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Abstract
Building on our recently introduced library-based Monte Carlo (LBMC) approach, we describe a
flexible protocol for mixed coarse-grained (CG)/all-atom (AA) simulation of proteins and ligands.
In the present implementation of LBMC, protein side chain configurations are pre-calculated and
stored in libraries, while bonded interactions along the backbone are treated explicitly. Because
the AA side chain coordinates are maintained at minimal run-time cost, arbitrary sites and
interaction terms can be turned on to create mixed-resolution models. For example, an AA region
of interest such as a binding site can be coupled to a CG model for the rest of the protein. We have
additionally developed a hybrid implementation of the generalized Born/surface area (GBSA)
implicit solvent model suitable for mixed-resolution models, which in turn was ported to a
graphics processing unit (GPU) for faster calculation. The new software was applied to study two
systems: (i) the behavior of spin labels on the B1 domain of protein G (GB1) and (ii) docking of
randomly initialized estradiol configurations to the ligand binding domain of the estrogen receptor
(ERα). The performance of the GPU version of the code was also benchmarked in a number of
additional systems.

1 Introduction
Biomolecular simulation attempts to model the configurational fluctuations in proteins and
other biomolecules, but the field remains largely trapped in two unsatisfactory extremes. On
the one hand, there are traditional all-atom simulations, which prioritize chemical accuracy
at the expense of sampling. Even though specialized modern hardware implementations can
generate multi-microsecond all-atom trajectories and beyond for small systems,1,2 many
proteins are up to an order of magnitude larger than the reported systems;3 furthermore,
protein motions can require seconds or even longer (e.g.,4,5). The other extreme is coarse-
grained models, which sacrifice chemical detail in exchange for much better sampling
(e.g.,6–11). Coarse models have fundamental limitations in explaining atomistic details of
biochemistry.

The middle ground between all-atom and coarse-grained modeling has not received nearly
as much attention, but important advances have been made. Several groups have performed
mixed-resolution simulations: a model which incorporates all-atom (AA) resolution in an
area of interest (e.g., binding site) but a coarse-grained (CG) representation elsewhere.12–16
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Also noteworthy are algorithmic efforts to use models at multiple resolutions to accelerate
sampling.17–22

Hybrid AA/CG models, we believe, can play a fundamental role in the study of
biomolecules by simulation. Hybrid models offer the possibility to perform high-quality
statistical sampling (un-like all-atom models) while maintaining atomistic chemical
accuracy in an important region such as a binding or active site (unlike coarse-grained
models). Hybrid models may thus provide an important class of computational tools to
complement existing AA and CG approaches. For instance, although not addressed in the
current report, hybrid models should be useful for investigating the often discussed idea that
large-scale motions can be allosterically coupled to functional atomistic motions,23–26 which
is not universally accepted.27 In more general terms, hybrid models offer a way to construct
models which are as detailed as possible but still permit good sampling. Modern statistical
analyses permit objective assessment of sampling quality.28–31

Regardless of the chemical accuracy of a model, it is important to perform the best
simulation possible given available computing resources. However, software for molecular
simulation may not be exploiting modern hardware capacity fully, even when graphics
processing units (GPUs) are used.1,32,33 That is, almost all simulation software is structured
in what can be termed a “calculation-intensive” way: at each time step, all required
interactions are calculated on the fly via repeated floating-point operations. In all-atom MD
calculations, this typically means that 99% of random-access memory (RAM) goes unused,
with a still larger percentage going unused for coarse-grained systems. Standard simulations
employ RAM on a Mbyte scale whereas commodity hardware typically offers GByte RAM
capacity.

To exploit modern GByte RAM capacity, our group has developed “library based”
approaches in which biomolecules are divided into molecular fragments (e.g., amino acids),
which are sampled in advance and stored in RAM.34–40 Because each fragment is
represented by configurations distributed according to the Boltzmann factor of a standard
all-atom force field, energy terms and subtle correlations internal to the fragment are
accounted for in advance. Library approaches can offer tremendous efficiency for small,
implicitly solvated peptides,35,38–40 and also great flexibility in constructing and sampling
protein models.34,36,37 Memory can also be exploited in molecular simulations by tabulating
interactions among molecules or fragments, which can speed up calculations and smooth
interactions.41

Here we report the application of memory-intensive library-based computing to construct
mixed-resolution models of proteins. The basic strategy is to exploit memory to track the
locations of all atoms at every time step, but save computation by including only a subset of
the interactions, e.g., atomistic terms within a binding site and alpha-carbons interactions
elsewhere in the present report. In the present implementation, all side chain atoms are
stored in libraries of atomistic configurations, while backbone atom coordinates are treated
as ordinary (continuous) degrees of freedom to permit trial moves that perturb the overall
fold of the protein only locally. Sampling is performed with the “library-based Monte Carlo”
(LBMC) algorithm34–37 which permits swapping of side chain configurations with library
configurations, as well as standard Monte Carlo moves such Cartesian displacements or
local rigid-body rotations. We adapt the standard generalized-Born surface-area (GBSA)
implicit solvent model42,43 to mixed-resolution models and port the GBSA calculation to
GPU to save computing time.

