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Abstract
Accumulation of life stressors predicts accelerated development and progression of diseases of
aging. Telomere length, the DNA-based biomarker indicating cellular aging, is a mechanism of
disease development, and is shortened in a dose response fashion by duration and severity of life
stressor exposures. Telomere length captures the interplay between genetics, life experiences and
psychosocial and behavioral factors. Over the past several years, psychological stress resilience,
healthy lifestyle factors, and social connections have been associated with longer telomere length
and it appears that these factors can protect individuals from stress-induced telomere shortening.
In the current review, we highlight these findings, and illustrate that combining these `multisystem
resiliency' factors may strengthen our understanding of aging, as these powerful factors are often
neglected in studies of aging. In naturalistic studies, the effects of chronic stress exposure on
biological pathways are rarely main effects, but rather a complex interplay between adversity and
resiliency factors. We suggest that chronic stress effects can be best understood by directly testing
if the deleterious effects of stress on biological aging processes, in this case the cell allostasis
measure of telomere shortening, are mitigated in individuals with high levels of multisystem
resiliency. Without attending to such interactions, stress effects are often masked and missed.
Taking account of the cluster of positive buffering factors that operate across the lifespan will take
us a step further in understanding healthy aging. While these ideas are applied to the telomere
length literature for illustration, the concept of multisystem resiliency might apply to aging
broadly, from cellular to systemic health.
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INTRODUCTION
Stressors over the lifespan predict accelerated development and progression of diseases of
aging, and early mortality. “Chronic stress” exposure results from different types of life
experiences - notably, prenatal exposure to maternal stress and early life adversity
(Shonkoff, Boyce, & McEwen, 2009), poverty, unemployment (Adler & Rehkopf, 2008;
Adler & Stewart, 2010a, 2010b), caregiver burden (Gouin, Glaser, Malarkey, Beversdolf, &
Kiecolt-Glaser, 2012; Kiecolt-Glaser, 2008; Vedhara, Shanks, Anderson, & Lightman, 2000;
Vitaliano, Katon, & Unutzer, 2005), relationship conflict (Kiecolt-Glaser, Gouin, &
Hantsoo, 2010; Kiecolt-Glaser & Newton, 2001), and discrimination (Baum, Garofalo, &
Yali, 1999; Gee, Ryan, Laflamme, & Holt, 2006; Lewis et al., 2006). Some individuals are
also predisposed to experience feelings of stress more often and more intensely as a result of
(1) specific temperaments or personality traits (Bolger & Schilling, 1991; Bolger &
Zuckerman, 1995) and (2) poor social network features that enhance perceptions of threat
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and negative affect (Kiecolt-Glaser et al., 2010; Uchino, 2006; Uchino & Birmingham,
2011; Uchino, Carlisle, Birmingham, & Vaughn, 2011; Uchino, Vaughn, & Matwin, 2008).

Regardless of its source – either external repeated exposure to environmental and social
stressors or individual tendencies to prolong the stress response – chronic stress across
human development and its biological correlates must be examined from a lifespan
perspective for several reasons. A lifespan perspective accounts for (1) sensitive
developmental periods when chronic and severe acute stress have potent and irreversible
neurological and peripheral biological damaging effects, perhaps shaping psychological
stress reactivity (also known as biological embedding) (Ben-Shlomo & Kuh, 2002;
Hertzman, 1999; Shonkoff et al., 2009), (2) the weathering of stress responsive biological
systems that happens over time, presumably based on duration and severity of each
individual's stress exposure (Geronimus, 1992; Geronimus, Hicken, Keene, & Bound, 2006;
McEwen, 2003, 2007; Seeman et al., 2004; Seeman, Gruenewald, et al., 2010; Seeman,
McEwen, Rowe, & Singer, 2001); and lastly, 3) resiliency factors that can change over the
life course, altering the extent to which lifetime stress impacts current biological function
(Fagundes, Bennett, Derry, & Kiecolt-Glaser, 2011), including neuroplasticity (Karatsoreos
& McEwen, 2011).

