Based on what is found in
other brain regions we speculate that when dopamine neurons fire in high frequency bursts
(>20Hz), thereby generating subsecond surges in dopamine concentration in the NAc [93],
intracellular Ca2+ increases within the dopamine cell bodies and leads to the on-demand
synthesis of 2-AG via activation of DGL-α [90,92,94]. Once synthesized, 2-AG retrogradely
activates presynaptic cannabinoid CB1 receptors [95], thus suppressing GABA-mediated
inhibition of IPSC amplitude, which could theoretically lead to depolarization-induced
suppression of inhibition [95]. This conceptualization of how 2-AG modulates dopamine
neural activity is consistent with the growing consensus that 2-AG is the primary
endogenous cannabinoid involved in regulating synaptic plasticity [89,90].

Augmenting 2-AG concentrations increases the motivation to procure reward, strengthens
reward seeking and facilitates cue-evoked dopamine signaling. Motivation to obtain food
reward, as assessed using a progressive ratio schedule, is enhanced by either systemically
treating animals with 2-AG [96] or by reducing its enzymatic degradation using
monoacylglycerol lipase inhibitors (e.g., JZL184) [97]. Likewise, increasing 2-AG levels in
the brain energizes responding for reward, as assessed by a decrease in response latency,
when reward delivery is predicted by the presentation of conditioned stimulus [97]. This 2-
AG induced facilitation in reward seeking is accompanied by greater cue-evoked dopamine
release events detected in the nucleus accumbens [97]. Importantly, increasing 2-AG
concentration in the VTA alone is sufficient to enhance cue-evoked dopamine signaling and
reward seeking [97], thus supporting the theory that 2-AG is critically involved in regulating
dopamine signaling within local microcircuits in the midbrain during reward directed
behavior (Figure 1).
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Empirical evidence for cannabinoid receptor modulation of value-based
decision making

Consistent with findings from rodent studies, the human brain contains high densities of the
cannabinoid CB1 receptor in frontocortical and striatal regions [98]. In accordance,
accumulating evidence from human neuroimaging studies employing both fMRI and
Positron Emission Tomography (PET) approaches indicates that marijuana and THC
modulate the activation of prefrontal cortical and subcortical brain regions subserving
dopamine function and decision making processes [99]. Furthermore, and relevant to value-
based decision making as outlined earlier, THC induces release of dopamine in the human
striatum [100] matching findings in laboratory animals [82,83].

Although the effects of cannabinoids have been well-documented for a variety of executive
cognitive functions including attentional processes, time estimation and working memory
[15,16], to date relatively fewer studies have focused on cannabinoid effects on decision
making in humans under laboratory settings. The value of delayed rewards or uncertain
rewards, as assessed in a delay discounting and a probability discounting task, were not
affected by acute challenges with THC in humans [101]. In these decision making tasks the
subjective value of the reward was either altered by imposing hypothetical delays on the
availability of the reward (delay discounting) or by manipulating the likelihood and
predictability of reward (probability discounting). These findings are paralleled by
preclinical data demonstrating that the synthetic cannabinoid CB1 receptor agonist
WIN55,212-2 does not alter delay discounting in rats [102]. Furthermore, challenges with
various cannabinoid CB1 receptor antagonists (SR141716A and O2050) do not modulate the
value of delayed reward in rats, suggesting that endogenous cannabinoid tone is not
critically involved in this form of delay-based decision making [102,103]. In contrast to the
effects of THC in humans, THC alters the value of delayed rewards in rats and shifts the
preference towards more self-controlled choice [103]. The observation that SR141716A
fully reversed the effects of THC indicates a cannabinoid CB1 receptor-mediated
mechanism in promoting diminished delay discounting.