In this report, we describe initial applications of mixed-resolution LBMC in two fairly
different contexts: spin-label fluctuations and small-molecule docking. We first study a spin-
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labeled GB1 domain by simulating spin-label fluctuations and comparing them to
experimental measurements made using double electron electron resonance (DEER).44–50

We explore the ability of LBMC simulations to provide detailed ensembles to aid the
interpretation of DEER measurements. The spin labels and neighboring residues are
modeled atomistically with the remainder of the protein coarse-grained. Second, we assess
the potential of mixed-resolution LBMC for mutually adaptive docking — where both the
ligand and receptor flexibly adapt to one another. We docked allatom estradiol into the
ligand binding domain of the estrogen receptor (ERα) with the binding region modeled
atomistically. The LBMC simulations can recover from poor initial configurations including
significant steric clashes. Lastly, we report timing results on a range of systems to compare
the GPU and CPU implementations.

The remainder of the paper provides full details of our studies. Section 2 reviews the basics
of LBMC simulations and describes the current mixed-resolution and hybrid GBSA
approaches. Porting of the GBSA calculation to GPU is also described in Sec. 2. Systems
and results are given in Section 3, while Sec. 4 discusses limitations of the results along with
possible improvements and future applications.

2 Methods
Hybrid coarse/atomistic models are constructed conveniently using library-based Monte
Carlo (LBMC).34–37 In LBMC, molecules are divided into fragments for which pre-
calculated all-atom (AA) configurations are stored in “libraries”. Because the stored
configurations and the LBMC implementation provide correct atomistic geometry (e.g., via
bonded interactions), the software maintains the flexibility to include or exclude arbitrary
non-bonded interactions. In particular, it is straightforward to use a subset of atomic sites as
interaction centers for coarse-grained models.

We briefly review LBMC before describing the hybrid coarse/atomistic model.

2.1 Library-based Monte Carlo
Full details regarding the LBMC methodology have been previously published,34–37 so we
review only the essential aspects here. LBMC is a statistically rigorous method for using
libraries of pre-calculated molecular fragment configurations to generate ensembles of a full
molecule in conformance with the Boltzmann factor for the full forcefield. Not all degrees of
freedom need to be included in fragment libraries.34

In the present implementation, only side chain degrees of freedom (from the alpha carbon
and beyond) are included in libraries. More precisely, all internal coordinates of the side
chain are included in the libraries, although alpha-carbon Cartesian coordinates are not
included. Protein backbone coordinates are not included in libraries, but are tracked
explicitly. Thus, all protein atomic positions are tracked in the present LBMC
implementation, unlike in our previous LBMC protein simulations.34,36

An LBMC simulation divides the full set of atomic coordinates x into a number of non-
overlapping subsets for the libraries and for the explicit coordinates not contained in any
library:

(1)

where  is the set of atomic coordinates for fragment i and xexp is set of explicit
coordinates. In the present implementation, each side chain is characterized by its own
library, while backbone atoms are explicit. Side chain libraries are generated to be consistent
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with an atomistic force field (here, OPLSAA51–53 and the GBSA implicit solvent
model42,43), which amounts to the distribution

(2)

(3)

where  includes all OPLSAA interactions internal to the fragment, both bonded and

non-bonded terms, and  represents the GBSA solvent model defined below. The
total potential energy function for the system, Utot, is of the form

(4)

where Urest includes all other terms in the model, which are specified below. Regardless of
the choice for Urest, it can be shown34 that the Metropolis criterion for a trial swap move
with library i (i.e., exchanging the current configuration for fragment i with one from the
library) is given by

(5)

where xo and xn are the old and trial configurations for the full system and ΔUrest = Urest(xn)
– Urest(xo). The acceptance criterion does not depend on UAA

i since the correct distribution
of these terms has been built into the library. Note further that it is straightforward to derive
an acceptance criterion for the case when swap attempts are restricted to a subset of similar
“neighbor” configurations in the library.34

Our hybrid simulations employ other trial moves appropriate to our explicit treatment of
backbone atoms. A particularly important category of moves perturbs only local segments of
the protein, leaving the remainder unchanged.54 The local moves we employ are single-atom
translations and rigid-body rotations. Rigid-body rotations are used for both backbone
segments and for sidechains. We also employ “phi-psi” trial moves which twist backbone
dihedral angles.

