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ABSTRACT

Motivation: RNA-Seq uses the high-throughput sequencing technol-

ogy to identify and quantify transcriptome at an unprecedented high

resolution and low cost. However, RNA-Seq reads are usually not

uniformly distributed and biases in RNA-Seq data post great chal-

lenges in many applications including transcriptome assembly and

the expression level estimation of genes or isoforms. Much effort

has been made in the literature to calibrate the expression level esti-

mation from biased RNA-Seq data, but the effect of biases on tran-

scriptome assembly remains largely unexplored.

Results: Here, we propose a statistical framework for both transcrip-

tome assembly and isoform expression level estimation from biased

RNA-Seq data. Using a quasi-multinomial distribution model, our

method is able to capture various types of RNA-Seq biases, including

positional, sequencing and mappability biases. Our experimental

results on simulated and real RNA-Seq datasets exhibit interesting

effects of RNA-Seq biases on both transcriptome assembly and

isoform expression level estimation. The advantage of our method is

clearly shown in the experimental analysis by its high sensitivity and

precision in transcriptome assembly and the high concordance of its

estimated expression levels with quantitative reverse transcription–

polymerase chain reaction data.
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1 INTRODUCTION

RNA-Seq, or deep sequencing of RNAs, takes the advantage of
recent high-throughput sequencing methods to detect and quan-

tify transcriptomes (Mortazavi et al., 2008). The RNA-Seq tech-

nology is becoming a standard and fundamental protocol in

transcriptomic research and has successfully been applied to

study different organisms, diseases and cancers. Various
bioinformatics algorithms and tools have been developed for

RNA-Seq data analysis, including read mapping and junction

discovery (Au et al., 2010; Trapnell et al., 2009), the expression

level estimation of genes/isoforms and differential expression

analysis (Langmead et al., 2010; Mortazavi et al., 2008),

transcriptome assembly from mapped reads (e.g. Feng et al.,

2010; Guttman et al., 2010; Li et al., 2011a, b; Trapnell

et al., 2010) or de novo assembly (e.g. Birol et al., 2009;
Grabherr et al., 2011; Peng et al., 2011), etc. Despite the success

of these RNA-Seq applications, many challenges remain in the
analysis of RNA-Seq data, one of which comes from the under-

standing and handling of biases in RNA-Seq data.
The term ‘bias’ refers to the non-random, non-uniform distri-

bution of the sequenced fragments (or ‘reads’) across the
involved isoforms [or messenger RNA (mRNA) transcripts] in

an RNA-Seq experiment. Both positional (Dohm et al., 2008;

Mortazavi et al., 2008) and sequencing biases (Hansen et al.,
2010; Li et al., 2010b) are routinely observed in RNA-Seq

experiments. Positional bias is the non-uniform distribution of
reads over different positions of a transcript, while sequencing

bias refers to the distribution of reads related to the sequence

content and priming method (Li et al., 2010b). Since many
next-generation sequencing applications (including RNA-Seq)

require the mapping of reads to the reference genome, the mapp-
ability bias is also an important source of biases in RNA-Seq and

ChIP-Seq (Rozowsky et al., 2009; Schwartz et al., 2011). The

mappability bias arises when read counts are biased due to
read mapping. For example, some reads may not be mapped

due to sequencing errors and some applications discard reads
mapped to the repeat regions of the reference genome; the num-

bers of reads are thus under-counted for these regions. Also,

incorrect read mapping leads to incorrect read counts for regions
where the involved reads are mapped to.

Biases in RNA-Seq data may cause inaccurate expression level
estimation of genes (or isoforms), where most bias correction

methods try to overcome. For example, positional biases are
handled by learning non-uniform read distributions from given

RNA-Seq reads or modeling the RNA degradation (Wan et al.,

2012; Wu et al., 2011). In Srivastava and Chen (2010), a general-
ized Poisson (GP) model is used to calculate the expression levels

of genes affected mainly by sequencing biases. Other approaches
include checking the repeat regions of the reference genome to

handle mappability biases (Lee et al., 2010; Richard et al., 2010),

modeling the dependency between neighboring positions to cor-
rect sequencing biases (Li et al., 2010b) or a combination of

several strategies (Roberts et al., 2011). However, some methods
can handle only one specific type of biases (e.g. Richard et al.,