In this review, we focus on a disease relevant biomarker of cell aging, telomere length,
which appears to be affected by stressors across the lifespan and thus provides a valuable
window into understanding a lifespan model of the accumulation of stress on aging. Short
telomeres can result from prenatal adversity, early trauma, and chronic stressors (Epel,
2009a, 2009b; Epel et al., 2004; O'Donovan, Pantell, et al., 2011; Wolkowitz, Epel, &
Mellon, 2008; Wolkowitz, Epel, Reus, & Mellon, 2010).

Telomeres are caps at the end of our chromosomes that protect DNA from damage and
degradation, similar to the aglets, or plastic tips, at the end of the shoelace that protect the
lace from fraying (Blackburn, 2005). Telomeres do not remain long forever, though, and
shorten with each cell cycle, and as they reach a critical short length, the cell is no longer
able to proliferate (divide). This is critical, since cells must keep dividing throughout the
lifespan in order to replenish the blood and tissue. As such, the length of telomeres is now
considered a marker of aging cells, and the mechanisms of short telomeres have now been
shown.

We present this lifespan approach in Figure 1 and Section 2.1, after a brief overview of
telomere biology in Section 1. In Section 2.2, we examine important psychosocial and
behavioral factors that predict cellular aging directly, and, where data is available, explore
effects on biological stress reactivity processes in the context of psychosocial and behavioral
resiliency. In Section 3, we suggest that multisystem resiliency – a composite of
psychological stress resilience, social connections, and healthy lifestyle factors– can
promote cellular viability and longevity (and thus organismal longevity) in those with
chronic stress. Our multisystem resiliency model builds on previous studies by Lachman and
colleagues (Agrigoroaei, 2011; Lachman & Agrigoroaei, 2010). They have found that the
combination of psychosocial and behavioral resiliency factors --social connections, physical
activity and sense of control --is a moderator of socioeconomic position's effect on cognitive
functioning. Other evidence to date suggests that individually, social connections, healthy
lifestyle factors, primarily physical activity, and aspects of psychological stress resiliency
such as adaptive emotion regulation are strong moderators of associations between chronic
stress and biological outcomes, and as such, we propose that combining these factors may
prove to be of greater clinical significance and utility than examining each factor alone. We
conclude that with such a multisystem resiliency approach, we may better understand how
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chronic stress gets under the skin to different degrees in both vulnerable and resilient
individuals.

Section 1: Telomere biology in cell health and population health
Cells are constantly adapting to environmental cues and stressors, in utero through death, in
attempt to remain viable. Immune cells are of particular importance to understanding the
pathway through which chronic stress impacts disease outcomes, as these cells mount the
essential responses to external and internal pathogens (Elgert, 2009; O'Garra & Vieira,
2004). When immune cells are `notified' that a response is to be mounted in response to
some internal or external cue, they replicate in order to increase their numbers. During
replication, DNA is at significant risk of damage, but several features are in place to protect
it. One such feature is the telomere (Blackburn, 2000a, 2000b, 2001, 2010).

Telomeres are comprised of both DNA molecules and protective proteins that cap the ends
of chromosomes, protecting DNA from degradation and damage. During cellular division,
the telomeres are not completely replicated and telomeres shorten. To delay telomere
shortening, a cellular enzyme called telomerase adds telomeric DNA sequences back onto
the ends of telomeres during cell division. However, telomerase does not typically add back
100% of the lost telomere sequences at each division. When the telomeres become too
damaged and shorten to a critical length, they send out damage signals that prevent the
endangered cell from replicating. Signaling pathways trigger either (1) programmed cell
death, apoptosis or (2) cellular senescence, a state characterized by arrested reproduction,
loss of ability to recognize invader molecules (antigens) and continued production of pro-
inflammation proteins that can lead to cardiovascular disease and Type 2 diabetes mellitus,
as well as other aging related diseases (Ben-Porath & Weinberg, 2005; Blackburn, 2000b,
2010; Campisi, 2003; Campisi, Andersen, Kapahi, & Melov, 2011; Smogorzewska & de
Lange, 2002; Zheng et al., 2006).