Trial moves for a ligand include the single-atom displacements noted above and an
additional move combining center-of-mass translation and full-ligand rotation. For the
ligand translation/rotation, a randomly directed trial displacement is generated uniformly
with a maximum possible displacement here set equal to 0.1 Å, while uniformly random
rotations are generated using unit quaternions.

To summarize, the full set of trial moves employed in the present LBMC implementation is
as follows: side chain swaps, side chain rotations, single-atom displacements, rigid body
moves, phi-psi moves, and ligand moves (when a ligand is present). The fractions of move
types are given below when each system is described. Different choices made for the move-
type distribution principally reflect differences in degrees of freedom among systems (e.g.,
presence or absence of a ligand) rather than systematically optimized choices.

2.2 Hybrid coarse/atomistic models
Hybrid CG/AA models are straightforward to implement in LBMC because all atoms are
automatically tracked. CG or hybrid models implemented in LBMC appear to have certain
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intrinsic advantages. Consider the example of developing a model where side chains are
represented by one or a small number of interaction sites or “beads”. Because side chain
configurations are stored atomistically, CG sites can be placed with reference to the true
molecular geometry already accounted for in the library. Physically reasonable side chain
configurations are thus more likely.

Hybrid resolution models in this study are constructed by dividing a protein into two non-
overlapping regions: all-atom and coarse-grained (Figure 4). In other words, we divide the
full set of coordinates into parts so that x = (xAA;xCG). The subset xCG should be understood
to include all atoms in the CG region because atomistic interactions internal to side chains
are always retained via pre-calculated libraries in LBMC, as explained above. Note that each
of the coordinate sets xAA and xCG is further subdivided into fragments (amino acid
sidechains) and explicit atoms (protein backbone). Ligand atoms are always included in the
atomistic set xAA in this study.

In overview, standard OPLSAA interactions prevail in the AA region, simplified non-
bonded interactions are used in the CG region, and cross interactions between AA and CG
regions employ CG energetics. The choice of whether to use CG or AA cross interactions is
somewhat arbitrary and can be seen, in effect, merely as shifting the CG/AA boundary. In
this study, which presents our first use of a hybrid model, we employ a very simple CG
model, namely Go̵ or “structure based” interactions among alpha carbons. Nevertheless, the
backbone is represented in atomistic detail to improve the physical realism of tertiary
configurations. We use a version of the standard GBSA implicit solvent model42,43 which is
adapted to a hybrid context. All interactions are specified below.

In further detail, the total potential energy of the system is the sum of four terms:

(6)

where UAA, UCG and Ucross are the potential energies of the AA region, the CG region, and
of AA-CG interactions, respectively. The Usolv term models solvent effects and depends on
both AA and CG coordinates in our GBSA implementation as detailed below. (Note that the
U AA term here is not the simple sum of the UAA

i terms used previously in Eq. 3 for the
libraries.)

All-atom interactions are modeled using the standard OPLSAA forcefield51–53 in the present
implementation, so we have simply

(7)

The CG region is modeled by an atomistic backbone and Gō interactions among alpha-
carbons. We write

(8)

where  is the set of OPLSAA backbone interactions described below,  is the set

of backbone atoms in the CG region, UGo is the Gō potential specified below, and  is the

set of alpha carbons in the CG region. Backbone coordinates  are defined to include all
backbone Cartesian coordinates plus those internal coordinates which also depend on beta-
carbons: this permits establishing correct backbone geometry (e.g., Ramachandran
propensities). For pro-line residues all the atoms were explicitly modeled as part of the
backbone. To most faithfully reproduce atomistic backbone geometry, we employed

Mamonov et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2013 August 14.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(9)

Thus, the backbone is described by the same OPLS-AA bond, angle, and torsion energy
functions as the AA region. We also included van der Waals and Coulomb interactions
between atoms connected through three and four chemical bonds, i.e., bonded 1-4 and 1-5
interactions. Bonded 1-4 interactions are included because they were part of the OPLS-AA
torsion parameterization.51–53 Bonded 1-5 interactions were included to model the correct
local backbone geometry, particularly Ramachandran propensities.