2010; Wu et al., 2011) or correct biases only at the gene level

(Srivastava and Chen, 2010). Other more general methods use
sophisticated probabilistic generative models that require the

learning of a large number of parameters and thus have to*To whom correspondence should be addressed.
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make some simplifying assumptions to make the computation
tractable (Li et al., 2010b; Roberts et al., 2011).
Besides expression level estimation, the RNA-Seq biases also

have significant effects on transcriptome assembly. For example,
RNA-Seq biases may generate ‘gap regions’ on the reference

genome where no mapped reads are observed. Because of these

gaps, two broken transcripts may be assembled instead of one
complete transcript. Also, incorrectly mapped reads may lead to

incorrect transcript assemblies. As far as we know, most work in
the literature concerning RNA-Seq biases deal with correcting

gene (or isoform) expression level estimation, and the effects of
biases on the transcriptome assembly remain largely unexplored.

In this article, we propose a statistical framework based on the
quasi-multinomial distribution model (Consul and Jain, 1973;

Consul and Mittal, 1977) to capture the above-mentioned
RNA-Seq biases, including positional, sequencing and mappabil-

ity biases. The framework allows us to develop an expectation–
maximization (EM) algorithm (Dempster et al., 1977; Nicolae

et al., 2010) for both transcriptome assembly and isoform abun-
dance level estimation from biased RNA-Seq data. Compared

with other algorithms in the literature that use sophisticated
probabilistic generative models to handle biases, our EM algo-

rithm uses a single parameter to capture the property of
RNA-Seq biases of different types. Utilizing the isoform enumer-

ation algorithm of IsoLasso (Li et al., 2011b), the EM algorithm
assembles isoforms and estimates their abundance levels at the

same time. Moreover, both principles of prediction accuracy and

interpretation (or ‘sparsity’) considered in Li et al. (2011b) are
achieved in the assembly.
The statistical framework and the EM algorithm are intro-

duced in Sections 2 and 3, we demonstrate the superior perform-
ance of our EM algorithm compared with other algorithms in

the literature through simulated and real RNA-Seq experiments

and analyze the effects of RNA-Seq biases on both transcrip-
tome assembly and isoform abundance level estimation. Due to

the page limit, we defer some figures and technical derivations to
the Supplementary Materials.

2 METHODS

2.1 The quasi-multinomial model for isoform abundance

level estimation

Consider a gene G consisting of M exons with length l1, . . . , lM (or more

generally, the so-called ‘expressed segments’ as defined in Feng et al.

(2010), each of which is a contiguous region of the reference genome

not separated by any exon–intron boundary). If G induces N isoforms

(denoted as T ¼ ft1, . . . , tNg), then these isoforms can be represented as

an N�M binary matrix A ¼ fai, jg, where ai, j ¼ 1 if isoform ti includes

exon (or expressed segment) j, and 0 otherwise. Let Xj be the random

variable of the read counts falling into exon j. Under the assumption that

a read r is sampled uniformly from an isoform (the ‘Poisson assumption’),

Xj follows a Poisson distribution with parameter �j proportional to

the length of exon j and the total abundance level of all isoforms con-

taining exon j (Jiang and Wong, 2009). The abundance level is usually

measured by RPKM (Mortazavi et al., 2008) or FPKM (Trapnell et al.,

2010) and can be estimated by maximizing the joint probability of obser-

ving x1, . . . ,xM reads in M exons, as proposed in Jiang and Wong

(2009).

In the following, we develop a quasi-multinomial model (Consul and

Mittal, 1977) to capture biases in RNA-Seq data. Consider a single-end

(or paired-end) read rj of length L that is mapped to exon j of length lj
from gene G. Denote �i ¼ PðtiÞ as the prior probability that read rj comes

from ti with the constraint
PN

i¼1 �i ¼ 1. We may think of the process of

sampling rj as follows: one of the isoforms ti is first randomly selected

with probability �i and then a read rj belonging to exon j is sampled from

ti with probability Pðrjjt
iÞ. To model positional (and other) biases, the

probability Pðrjjt
iÞ can be defined as a distribution fðki, jÞ depending on

the location ki, j of rj in ti. Note that if f is the uniform distribution, then

Pðrjjt
iÞ ¼

ai, jðlj � Lþ 1Þ

Li � Lþ 1
; ð1Þ

where Li is the length of ti. fðki, jÞ can also be an exponential function to

model the RNA degradation process which plays an important role in the

formation of the positional bias (Wan et al., 2012).