The allostatic load model conceptualizes allostasis as the dynamic physiological fluctuations
in response to environmental demands. Allostatic load is the measure of this cumulative
damage from excessive frequent responding (Seeman, Epel, Gruenewald, Karlamangla, &
McEwen, 2010). Allostatic load is measured by summing measures of dysregulation across
multiple physiological regulatory systems (eg, immune, metabolic, cardiovascular). Our
model extrapolates from this in that we view telomere length as a model of cellular
allostasis. The cell responds to multiple sources of biochemical stressors in its environment
and these add up to many intracellular changes that are ultimately reflected by magnitude of
telomere shortening. For example, past duration of stressor exposure (whether it be
caregiving, depression, violence) is directly related to telomere length (Epel et al., 2004;
Humphreys et al., 2011; Wolkowitz et al., 2011). In this way, telomere length is a sensitive
cellular measure of allostatic load. In Figure 1, we track cellular allostasis throughout the
lifespan.

Increasing research highlights the role that immune cell telomeres and decreased telomerase
activity plays in the pathogenesis of diseases of biological aging, including, but not limited
to, cardiovascular disease, type 2 diabetes mellitus, and Alzheimer's disease (Bekaert, De
Meyer, & Van Oostveldt, 2005; Calado & Young, 2009; von Zglinicki & Martin-Ruiz,
2005). For example, many clinical studies evidence a link between shortened immune cell
telomeres and cardiovascular diseases (CVD) (Demissie et al., 2006; Fitzpatrick et al.,
2007), their risk factors, including carotid artery plaques (Benetos et al., 2004; O'Donnell et
al., 2008), high blood pressure (Lung, Ku, & Kao, 2008), fasting glucose and insulin
(Fitzpatrick et al., 2007), and CVD-related mortality (Cawthon, Smith, O'Brien,
Sivatchenko, & Kerber, 2003; Fitzpatrick et al., 2011). Having short telomeres predicts a
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threefold risk of earlier mortality in a healthy population, larger or comparable to other well-
accepted risk factors (Cawthon et al., 2003; Epel et al., 2009).

Despite the significant associations between diseases of aging with telomere biology, there
remain considerable questions about the direction of causality (De Meyer, 2011). However,
compelling experimental studies with a strain of mice that lack telomerase (Blasco, 1997)
have laid out a new understanding of the primacy of telomerase – that telomerase deficiency
and short telomeres do not simply correlate with and mark organismal aging, but in fact are
one of the major highways leading to organismal aging. Telomere dysfunction mediates
changes in the function and structure of the heart (Leri et al., 2003; Perez-Rivero et al.,
2006; Wong et al., 2009) and in the cell's energy source, the mitochondria (Sahin et al.,
2011). Recent work also demonstrates that reactivating telomerase in telomerase-ablated
mice reverses neurodegeneration by restoring neural progenitors, and other cells essential
for neurogenesis (Jaskelioff et al., 2011) and promotes health and longevity in mice
(Bernardes de Jesus et al., 2012).

Section 2. A lifespan approach to understanding telomere decline (the model)
In Figure 1, we present our working model. This is a lifespan approach where dynamic
interactions from conception through death exist between life stressors and cellular
allostasis, as discussed below (Section 2.1). We examine psychological stress responsivity,
social connections, and lifestyle factors that ultimately shape a multisystem vulnerability or
resiliency profile that can accelerate or decelerate cellular senescence and mortality (Section
2.2). Figure 1 is derived from exceptional research in the field emphasizing developmental
models of stress effects (Cohen, 2004; Kiecolt-Glaser et al., 2010; Miller, Chen, & Cole,
2009; Shonkoff et al., 2009; West, Coles, & Harris, 2010). First, early life experiences
starting in-utero through childhood, including severe environmental stressors and parental
neglect, biologically embed themselves during sensitive developmental periods through
neurological and biological alterations, shaping cognitive and emotional regulation
capacities toward resiliency or vulnerability.

Throughout life, stressors stimulate multiple stress reactive systems, such as the
hypothalamic-pituitary-adrenal axis (HPA axis), and immune and autonomic systems in
attempt to respond and adapt to stress, and these hormones and cytokines feedback to act on
brain structures. With repeated and chronic exposure, stress first wears out neurocircuitry
underlying the stress response, as well as peripheral stress systems (Ganzel, Morris, &
Wethington, 2010). At the cellular level, there is less dendritic branching in the prefrontal
cortex, which affects executive function (Karasoreos & McEwen, 2011). The historical wear
and tear on the emotional circuitry can then lead to exaggerated physiological responses to
current stressors, and in this recursive way continue to affect stress responses and track
through life.