2.3 GM potential
GM interactions are modeled with pairwise hard-core square-well potentials, which is
suitable for a Monte Carlo implementation. The Gō potential depends on a set of interaction
sites x = {r1;r2;…}, which are alpha carbon locations in the present study. It will prove
convenient to specify the potential in terms of the difference vectors rij = ri – rj. The
potential is given by

(10)

where  is the total energy for native contacts and  is the total energy for non-native
contacts. All residues that are separated by a distance less than a cutoff, Rcut, in a reference
experimental structure are given native interaction energies defined by a square well

(11)

Here rnat
ij indicates the distance between alpha-carbons of residues i and j in the reference

experimental structure. All residues that are separated by more than Rcut in the experimental
structure are given non-native interaction energies defined by

(12)

where ρi is the hard-core radius of residue i, defined at half the α-carbon distance to the
nearest non-covalently bonded residue in the experimental structure, and h determines the
strength of the repulsive interactions.

The present study uses parameters Rcut = 8:0 Å δ = 0:2, ε = 1:0. The value of ε is chosen to
be as small as possible but large enough so that a protein is stably folded at temperature T =
300K. For all studies, the parameter h = 0.3 was used, therefore the non-native go
interactions have a strength equal to 30% of the native go strength. We found this value to
be sufficiently strong for our studies.

Regarding reference structures for Gō interactions, for GB1 we used coordinates from
Protein Data Bank code 2GI9 and PDB code 1ERE for the estrogen receptor.
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Interactions between CG and AA regions are embodied in Ucross, which includes both Gō
interactions among alpha carbons and bonded interactions among backbone atoms. Thus,
atomistic backbone interactions are consistently used throughout a protein, but other cross-
boundary interactions are coarse-grained for simplicity. In terms of quantities defined above,
the cross-region interaction potential is thus given by:

(13)

where the arguments “xCG : xAA” are a shorthand to indicate interactions between all sites
where at least one site is from the CG region and at least one is from the AA region. The
subscripts of the arguments indicate whether backbone atoms or alpha carbons are being
considered. The function UOPLSAA

bb is defined in Eq. (9) and UGo is defined in Eq. (10).

2.4 GBSA solvent model
To model solvent effects, we employed the GBSA implicit approach42,43 but in a modified
form suitable for our hybrid scheme. The use of an implicit model of solvation is consistent
with our streamlined hybrid modeling. GBSA interactions occur only among atomistic sites,
but include the dielectric influence of CG residues in an averaged way, as detailed below.
Solvation effects among CG residues are assumed to be accounted for by Gō interactions,
which is convenient for this initial hybrid study, but one not required in our approach. Thus,
hydrophobic effects are included implicitly for both the AA and CG regions.

GBSA is applied to atoms in the AA region largely following the formalism of Qiu et al.43

except that modified Born radii α ^i (instead of αi) are used, as specified below. Thus, we
set

(14)

where UGB is the standard form43 and USA is given below. The modified Born radius for
atom i is calculated according to

(15)

where Rvdw;i is van der Waals radius of atom i, ϕ is the probe radius, P1, P2, P3, P4 are
scaling factors, CCF is a scaling function, while Vj is the volume of atom j. Eq. (15) would
be precisely the GBSA implementation of Qui et al.43 if  represented the distance between
atoms i and j instead of the modified definition given below. The first three terms in Eq. (15)
are considered constant because bonds and bond angles are relatively stiff and, therefore, do
not affect Born radii much. The last summation in Eq. (15) covers all atoms in the system (in
both AA and CG regions) not covalently bonded to atom i.

The non-polar surface-area term USA is the same as that used in the TINKER software55 and
is given by56,57

(16)

where σi is an empirical atomic solvation parameter for atom i. Default TINKER values for
the σi parameters were used.
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Our modification of the GBSA formalism consists solely of approximating inter-atomic
distances required for Eq. (15) between atoms in AA and CG regions by using the alpha-
carbon Cα of a CG residue for all atoms in the residue. Specifically, if dist(i; j) represents
the distance between atoms i and j, we set

(17)

where Cα( j) is the alpha carbon of the residue to which atom j belongs. Procedurally, in the
evaluation of Eq. (15), the function r ̂ permits the use of residue volumes which are the sum
of atomic volumes Vj in the residue. Physically, the r̂ function assumes that all CG atoms are
distant enough to be treated in an averaged way at the alpha-carbon distance. Such an
approximation is reasonable given the hybrid CG/AA modeling. In several test proteins, the
average deviation from the exact Born radii (based on exact atomic positions in the CG
region) was found to be less than 5% with a standard deviation of less than 10% in all cases
(data not shown). Recall from above that GBSA interactions do not occur among atoms in
the CG region.