Several strategies can be used to construct a non-uniform distribution f.

For example, a non-uniform positional distribution can be determined

empirically and incorporated into f (Wu et al., 2011). The ‘effective length’

of isoforms excluding repeat regions of the reference genome can be used

in Equation (1) to handle mappability biases (Richard et al., 2010).

The probability of observing read rj is thus

PðrjÞ ¼
XN
i¼1

Pðrjjt
iÞPðtiÞ ¼

XN
i¼1

�ifðki, jÞ; ð2Þ

and the joint probability of observing R reads mapped to gene G follows

a quasi-multinomial distribution:

PðRj�, �Þ ¼
R

x1, . . . , xM

� �
ð1þ R�Þ1�R

YM
j¼1

PðrjÞðPðrjÞ þ �xjÞ
xj�1; ð3Þ

where �4� 1=R is the bias parameter. The value of � indicates how read

counts differ from a multinomial distribution: if �40 then too many

reads are observed (called ‘over-dispersion’) and if �50 (called

‘under-dispersion’), fewer reads are observed.

Note that the GP distribution GPð�j, �Þ (Consul and Jain, 1973) is

used in Srivastava and Chen (2010) for modeling RNA-Seq biases,

where �1 � � � 1 is the parameter to account for the biases. The GP

model can also be used to estimate isoform expression levels. In fact,

Equation (3) can be approximated by a product of M GP distributions

(Consul and Mittal, 1977), and finding an optimal � would be equivalent

to finding an optimal � in the GP model (see Supplementary Materials).

However, the GP model uses only the information of read counts and it

does not consider the fact that a read may come from different isoforms

with different probabilities due to the sampling biases.

2.2 Transcriptome assembly

Transcriptome assembly (for a fixed gene) from mapped RNA-Seq reads

usually generates a set of candidate isoforms (i.e. the isoform matrix

A ¼ fai, jg), and then selects one or more of these candidates according

to several criteria such as prediction accuracy, interpretation and complete-

ness (Li et al., 2011b).

We use the candidate isoform enumeration algorithm introduced in

IsoLasso (Li et al., 2011b), which is proven to generate the same set of

candidate isoforms considered by Cufflinks (Trapnell et al., 2010). The

algorithm first enumerates all possible paths in the connectivity graph

(Guttman et al., 2010) constructed from the mapped reads. Then two

additional steps are applied to remove infeasible paths and non-maximal

paths.

IsoLasso uses the LASSO algorithm (Tibshirani, 1996) to select can-

didate isoforms and estimate their abundance levels. However, the

LASSO algorithm is solved by constrained quadratic programming

which could be very slow if many constraints are imposed. Moreover,
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it is unable to handle biases in RNA-Seq data. We will develop an EM

algorithm (called component elimination EM) in the next section based on

the above quasi-multinomial model to select candidate isoforms and

estimate their abundance levels from biased RNA-Seq data. Note that

EM algorithms are routinely used in RNA-Seq data analysis (e.g. Nicolae

et al., 2010; Trapnell et al., 2010), and several EM algorithms have been

proposed in the literature to use information beyond read counts to im-

prove the accuracy of isoform abundance level estimation. For example,

multi-reads (i.e. reads mapped to several locations of the reference

genome) are utilized to estimate the abundance levels of isoforms

(Li et al., 2010a) or homologous genes (Pas� aniuc et al., 2010). Also, the

distribution of the fragment length in paired-end RNA-Seq data can be

incorporated into the EM algorithms to address the effect of fragment

selection in RNA-Seq library preparation (Roberts et al., 2011; Salzman

et al., 2011; Trapnell et al., 2010). Such information can be readily

incorporated to our quasi-multinomial model and the EM algorithm

(see Supplementary Materials).