While stress exposures are inevitable and ubiquitous, not all individuals are at equal risk of
early cellular allostatic load given the same exposures. The impact of stress depends on
presence of resiliency factors. We propose that with low resiliency factors, such as
heightened psychological stress sensitivity, poor social connections and unhealthy lifestyle
factors, individuals are more sensitive to the effects of stressors on cellular biology, in turn
accelerating cellular allostatic load, telomere shortening and systemic aging, leading to early
frailty (Figure 1, left panel).

In contrast, those with higher levels of multisystem resilience develop efficient
psychological and physiological coping with stress early in life, lower levels of cellular
allostatic load, including neuronal resilience to stress, and a slower rate of aging, leading
to robust health in old age (Figure 1, right panel).
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In section 2.2, we describe how many individual factors can also buffer the effects of
chronic stress on cellular biology, with the most evidence for social connections,
psychological stress resiliency and health enhancing behaviors (i.e. healthy lifestyle factors)
as moderators. Lastly, in section 3, we highlight the need to examine these resiliency factors
in combination as multisystem resiliency, yet note here that there may be other equally
important resiliency factors.

2.1. Life stressors and telomere decline
2.1.1. Early Life Experiences: The physiological effects of chronic stress often start in
early life, from in utero stressors (i.e. exogenous toxins and elevated glucocorticoids from
mothers), to adverse, traumatic events during childhood.

From a neurobiological perspective, while the neural emotion regulation pathways are still
developing, early life stressors tend to have more harmful effects (Fenoglio, Brunson, &
Baram, 2006; Gluckman, Hanson, Cooper, & Thornburg, 2008; Hertzman, 1999; Lupien,
McEwen, Gunnar, & Heim, 2009; Shonkoff et al., 2009), in that they are linked to changes
in functioning of the limbic system and even volume of certain key areas related to memory
and emotion processing such as the hippocampus and executive function (De Bellis, Spratt,
& Hooper, 2011; Jackowski et al., 2011; Karatsoreos & McEwen, 2011; McCrory, De Brito,
& Viding, 2010). This is thought to magnify perception of stress and stress reactivity, thus
potentially altering personality (De Bellis et al., 2011; Pine et al., 2005), and can lead to
poor control of behavior and different profiles of dysregulation, such as a hyper- or hypo-
responsive hypothalamic-pituitary-adrenal axis (Heim & Nemeroff, 2001, 2002; Heim,
Shugart, Craighead, & Nemeroff, 2010).

Several studies link childhood adversity to telomere shortening in children and in adults.
Children exposed to two or more traumatic stressors at age 5, such as maternal domestic
violence, frequent bullying victimization and physical maltreatment by an adult, have
significantly shorter telomeres at age 10 compared to children exposed to less or no violent
stressors (Shalev et al., 2012). These effects seem to extend to adulthood, `casting a long
shadow' (Kiecolt-Glaser et al., 2011), as adults reporting moderate to severe childhood
maltreatment and stressful experiences, such as divorce and parental separation, are more
likely to have significantly shorter telomeres that those reporting no maltreatment during
childhood (Kananen et al., 2010; Kiecolt-Glaser et al., 2011; O'Donovan, Epel, et al., 2011;
Surtees et al., 2011b; Tyrka et al., 2010).