Interestingly, the sensitivity to reinforcement in humans is sensitive to alteration by
challenges with THC. In a concurrent random interval procedure, where one response option
led to a fixed monetary gain and the other to decreasing monetary gain, THC promotes
preference for the latter, less beneficial, choice in subjects occasionally using marijuana
[104]. In extension of these findings, THC also induces risky decision making in occasional
marijuana users in a task where subjects choose between a non-risky option (small monetary
gain, probability of 1.0) and a risky option (larger monetary gain and monetary losses,
probability 0.5) leading to zero expected value [105]. Thus, under conditions with
uncertainty about the likelihood of punishment, activation of cannabinoid CB1 receptors
influences the sensitivity to reinforcement as well as punishment. These findings have been
further substantiated by several recent studies implementing neurocognitive risk-based
decision making tasks such as the Iowa Gambling Task and related gambling tasks in
healthy volunteers and marijuana users [106,107]. Briefly, in the Iowa Gambling Task
originally developed by Bechara and coworkers [108] subjects have to make a cost-benefit
assessment based on their decisions and are able to draw cards from one of four decks to
obtain monetary reward. The expected value of cards drawn from two "risky" decks is
negative and will lead to a net loss of money as a result of high gains and even higher losses,
whereas the expected value of drawing cards from the other two "safe" decks is positive and
will lead to monetary reward. Heavy marijuana use has been associated with an increased
preference for risky decisions leading to monetary loss [109] and a positive correlation has
been reported between the magnitude of use and risky decision making [107], although
comparable effects of THC on decision making are not consistently observed in frequent
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marijuana users [110]. In line with the former findings, in a related gambling task, THC
challenges in healthy volunteers increased the choice of decisions with a zero-expected
value and altered aspects of processing decisions, for instance by reduced attention towards
losses and faster reaction times related to gambles with large gains [106]. This has recently
been further confirmed using computational models of the Iowa Gambling Task showing
that heavy cannabis users are indifferent to loss magnitude and perceived both small and
large losses as equal minor negative outcomes [111]. Thus, cannabinoid activity modulates
human cost-benefit assessments and the motivational processes therein, and this is possibly
explained by its modulatory role on dopamine function. Neuroimaging studies have further
uncovered how marijuana use and THC exposure might impact the neural circuits
implicated in gambling behavior and risky decisions among which the orbitofrontal cortex
and dorsolateral prefrontal cortex are key regions [108]. PET studies have demonstrated that
although acute THC exposure is known to increase activity and regional blood flow in these
subregions of the prefrontal cortex [112], disturbed decision making in 25-day abstinent
heavy marijuana users has been associated with lowered activity in the orbitofrontal cortex
and dorsolateral prefrontal cortex [113]. This contrasts recent PET data showing that in 1-
day abstinent heavy marijuana smokers regional blood flow in the ventromedial prefrontal
cortex and cerebellum was increased during performance in the Iowa gambling task [114].
In keeping with the aforementioned behavioral findings of altered cost-benefit processing
induced by THC [106] or in heavy marijuana users [111], fMRI approaches indicate
accompanying reductions in brain activation in regions such as the anterior cingulate cortex,
medial frontal cortex and cerebellum, particularly during loss of reward [115,116]. Notably,
despite the high densities of cannabinoid CB1 receptors in basal ganglia structures in the
human brain [19], their involvement and possible differential activation by exogenous
cannabinoids in risky decision making is not as pronounced as that of prefrontal cortical
regions from the current neuroimaging work. In this respect, it would be highly interesting
for future studies to employ neuroimaging approaches in e.g. PD patients with a history of
marijuana use and focus on prefrontal cortical activation. Whereas the pathophysiological
mechanisms in PD are predominantly subcortical, alterations in cortico-striato-thalamo-
cortical loops [117,118] may give rise to the cognitive disturbances observed in PD. Indeed,
this notion is supported by neurocomputational models that strongly predict empirical
findings in PD [119–121].