2.3 Component elimination EM

It is commonly believed that a gene usually has only a few highly

expressed isoforms (Li et al., 2011b). For this reason, ensuring a good

interpretation (or ‘sparsity’) (Hastie et al., 2009) is critical in transcrip-

tome assembly. Generally speaking, in the context of EM algorithm, a

good interpretation is to keep the number of components (i.e. the number

of models whose probabilities are to be determined in the algorithm) as

small as possible (Figueiredo and Jain, 2002). However, if the number of

isoforms (or components) is large, the standard EM algorithm may

deliver results that lack sparsity, i.e. solutions with many components

having small non-negative probabilities instead of solutions with only a

few components having large probabilities while the others having zero

probability (Figueiredo and Jain, 2002). To achieve sparsity, a negative

Dirichlet prior distribution of � is added multiplicatively to the

quasi-multinomial likelihood function in Equation (3) (Bicego et al.,

2007; Figueiredo and Jain, 2002):

Pð�Þ /
YN
i¼1

���i , �40; ð4Þ

where � is the negative Dirichlet parameter specified by the user. The

negative Dirichlet distribution assigns a higher probability if one or more

of the values of �i are closer to 0 (see Supplementary Fig. S1). Hence,

solutions with fewer non-zero values of �i are preferred.

The likelihood function is the product of Equations (3) and (4)

(see Supplementary Materials). To obtain a maximum a posteriori esti-

mation of �i and � using EM, a latent binary variable zi, j is introduced to

indicate whether a read rj comes from isoform ti, zi, j ¼ 1 if rj comes from

isoform ti and 0 otherwise. In the E step of the EM algorithm, the ex-

pectation of zi, j, �i, j, is evaluated using the current values of �i, � and

Pðrjjt
iÞ as follows:

�i, j ¼
�iðPðrjjt

iÞ þ xj�ÞPN
k¼1 �kPðrkjt

iÞ þ xj�
: ð5Þ

And in the M step, by maximizing the joint likelihood function with

respect to the constraint
PN

i¼1 �i ¼ 1, �i is updated as (see

Supplementary Materials for a detailed derivation):

�i ¼
Ni � �PN
k¼1 Nk� �

; ð6Þ

where Ni ¼
PM

j¼1 xj�i, j.

The maximum likelihood estimation (MLE) value of � can be obtained

using the following equation:

XM
j¼1

XN
i¼1

�i, jxjðxj � 1Þ

PðrjjtiÞ þ xj�
¼

RðR� 1Þ

1þ R�
: ð7Þ

We use the Newton–Raphson method (Ypma, 1995) to calculate the value

of � (see Supplementary Materials for details).

A component elimination EM algorithm (Bicego et al., 2007; Figueiredo

and Jain, 2002) can be used to find solutions that favor a small number of

highly expressed isoforms. Compared with the standard EM algorithm, it

applies an additional component elimination step to exclude components

with small probabilities. This method is able to determine the number of

components automatically without having to invoke any model selection

criteria such as the Bayesian Inference Criteria,MinimumMessage Length

principle, etc. During the EM iterations, a component elimination step

eliminates isoform ti if Ni5� (or set �i ¼ 0). Here, the negative Dirichlet

parameter � can be interpreted as the minimum number of reads required

for each isoform to proceed to the next iteration. In this component

elimination EM, �i is fixed to 0 once its value reaches50 in Equation (6).

However, in some component elimination steps (especially at the

beginning of the EM iterations), there could be too many (or all) com-

ponents satisfying the elimination condition Ni5�. This is because the

probability of each component is initialized randomly, which could be

very small even for highly expressed isoforms if the number of compo-

nents is large. Deleting all of them in one iteration may lead to a poor

choice of components. As a result, we eliminate only one component with

the minimum value of Ni � � in each iteration.

The parameter � controls the number of isoforms to be output.

The higher the value of � is, the fewer isoforms are reported. Based

on our empirical experience from simulation tests (Section 3), we

set � ¼ max 10, 0:01Rf g for a gene with R mapped reads in our

experiments.