Findings from human and animal studies also highlight that maternal stress during
pregnancy can have negative effects on offspring telomere biology. Entringer and colleagues
(2011) found that young adults have short telomeres if their mothers were exposed to severe
negative life events while the participants were in-utero compared to a prenatally non-
stressed group. In-utero effects are not limited to maternal psychological stress, however, as
animal (Jennings, Ozanne, Dorling, & Hales, 1999; Tarry-Adkins et al., 2009; Tarry-Adkins,
Martin-Gronert, Chen, Cripps, & Ozanne, 2008) and human (Biron-Shental et al., 2010;
Entringer et al., 2011; Raqib et al., 2007) studies suggest that maternal diet, intrauterine
growth restriction, and low birth weight predict shorter telomeres in various cell types in
young and adult offspring. Finally, a study of embryonic exposure to the stress hormone
cortisol in chickens found increased reactive oxidized species, delayed cortisol recovery in
response to stress, and shorter telomere lengths in the exposed chicks, compared to non-
exposed chicks (Haussmann, Longenecker, Marchetto, Juliano, & Bowden, 2011). Thus, in
utero or early physiological or psychological stressors may put people on different telomere
trajectories throughout life, as proposed elsewhere (Epel, 2009b).
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2.1.2. Stress during Adulthood: Stressful experiences in adulthood also contribute to
disease development in adulthood. In the first study linking stress to telomere length (Epel et
al., 2004), telomere length and telomerase were examined in a healthy sample of
premenopausal mothers of either a healthy child or a child with a chronic condition. Across
all participants, current levels of perceived stress were associated with shorter telomeres,
lower telomerase levels, and greater oxidative stress, demonstrating a possible acceleration
towards cellular senescence in immune cells in women with higher life stress. While no
significant difference in telomere length was evident between mothers of healthy and
chronically ill children, within those women with children with conditions, the number of
years of providing care significantly predicted shorter telomeres, lower telomerase and
higher oxidative stress. Other studies have similarly shown associations between current
objective and perceived stress with telomere length (Damjanovic et al., 2007; Parks et al.,
2009; Puterman et al., 2010).

Additionally, past or current psychiatric disorders, including depression, posttraumatic stress
disorder, and schizophrenia, are linked to short telomeres (Elvsashagen et al., 2011;
Fernandez-Egea et al., 2009; Hartmann, Boehner, Groenen, & Kalb, 2010; Hoen et al., 2011;
O'Donovan, Epel, et al., 2011; Simon et al., 2006; Wikgren et al., 2012; Wolkowitz et al.,
2011) as is lower socioeconomic position in several studies (Batty et al., 2009; Cherkas et
al., 2006; Diez-Roux et al., 2009; Shiels et al., 2011; Steptoe et al., 2011; Surtees et al.,
2011a).

Section 2.2. Resiliency factors and telomere decline
2.2.1. Psychological stress resilience: Here we use the term `stress resiliency' to refer to
psychological traits, appraisals, and emotion regulation processes that appear to promote
healthy integrated responses to stress, rather than exaggerated over-reactions. This area has
been least explored in relation to cell aging. Individuals prone to prolonged stressor
reactivity and delayed recovery, such as those high in negative affectivity, pessimism, and
hostility, have shorter telomeres and lower levels of telomerase (Brydon et al., 2011; Epel et
al., 2006; O'Donovan et al., 2009), thus indicating that those lower in these traits may have
decelerated cellular aging. Individuals respond to acute and chronic stressors with large
differences in emotional and cognitive regulatory processes (Dickerson, 2008; Dickerson,
Gruenewald, & Kemeny, 2004; Kirschbaum, Pirke, & Hellhammer, 1993; Lazarus, 1984;
McRae, Jacobs, Ray, John, & Gross, 2012). These emotional and cognitive differences in
response to chronic stress are linked to elevated cortisol and increased inflammation (Chen
et al., 2006; Puterman et al., unpublished data) and to differences in activation of different
neural regions (Blechert, Sheppes, Di Tella, Williams, & Gross, 2012; Goldin, McRae,
Ramel, & Gross, 2008; McRae et al., 2009; Ray et al., 2005).

Recent work also indicates that chronically stressed caregivers anticipate greater threat to a
standardized stressor compared to controls, and this anticipatory threat predicts shorter
telomeres (O'Donovan et al., 2012). Lastly, appraisal differences such as viewing stressors
as challenges, can transform the stress response toward thriving or efficient allostasis rather
than toward weathering (Epel, McEwen, & Ickovics, 1998). These findings indicate that
early life and adulthood stressors impact allostasis in general, including telomere
maintenance, through emotion regulatory processes. Poor emotion regulation is associated
with autonomic arousal, cardiovascular disease, and early mortality (Gross; Gross & John;
John & Gross), and may be at the heart of personality traits such as hostility, pessimism, and
negative affectivity, traits associated with short telomeres.