Concluding remarks
This review aimed at 1) providing a background in reinforcement learning as a framework to
increase our understanding of different components of value-based decision making and 2)
highlighting the importance of cannabinoid signaling that, via its modulatory actions on the
dopaminergic system, modulates value-based decision making. Particularly, in view of
neurodegenerative disorders such as PD this topic is gaining increasing interest. First, there
is now accumulating evidence that executive cognitive disturbances, including value-based
decision making, are prominent features of the disorder even in the early stages [2–5,8]. For
example, there are several studies that have demonstrated impaired performance in gambling
tasks such as the Iowa gambling task in PD [8,122–124], although this finding has not been
replicated in all studies [125–127]. These observed disturbances in decision making in PD
might result from the ongoing neurodegenerative processes in the dopaminergic system and
nuclei of the basal ganglia and cortical connectivity that are an essential part of the
corticostriatal loops subserving reinforcement learning and decision making [9,128].

Second, in view of the clinical management of PD, targeting the endogenous cannabinoid
system might provide new therapeutic opportunities in addition to the existing dopamine-
mimetic compounds. Although the latter class of drugs is clinically effective in ameliorating
the motor symptoms of the disorder, prescription of dopamine agonist medications, and in
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particular levodopa, in PD might result in serious adverse side-effects such as levodopa-
induced dyskinesias [129]. Furthermore, levodopa use has also been linked to the
development of pathological gambling and impaired decision making in PD [5,130]. With
regard to endogenous cannabinoids and PD [22,131], AEA levels in cerebrospinal fluid are
elevated in non-medicated PD patients [132] and cannabinoid CB1 receptor binding is
increased in the basal ganglia in post-mortem brains of PD patients [133]. These findings are
supported by earlier work in animal models of PD showing enhanced endocannabinoid
signaling (AEA, 2-AG) in various nuclei of the basal ganglia such as the striatum, substantia
nigra and globus pallidus related to disturbances in motor behavior [134,135]. Thus,
enhanced activity of the endogenous cannabinoid system is associated with the motor
symptomatology of the disorder and this would favor the development of novel cannabinoid
CB1 receptor antagonist-based strategies as a therapeutic intervention for PD. Whether this
observed enhanced activity of the endogenous cannabinoid system in PD also contributes to
the aforementioned decision making disturbances in the disorder is an interesting question
that certainly warrants further investigation. The observed adverse effects of cannabinoid
CB1 receptor agonists such as THC on value-based decision reviewed here, and the
proposed endogenous cannabinoid-dopamine interaction in value-based decision making
(Figure 1), may offer an explanation for these phenomena. In view of this notion, second
generation cannabinoid CB1 receptor antagonist targeted medications are likely of
therapeutic potential and may possibly exert a dual mode action through amelioration of
motor disturbances as well as improving impaired decision making in PD. A potential caveat
of such a pharmacotherapeutic approach, that certainly requires further investigation, might
reside in the observed enhancement of striatal glutamatergic signaling by cannabinoid CB1
receptor antagonism in an experimental model of PD [136], the former which has been
associated with the pathophysiology of levodopa-induced dyskinesia in PD [137].
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Figure 1.
A theoretical ventral tegmental area microcircuit during value-based decision making. After
encountering a cue predicting a large reward, conditioned glutamate release occurs in the
ventral tegmental area (1), thus resulting in Ca2+ influx into the dopamine neuron (2) and
activation of G-protein coupled receptors (e.g., mGluR1/5) (3). G-protein coupled receptor
stimulation activates phospholipase C (PLC), which ultimately leads to the formation of
inositol trisphosphate (IP3) and diacylglycerol (DAG) (4). IP3 binds to IP3 receptors,
resulting in the mobilization of intracellular Ca2+ stores (5). Elevated intracelullar Ca2+

activates the enzyme diaacylglycerol lipase-alpha (DGL-α) (6), which hydrolyzes DAG to
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form 2-AG (7). 2-AG traverses the plasma membrane into the extrasynaptic space (8), where
it retrogradely activates cannabinoid CB1 receptors on presynaptic GABA terminals (9).
Activation of the Gi/o subunit of CB1 receptor suppresses GABA release (10). Decreased
GABA activation of GABAA receptors (11) on dopamine neurons disinhibits the
dopaminergic neural activity, thus facilitating cue-evoked dopamine signaling during
reward-directed behavior.
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