2.5 GBSA implicit solvent calculation on the GPU
We used a GPU to accelerate the bottleneck calculation in our initial CPU-only
implementation of mixed-resolution LBMC. In the CPU implementation, benchmarks (data
not shown) indicated that the GBSA calculation, on average, accounted for 95% of the total
computational cost in a typical simulation. This is not surprising since a naive GBSA energy
calculation scales as N2 – that is, the GBSA energy contributions between all-pairs of atoms
needs to be calculated and summed. Note that due to the mixed-resolution nature of the
model however, “number of atoms” should be interpreted to be the sum of the number of
atoms in residues that are represented in full atomistic detail plus the number of residues
which are represented solely by their Cα atoms. In contrast, the cost of a typical Monte
Carlo move is much smaller and scales as m(N –m) where m is the number of atoms
involved in the move (e.g. m = 1 for single atom moves and N » m > 1 for group moves ).
For our set of moves, m « N, further underscoring the high cost of the GBSA calculation.

Therefore, in an effort to reduce the fraction of time spent on the GBSA calculation, a
simple GPU “port” was written for the GBSA energy function. That is, the GBSA energy is
evaluated on the GPU after every MC trial move. The high N2 “all-pairs” cost of the GBSA
calculation made it a very strong candidate for GPU calculation. The GPU port of the GBSA
energy calculation was implemented using the CUDA programming language on a nvidia
GTX 480 GPU. The general form of the N2 all-pairs calculation algorithm for CUDA has
been studied and optimized extensively, but in different contexts, for example in
gravitational n-body molecular dynamics simulations.58 Therefore, the algorithm we used is
identical to the one implemented in reference,58 where the pairwise GBSA energy terms in
our implementation is equivalent to the pairwise force terms used in the corresponding MD
simulation.

3 Systems and results
We use the flexibility of mixed-resolution LBMC to examine systems of different size and
complexity. At one extreme, we study two relatively simple models of a spin-labeled GB1
domain (B1 domain of protein G) to assess fluctuations in the labels. GB1 is a well-
characterized small protein that serves as a model system for structural studies.59–61 The
estrogen receptor, on the other hand, is a much larger protein of therapeutic importance that
exhibits more complex behavior.62–67 We employ LBMC to constuct a more complex AA/
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CG model which is used for docking the endogenous ligand, estradiol, with full ligand/
receptor flexibility. The initial results described below are promising in both cases.

3.1 Spin label fluctuations in the GB1 domain
Our study of the spin-labeled GB1 domain is motivated by the growing prevalence of double
electron-electron resonance (DEER) experiments44–49 for biomolecular systems. DEER
experiments report on ensemble properties of the system (e.g., the distribution of distances
between spin labels), without resolving individual structures of the underlying molecular
ensemble. Furthermore, the spin-label distance distribution is a convolution of backbone and
label fluctuations. Molecular simulations provide a natural way to model the molecular
details,68–78 but efforts have been hampered by the usual challenges of sampling and force
field accuracy. We therefore wish to investigate the potential of LBMC to mitigate sampling
issues. The ability to employ a pre-sampled library of spin-label configurations (the spin
label is a chemically extended cysteine side chain) makes LBMC a strong candidate for
sampling the fluctuations.

We investigated two relatively simple LBMC models of GB1. See Fig. 1. Consistent with
the experimental set-up,50 our model GB1 protein is spin-labeled using the
methanethiosulfonate spin label (MTSL) on two opposing sides of the protein and attached
to the backbone via disulphide bonds. Sites Asn 8 and Lys 28 were labeled. In the first
model (A), only the spin labels are modeled in full atomic detail and no interactions with
surrounding residues are present; the backbone is rigid. In the second model (B), ten
additional flexible residues surrounding each label were modeled atomistically with the
backbone again rigid, for a total of 20 AA residues plus the AA spin labels. The models are
shown in Fig. 1. Spin label parameters were taken from.76

LBMC simulations for both models were run for 108 Monte Carlo steps (MCS) where a
MCS is a move randomly selected from the set of possible moves. In particular, for models
A and B, the distribution of moves was simply 50% side chain swaps and 50% side chain
rotations. However, model B includes a larger set of flexible residues, as described above.

Each simulation was run for three days using GPU-accelerated LBMC, although good
sampling was obtained in a small fraction of the time as shown below. Compared to CPU-
only simulation, we observed a speed-up of a factor of ~ 5 for both models.