2.2. Social Connections—Social support is stress reducing. Perceptions of high support
promote better self-regulation strategies in response to stress (Aspinwall & Taylor, 1997;
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Uchino & Birmingham, 2011) and buffers acute and chronic stress effects on health and
physiological markers (Cohen, 2004; Uchino, 2009; Uchino & Birmingham, 2011). It is thus
not surprising that social connections have been linked to cell aging as well. New work
suggests that unwed individuals (Mainous et al., 2011), those with ambivalent social ties
(Uchino et al., 2012), and older people with low support (Carroll, Diez Roux, Fitzpatrick, &
Seeman, 2012, March) have shorter telomeres. The extent to which social connections and
perceived support can modify the impact of stress on telomere length has not been explored.

In the lifespan model, the buffering role of social connection likely starts from birth.
Development of attachment style may have a long reach into future adult health. Secure
attachment can promote greater self regulation ability through life, and promotes the
perception of social support as an adult (Engels, Dekovic, & Meeus, 2002; Shaw, Krause,
Chatters, Connell, & Ingersoll-Dayton, 2004; Uchino, 2009). Early attachment and close
social connections may promote physiological resilience to cellular allostatic load (Parker,
Nelson, Epel, & Siegel, 2012), and need to be more thoroughly examined as moderators of
stress exposures in future studies. Recent studies suggestive of this indicate that maternal
warmth buffers the relationship between parental low SES markers on adulthood metabolic
syndrome (Miller et al., 2011) and inflammation (Chen, Miller, Kobor, & Cole, 2011).

2.3. Lifestyle—A large literature highlights the importance of lifestyle factors, such as
physical activity, diet, sleep, smoking, and alcohol, to health and disease development. A
combination of these healthy behaviors is associated with longer telomeres (Sun et al., in
press). Puterman and colleagues have programmatically examined the biological benefits of
maintaining a physically active lifestyle in chronically stressed individuals using an
interactive model, directly testing exercise as a modifier of stress exposure-physiology
relationships (Puterman, Adler, Matthews, & Epel, 2012; Puterman et al., 2010; Puterman et
al., 2011).

2.3.1.a. Physical activity and fitness: improve all aspects of health A potential mechanism
of fitness may be retarding cellular aging processes (He et al., 2012; Safdar et al., 2011;
Werner et al., 2009; Werner et al., 2008). Self-reported physical activity (Cherkas et al.,
2008; Ludlow et al., 2008; Werner et al., 2009; Zhu et al., 2011) and objective fitness
markers (Krauss et al., 2011; LaRocca, Seals, & Pierce, 2010) are related to longer
telomeres in healthy adolescents and adults, and in adults with coronary heart disease.

Telomerase is the major driver of lengthening telomeres and appears malleable in response
to aerobic exercise training. In a study that examined telomere length and telomerase
differences in athletes and sedentary non-athletes, telomerase levels were higher in athletes
(Werner et al., 2009). Mouse studies evidence that increased exercise over three weeks
activates telomerase in myocytes (heart muscle cells), endothelial cells (blood vessel cells),
and immune cells (Werner et al., 2009; Werner et al., 2008), providing the first experimental
support that aerobic exercise training alone can lead to almost immediate increases in
telomerase levels.

Our group (Puterman et al., 2012; Puterman et al., 2010; Puterman et al., 2011), as well as
others (Rethorst, Moynihan, Lyness, Heffner, & Chapman, 2011), have examined how
physical activity modifies the associations between chronic stress and biomarkers of health.
In one study, we demonstrated that exercising at levels recommended by the Center for
Disease Control and Prevention moderates the association between perceived stress and
telomere length. Specifically, perceived stress is associated with shorter telomere length
only in inactive individuals, whereas in those active, stress is unrelated to telomere length
(Puterman et al., 2010). Other studies have demonstrated the buffering potential of physical
activity in psychologically distressed individuals on inflammatory proteins (Rethorst et al.,
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2011), rumination-induced cortisol reactivity and recovery (Puterman et al., 2011), and
fasting glucose (Puterman et al., 2012). Yet, longitudinal studies and randomized clinical
trials are needed to disentangle these two related effects (exercise and stress) on biological
outcomes.

2.3.2.b. Body composition: indexed by adiposity, BMI, or waist circumference ratio, has
been associated with telomere length (Gardner et al., 2005; Lee, Martin, Firpo, & Demerath,
2011; Njajou et al., 2011; Valdes et al., 2005), with some exceptions (Diaz, Mainous,
Player, & Everett, 2010). In coronary artery disease patients, a high waist-to-hip ratio
significantly predicted telomere shortening over a five-year period (Farzaneh-Far, Lin, Epel,
Lapham, et al., 2010).