3 RESULTS

In this section, we test the algorithm on both simulated and real

RNA-Seq data and compare its performance with two
state-of-the-art algorithms for transcriptome assembly and iso-

form abundance level estimation that do not consider RNA-Seq
biases [i.e. IsoLasso (Li et al., 2011b) and Cufflinks (Trapnell

et al., 2010)], and a recent extension of Cufflinks that takes
biases into account (Roberts et al., 2011). For convenience, we
will refer to the last algorithm simply as ‘Cufflinks-bias’. To our

best knowledge, Cufflinks-bias is the only algorithm in the lit-
erature that considers RNA-Seq biases and is capable of assem-

bling transcriptome. Note that although SLIDE (Li et al., 2011a)
was published after IsoLasso and Cufflinks, we do not compare
with it here because it was only tested on Drosophila melanoga-

ster transcriptome in Li et al. (2011a). During the comparison
study, the parameters of all programs are tuned empirically to

achieve their best performance.

3.1 Simulation

We simulate biased RNA-Seq reads as follows. Known isoforms
from the mus musculus (mm9) annotation database are first

downloaded from the UCSC genome browser (Fujita et al.,
2011). Each isoform is then assigned a random abundance

value that follows approximately a log-normal distribution
(Alter et al., 2008; Bengtsson et al., 2005). Afterwards, different
numbers of reads are generated from each isoform according to

the assigned abundance. Sequencing errors and different pos-
itional biases are then simulated to generate the actual reads.

During the simulation, three different positional profiles are
provided to determine the position of each read, and 80 million
single-end reads are generated for each profile, including the uni-

form positional model (‘Uniform’ for short) and two Illumina
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positional bias models (Supplementary Fig. S2A). Both Illumina

models reflect positional biases caused by different fragmenta-

tion methods, including complementary DNA (cDNA) fragmen-

tation (or ‘cDNAf’) and RNA fragmentation (or ‘RNAf’)

(Howard and Heber, 2010; Wang et al., 2009; Wu et al., 2011).

We use the sequencing error profile in Dohm et al. (2008) to

simulate sequencing errors (Supplementary Fig. S2B), where

higher sequencing error is observed for positions at the end

of a read.
The positional bias [i.e. fðki, jÞ in Equation (2)] is learned from

RNA-Seq data using a method similar to Wu et al. (2011).

Basically, RNA-Seq reads are first mapped to the RefSeq tran-

script sequences using Bowtie (Langmead et al., 2009), where all

possible mappings for each read are reported. A RefSeq sequence

is selected to estimate its positional bias if the reads mapped to

the sequence satisfy two conditions: (i) they cannot be mapped to

other RefSeq sequences and (ii) the number of the reads is

41000. The average of the positional biases in these sequences

(�2000) is then fed to the CEM algorithm. Supplementary

Figure S3 demonstrates that the estimated positional biases

from different datasets are close to the real positional biases.

3.1.1 Performance on transcriptome assembly The perform-

ance of transcriptome assembly results is evaluated in terms of

both sensitivity and precision, by comparing the predicted sets of

isoforms with UCSC mm9 known isoforms (Hsu et al., 2006). A

predicted isoform is matched to a known one if both isoforms

include the same number of exons and their exon–intron bound-

aries are identical. If K of M predicted isoforms are matched to

K out of N known isoforms, then the sensitivity and precision

are defined as K/M [or TP=ðTPþ FNÞ] and K/N [or

TP=ðTPþ FPÞ], respectively.
To compare the effects of both positional and mappability

biases on transcriptome assembly, we plot the sensitivity–preci-

sion curves in Figure 1 for four programs: CEM, IsoLasso (Li

et al., 2011b), Cufflinks (Trapnell et al., 2010) and Cufflinks-bias

(Roberts et al., 2011). Here, four different RNA-Seq reads are

provided to the programs: reads with Uniform/cDNAf pos-

itional distributions and reads with/without mapping.

For ‘reads without mapping’ (or ‘w/o mapping’ for short), the

exact locations of the reads on the reference genome are pro-

vided; otherwise (‘reads with mapping’ or ‘mapping’ for short),

simulated reads are mapped to the reference genome using

Tophat (Trapnell et al., 2009) to obtain the locations of the

reads. Compared with the ‘reads with mapping’ case, ‘reads with-

out mapping’ serves as an ideal dataset which is not affected by

mappability biases. Various values of sensitivity and precision in

the curve are obtained by setting different abundance cutoffs

used in the output of the programs. That is, for each cutoff,

only predicted isoforms with estimated abundance levels higher

than the cutoff value are output.