Distances between spin-label nitrogen atoms, rNN, were measured from LBMC trajectories
using the nitrogen positions of each respective spin label. The rNN distance trajectories are
shown in Fig. 2 a) and b) corresponding to models A and B, respectively. In both cases, the
systems exhibit good sampling in this coordinate space, as evidenced by numerous
fluctuations about a steady mean value. As seen in Fig. 3 reasonable statistics were obtained
within the first 10% of the simulations — representing only a few hours of wallclock time.

The comparison of the LBMC rNN distances with the distribution derived from DEER data
is reasonable. See Fig. 3. There is significant overlap between the experimental and
simulated distributions, with similar spreads in values. In both cases, the predicted most
probable distance is within 1.0 Å of the experimental value and also within the experimental
uncertainty of ±1.0Å. The LBMC distributions are bimodal, as compared to the unimodal
distribution calculated from DEER data, but the more flexible Model 2 is somewhat broader
and in better agreement. Some disagreement is to be expected due to the simplicity of our
models, force field inaccuracy and experimental error, but the key point is the encouraging
ability to sample a model well that can be systematically improved by better
parameterization and additional flexibility.
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We also examined the rotameric distribution of the spin labels, which are characterized by
five dihedral angles and hence reasonably complex. We compared our data with rotamers
recently characterized crystallographically for both the alpha helical spin label (residue 28)
and the beta-sheet spin label (residue 8).50 The simulated spin-label ensembles included all
rotamers found experimentally, judged by the criterion that the root-mean-square deviation
per dihedral was < 15°. The simulations also sampled numerous other rotamers, which
future work will attempt to validate.

3.2 Fully flexible docking in the estrogen receptor
Our goal in studying the estrogen receptor is to determine whether LBMC might be a useful
platform for fully flexible docking, in which both the ligand and receptor can adapt to one
another. Because we begin our simulations from poor initial configurations often with
significant steric overlaps, and because the receptor “relaxes” initially without the ligand
bound properly, our data is suggestive of the potential of LBMC in more practical cross-
docking cases.

We study the ligand binding domain of the α isoform of the estrogen receptor (ERα). See
Fig. 4. The starting structure consists of ERα with a bound estradiol molecule (PDB ID:
1ERE). All residues within 5 Å of the ligand were represented in full atomistic detail,
resulting in a total of 764 atoms (representing 44 residues) and an additional 192 residues
represented only by their Cα positions.

The docking simulations employ a procedure that perturbs both the ligand pose and the
receptor. Each LBMC run starts with the receptor/ligand complex in the crystal structure.
The complex is simulated for 500 MC steps, at which point a perturbation is applied. The
perturbation we used is a rotation to a completely random new orientation, independendent
of the initial pose, which can lead to significant steric clashes and RMSD values (of the
ligand) exceeding 5 Å. The simulations were continued until a total of 104 MCS was
completed, requiring about five minutes of wall-clock time on a single CPU; a GPU was not
used for these calculations. Additionally, the distribution of LBMC trial moves for this
system is as follows: 10% side chain swaps, 10% side chain rotations, 10% single atom
moves, 20% rigid body moves, 20% phi-psi moves, and 30% ligand moves.

The receptor structure is fully flexible and the relatively plastic binding pocket can change
before or after the perturbation. More than 400 independent simulations were performed to
gather reliable statistics. Two sample trajectories are shown in Fig. 5.

The data were analyzed to determine the magnitude of perturbations from which LBMC
simulation could recover the crystal pose. See Fig. 6. Relaxation back to the initial pose was
deemed successful if the mean RMSD of the last 10 frames of each trajectory was within a
certain cutoff. We employed the all-atom RMSD of estradiol (only) compared to the 1ERE
crystal structure following alignment of the receptors. Fig. 6 shows that a large fraction of
trajectories with significant perturbations (and significant steric clashes) could recover the
crystal pose. The data show that docking success was relatively insensitive to the choice of
cutoff: values of rcut = 1:65Å and 1:36Å were used. These values were also validated using
independent, long LBMC runs to determine the range of bound-state fluctuations (data not
shown).

The results suggest that LBMC may prove a valuable tool for flexible docking. We
emphasize that, after the perturbation, the receptor structure remains flexible and will
change from the initial crystal configuration. In fact, most MC moves are applied to the
receptor (see Sec. 2). Thus, successful docking runs involve a mutual adaptation of the
perturbed ligand and receptor back to the crystal pose.

Mamonov et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2013 August 14.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



3.3 GPU Benchmarks & Precision
LBMC simulations were also performed on a number of additional systems in order to
obtain GPU benchmarks and confirm the reliability of the GPU port. The results of these
simulations are summarized in Table 1.