Food choices and eating behavior also shape telomere maintenance. A healthy diet is
associated with longer telomeres (Paul, 2011; Shiels et al., 2011), including diets lower in
processed meats (Nettleton, Diez-Roux, Jenny, Fitzpatrick, & Jacobs, 2008) and
polyunsaturated fats (Cassidy et al., 2010), and diets higher in dietary fiber (Cassidy et al.,
2010) and dietary and supplemental vitamin intake (Paul, 2011). In the Heart and Soul
Study, coronary artery disease patients with the lowest levels of baseline omega-3 fatty acids
(essential fatty acids only derived from foods) had the steepest decline in telomere length
over 5 years (Farzaneh-Far, Lin, Epel, Harris, et al., 2010). Excessive drive to eat and a poor
brake on the drive (dietary restraint) may also matter. No studies have examined how drive
to overeat is linked to telomere length. However, people who are preoccupied with trying to
eat less (high restraint) have both higher cortisol and shorter telomeres (Kiefer, Lin,
Blackburn, & Epel, 2008). Research describing relations between nutrition, metabolism, and
telomere length is now converging, and the field must progress to studies that allow greater
inference about causality, with randomized clinical trials.

2.3.3.c. Sleep and Substance Use: Whereas less work has focused on other health
behaviors, lower sleep duration and quality (Liang et al., 2011; Prather et al., 2011),
excessive alcohol consumption (Adams et al., 2007; Pavanello et al., 2011), and cigarette
smoking (Diez-Roux et al., 2009; Surtees et al., 2011a; Valdes et al., 2005) have been linked
to shorter telomeres. Understanding how these health behaviors mitigate or heighten the
effects of stress on telomere biology remains unexplored.

Section 3. Next steps in understanding how life experience impacts telomere biology
3.1. Understanding resiliency as a composite of psychological stress
resilience, social connections, and lifestyle—As we highlighted in this review, our
work and that of others, is increasing our understanding of how psychological stress
resilience, social connections, and lifestyle, in particular physical activity, may moderate
relationships between stressors and biological health (E. Chen, G. E. Miller, et al., 2011; E.
Chen, R. C. Strunk, et al., 2011; Miller et al., 2011; Puterman et al., 2012; Puterman et al.,
2010; Puterman et al., 2011; Rethorst et al., 2011). These factors are not merely covariates
or mediators of stress effects on biology, but are important to consider as modifiers of the
relationship between chronic stress and health.

One point of our thesis is that combining resiliency factors (rather than examining them in
isolation, as a single main effect, or a single moderator), may provide a deeper
understanding of resiliency to biological weathering and accelerated cellular aging in
chronically stressed individuals. And while stressors early in life may shape the expression
and development of these resiliency factors, leading to an interrelated cluster, recent work
suggests that psychosocial resources and physical activity together add up to multisystem
resiliency providing increasing buffering from life stress. For example, Agrigoroaei and
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Lachman (2011) demonstrated that a protective composite of control beliefs, physical
activity, and social connections buffered the negative effects of low education on 10 year
follow-up cognitive functioning These findings are compelling, and remain unexplored
relative to biological outcomes. While examining these contributing factors separately is
important as potential stress-buffers for delineating key biological mechanisms involved in
stress buffering, we contend that examining multisystem resiliency may prove to be of
greater clinical significance and utility. Theoretically and mathematically, composites of
resiliency factors should be a stronger indication of personal robustness than each factor
alone (Taylor & Seeman, 1999). Examining independent effects of buffering or moderating
variables is important to do; but because these psychosocial resources (Gallo, 2011; Low,
Matthews, Kuller, & Edmundowicz, 2011; Taylor, Kemeny, Reed, Bower, & Gruenewald,
2000) and lifestyle factors (Poortinga, 2007; Schuit, van Loon, Tijhuis, & Ocke, 2002)
naturally cluster, and because we tend to examine single factors, we don't fully understand
the magnitude or complexity of the interactive relationships when we neglect their combined
effects.