All reported overall speed-ups due to the GPU implementation are given with respect to the
CPU-only version of the code. In general, the overall speed-up of the simulation due to the
GPU port will depend on several factors – one of the most important being the system size.
Larger systems generally exhibit larger speed-ups, roughly to the point where all GPU
threads are saturated. For small enough systems, one should expect a speed decrease due to
the overhead associated with data transfer to and from the GPU, although such a regime was
not explored. The second important factor is the distribution of types of MC move being
performed during a simulation. Some MC moves are more expensive than others, so the way
they are distributed will also affect the observed speed-up. For a fully-atomistic simulation
consisting of ≈ 1800 atoms and a roughly uniform distribution of the MC moves described
above, the net speed up was determined to be 11.4. On the other hand, for a fully atomistic
system containing 300 atoms (again with a roughly uniform distribution of MC moves), the
observed speed-up was a modest factor of 2. All systems we have examined thus far have
fallen between these two extremes, as can be seen in the table.

All GPU related functions use floating point precision in our implementation. We found this
to be more than sufficient for our purposes. In particular, direct comparisons of the GBSA
solvation energy obtained on the GPU vs. the CPU were possible for identical
configurations. In all the systems examined, the largest absolute deviation observed between
the CPU and GPU computed solvation energies was 0.21 kcal/mol, representing a percent
error of < 0.01%. In general however, the size of the discrepancy is directly related to the
system size, and in the systems examined in this study, absolute deviations were typically
much less than 0.1 kcal/mol.

4 Discussion
On the whole, the results of our study suggest LBMC provides an effective platform for
mixed-resolution modeling of proteins. The basic goal, at least for the systems examined,
has been met: to provide a reasonable balance between model accuracy and sampling power
that typically is not available either from all-atom or coarse-grained simulations.
Nevertheless, our current implementation of LBMC has noteworthy limitations and room for
improvement.

4.1 Limitations
Several limitations of the present LBMC platform are notable and suggest improvements
discussed below. (i) Although we believe our implicit solvent model is a good match to the
mixed CG/AA model, no implicit solvent model can capture the specific hydrogen-bonding
properties of explicit water. (ii) In the current study, the boundary between CG and AA
regions does not prevent side chains at the boundary from occupying unphysical rotamers.
(iii) The current CG model is fairly primitive. Finally, (iv) the selection of MC trial moves
was not optimized for the mixed-resolution model. Remediation of each of these issues, to
an extent, may be quite feasible as described below.

4.2 Future model improvements
Improved treatment of solvent—Our solvent modeling could be improved in two ways:
by changing the implicit solvent calculation or by including explicit solvent. GBSA is a
well-tested implicit approach, but it is costly and not ideally suited to MC. Approximate
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treatments optimized for MC may provide performance enhancements.79 The inclusion of
some explicit solvent is fully compatible with LBMC, but may require pre-sampled water
clusters or a grand-canonical treatment80,81 to limit the size of the solvent region and still
allow protein fluctuations.

Improved CG/AA boundary—Technical complications at the boundary between model
types are familiar from mixed quantum mechanical/molecular mechanical models.82 In our
case, it should be possible to prevent unphysical rotameric side chain conformations at the
boundary by a straight-forward modification to our current implementation. To ensure the
boundary residues remain in reasonable rotamers, those side chains can simply be “frozen”
— that is, no library-swap trial moves will be attempted. Neighboring AA residues will
continue to interact atomistically with the initial rotamers.

Better CG Models—Improving CG interactions through better models is perhaps the most
obvious single improvement to make. The simple alpha-carbon-based CG model used here
does not represent a limitation of the LBMC protocol, but rather of our initial
implementation. Although the mixed AA/CG models rely primarily on the AA region to
embody necessary specific interactions, the AA region remains allosterically coupled to the
CG region throughout our LBMC simulations. Hence, a systematically parameterized CG
model10,11 should only improve the LBMC approach without significantly increasing cost.
We began to experiment with better side chain interactions in a previous study37 but a more
systematic treatment remains to be performed. Of note, a memory-intensive and tunable
tabulation strategy appears to be naturally suited to LBMC.41 A high-quality CG model may
enable the use of a smaller AA region.

MC “timescale” issues—The mixture of trial moves described above was developed on
an ad hoc basis. One potentially important physical issue not addressed is the differing
timescales expected for slow and fast motions. Generally, the atomistic region will exhibit
motions much faster than the CG region, suggesting that trial moves in the CG region could
be much less frequent. Systematically adjusting MC trial moves will be an important avenue
for exploration.

4.3 Possible future applications
We foresee a number of ligand-binding applications as suggested by the initial study of the
estrogen receptor. While LBMC may prove too expensive for extreme high-throughput
screening (> 105 compounds), the data above suggest that it may be useful for screening
hundreds or thousands of compounds. Our docking trajectories (Fig. 5) suggest that
considerably less simulation time per trial could be used.

Beyond docking, mixed-resolution LBMC may be useful for studying allosteric systems and
for estimating binding free energies. For allostery, a protein could be examined with and
without a ligand to compare fluctuations. The binding and unbinding processes could also be
examined in conjunction with a path-sampling method such as “weighted ensemble”.83,84 A
true affinity ΔGbind

0 could be calculated using LBMC models with standard free energy
methods.85

The ability to tune the resolution of a model within the current LBMC protocol could make
it useful for mixed-resolution sampling approaches.17–19 Such approaches typically require
the construction of a ladder of models of gradually varying resolution, which has been
difficult to achieve in a way that employs true coarse-grained models — i.e., potentials that
are both smooth and inexpensive per energy call.
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LBMC also appears to have significant potential for future studies of spin-labeled systems.
The software can focus computational effort on the spin labels and nearby residues while
maintaining flexibility in, and allosteric coupling to, the remainder of the protein.

5 Summary and Conclusions
We describe initial simulations performed with mixed-resolution models implemented in the
context of library-based Monte Carlo (LBMC). LBMC, which uses pre-calculated all-atom
(AA) libraries of molecular fragments (side chains in this report), is a natural platform for
constructing mixed resolution models. Library configurations ensure correct internal
geometry while permitting a subset of sites to be used for effective coarse-grained (CG)
models. GPU computing was also used to speed the calculations. We studied and
benchmarked a number of mixed CG/AA protein models, focusing on a spin-labeled GB1
domain and docking/binding to the estrogen receptor. The data suggest that LBMC is a
promising platform for mixed-resolution modeling and that such models could be an
important bridge between AA and CG models, providing localized accuracy comparable to
AA models with sampling speed comparable to CG models. Nevertheless, key
improvements outlined above remain to be implemented.
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Figure 1.
Two mixed-resolution LBMC models for the spin-labeled GB1 system. Model A includes
only motion of the all-atom spin label, while model B further includes 20 additional all-atom
side chains.
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Figure 2.
The rNN distance trajectory as obtained from model A (a) and model B (b) plotted vs. MC
step, where rNN denotes the distance between spin-label nitrogen atoms.
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Figure 3.
The corresponding probability distributions obtained from the rNN distance trajectories in
model A (a) and model B (b) compared with the experimental spin-label distance
distribution (green). Black curves denote the probability distributions using the entire length
of the simulation whereas the dashed red curves represent the first 10% of the simulation.
Convergence occurs within a few hours of runtime in each simulation.
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Figure 4.
A mixed-resolution model of the ligand binding domain of the estrogen receptor (ERα).
Residues within 5 of the binding pocket have been represented atomistically (blue). The
atomistic region contains 764 atoms. The remainder of the protein is modeled with Gō
interactions (Sec. 2). The estradiol molecule (orange), is also represented atomistically.
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Figure 5.
Two representative trajectories from the estradiol/ERα docking simulations. The vertical
axis shows the all-atom RMSD of estradiol relative to the 1ERE crystal structure after the
receptors have been aligned. The top curve (dashed) is a trajectory where the ligand was not
able to dock successfully after the perturbation. The bottom curve (solid) shows a trajectory
that successfully returns to the crystal structure pose starting from a perturbation of similar
magnitude.
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Figure 6.
Docking statistics for a range of perturbation magnitudes. The histogram shows the fraction
of structures that were docked successfully for a range of initial RMSD values of estradiol
compared to the crystal structure. Two criteria were used to determine the success or failure
of docking runs (see text): rcut = 1:65Å (black) rcut = 1:36Å (gray).
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Table 1

The net speed-up of LBMC using GPU calculation of the GBSA solvent energy calculation. Speed-up was
measured relative to a single-threaded CPU implementation. For all systems benchmarked below, an equal
distribution of trial moves was used unless otherwise specified in the text.

System PDB code No. atoms in
atomistic residues

No. coarse-grained
residues Speed-up (GPU/CPU)

GGBP 2HPH 1237 226 14.5

ERα 1ERE 764 192 13.7

DFHR 1RX5 238 144 10.1

CaM 1CFD 264 132 9.6

GB1 2GI9 370 36 6.0
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