3.2. Cell aging trajectories over time—The natural tendency of telomere length is to
shorten over time (W. Chen et al., 2011). There is some evidence that short telomeres can
maintain or even lengthen over time (Epel et al., 2009; Farzaneh-Far, Lin, Epel, Lapham, et
al., 2010; Shalev et al., 2012; Willeit et al., 2010). Telomerase plays an essential role in
lengthening, and lifestyle intervention studies suggest that on average, we can increase the
total telomerase activity measured in circulating peripheral blood mononuclear cells
although it is unclear whether this is per cell or due to redistribution of cells (Jacobs et al.,
2011; Ornish et al., 2008). More rigorous lifestyle randomized clinical studies are necessary
to truly understand the impact of lifestyle on telomere cell aging over time, and the
protection lifestyle can provide chronically stressed individuals from accelerated telomere
attrition over time. We also need translational studies, from clinical to basic in this case,
using relevant animal models, to test causality and reveal mechanisms. In addition to clinical
trials and animal research, it is important to examine TL in cohort studies longitudinally, to
test some of the naturalistic trajectories and interactions with the behavioral, social, and
psychological factors that appear critical to TL maintenance. Together, with these types of
insights, we truly get closer to understanding the mechanisms through which chronic stress
gets under the skin.

Section 4. Summary
In the current review, we propose that there is an intricate relationship between life
experiences, psychosocial and behavioral factors, and telomere maintenance. Not all
individuals are at equal biological risk, as clearly genetics and environments modify these
associations (Shonkoff et al., 2009). We emphasize here multisystem resiliency, including
psychological stress resilience, social connections, and lifestyle factors, that cluster
together and shape the rate of biological aging when under high exposures to stress. We
apply this model to the specific outcome of cell aging, using examples from this burgeoning
literature, although the model may apply to other biological outcomes that reflect cumulative
adversity as well. There is now a `critical mass' of such findings, which might compel other
researchers to re-examine data on stress and arousal pathways, to see if relationships are
present or stronger only in those with lifestyles characterized by sedentariness, who have
poor social ties, and maladaptive emotion regulatory skills, or, when possible, the composite
of these factors.

Examining biological risk for disease across multiple physiological systems has advanced
our science in terms of understanding how experience gets under the skin to promote aging.
Here we suggest that examining multisystem resiliency is an equal and necessary part of the
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intricate dance between life experiences and biological aging. Early childhood adversity
without protective factors such as adaptive emotion regulation, role models and social
connections, or maintenance of a healthy lifestyle, might result in neural connectivity
primed for stress and impulsive behavior, and accelerated immune senescence in adulthood,
years earlier than expected. In contrast, early adversity might be overcome with the positive
feedback loops of the buffers, obscuring the impact of biological embedding. These are
empirical questions, comprising the next frontier for understanding and slowing the biology
of aging.
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Figure 1.
Lifespan model of stress-induced cell aging as moderated by multisystem resiliency
This lifespan model suggests two divergent trajectories, for simplicity of demonstration.
From conception to death, at every stage of development, we are exposed to ubiquitous
stressors. The cellular impact of these stressors is partly influenced by genetics/temperament
and the severity of the stressors but also by resiliency or vulnerability traits. These traits are
largely a result of fetal and childhood development (and genetic dispositions) but can also
develop at any time in life, and determine the extent to which cellular allostasis is impacted
by subsequent stress exposures. Right panel: Strong stress resiliency traits, social
connections, and adherence to healthy behaviors, often shaped by low to manageable stress
exposure and secure attachment, provide a positive mutually reinforcing cluster of resiliency
factors that shape enhanced cellular allostasis (efficient responding to environmental
demands) and good telomere maintenance. This leads to slower organismal aging and longer
health span. Left panel: In contrast, high vulnerability to stress reactivity, poor social
connections, and difficulty adhering to health behaviors constitute interrelated vulnerability
factors that promote cellular allostatic load early in life, and accelerated telomere shortening.
This profile can start at early in life, where early exposure to severe stress, and insecure
attachment, may promote neural networks primed for exaggerated vulnerability to stress
reactivity, limiting development of resiliency factors. This profile of impoverished resiliency
leads to rapid organismal aging and early frailty and disease.
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