Figure 1A compares the curves of both CEM and Cufflinks-

bias. When provided with the correct mapping information (i.e.

w/o mapping), CEM and Cufflinks-bias both achieve high sen-

sitivity (40:45) and precision (40:6). A high abundance cutoff

allows only a small number of highly expressed isoforms to be

retained. These isoforms are more likely to be correct (than those

lowly expressed ones), which leads to low sensitivity and high

precision for both CEM and Cufflinks-bias (except in groups 3

and 4 due to reasons explained below). Compared with

Cufflinks-bias, CEM achieves a better precision for the same

level of sensitivity. CEM also performs best among all four al-

gorithms, as seen in Figure 1B which shows the curves of all four

algorithms using the cDNAf positional bias profile and ‘reads

with mapping’ option.
Both non-uniform positional biases and inaccurate read map-

ping have negative impact on transcriptome assembly. Compared

with non-uniform positional bias dataset, higher sensitivity and

precision values are observed for data generated using the Uni-

form positional profile. Interestingly, positional biases mainly

affect the inference of lowly and moderately expressed isoforms.

This could be seen from the diminishing differences between the

sensitivity–precision curves for data with the Uniform and

cDNAf positional biases in Figure 1A (see groups 1 and 2 and

the CEM curves in groups 3 and 4). The reason is that lowly

expressed isoforms are less likely to have sufficient read coverage

to be assembled completely, since their junctions are less likely to

be fully covered by reads (Feng et al., 2010).
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Fig. 1. Sensitivity–precision curves of both CEM and Cufflinks-bias on four datasets (A) and a comparison of four different algorithms (B). 80 million

75bp single-end RNA-Seq reads are generated, and Figure 1A shows the effect of both positional and mappability biases on CEM and Cufflinks-bias.

Here, ‘w/o mapping’ means that correct read locations are provided and ‘mapping’ uses Tophat to map reads to the reference genome. Figure 1B

compares four different programs for transcriptome assembly, including CEM, IsoLasso, Cufflinks and Cufflinks-bias. Here, the curves for CEM and

Cufflinks-bias correspond to those in group 4 of Figure A
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The values of sensitivity and precision decrease drastically

when correct mapping is not guaranteed. Figure 1A shows a

10–15% decrease in sensitivity and a420% decrease in precision

in groups 3 and 4 compared with groups 1 and 2. Both repeat

sequences of the genome and sequencing errors account for the

decreased sensitivity and precision. This shows that mappability

biases have a more profound effect on transcriptome assembly

than positional biases. Different from positional biases, mapp-

ability biases affect both highly and lowly expressed isoforms.
Interestingly, Cufflinks-bias shows reduced performance in

both sensitivity and precision in groups 3 and 4 on ‘reads with

mapping’ for high abundance cutoffs. By inspecting the isoforms

predicted by Cufflinks-bias carefully, we found that Cufflinks-

bias is highly sensitive to mapping errors. For example, when the

abundance cutoff is set as high as 500 FPKM, �60% of the

isoforms predicted by Cufflinks-bias come from regions with in-

correctly mapped reads. Reads from the junctions of isoforms

located in other regions could be mapped to these regions by

TopHat because these junctions share identical sequences with

those regions. As a result, the predicted isoforms are short com-

pared with the read length, and Cufflinks-bias would greatly

over-estimate their abundance levels, since it uses a fragment

length model that assumes short fragments (short DNA se-

quences after fragmentation and before sequencing) are rare

(Trapnell et al., 2010). A specific example is given in Supplemen-

tary Figure S4 and some statistics are given in Supplementary

Figure S5. A similar observation of this behavior of Cufflinks is

also reported recently in Li and Dewey (2011). CEM is less af-

fected by this issue because it makes no assumption about the

distribution of fragment lengths.

3.1.2 Longer read length improves both sensitivity and

precision To investigate the effect of read length on transcrip-
tome assembly, we generate 80 million simulated reads of various

read lengths (from 32 to 200bp) using the uniform positional

model (i.e. without positional biases) and compare both values

of sensitivity and precision of two programs (CEM and

Cufflinks, especially on read with mapping) in Figure 2. Here,

no abundance cutoff is applied to the results of either program.

Figure 2 shows that both sensitivity (A) and precision (B) in-

crease as longer reads are used for assembly. However, such im-

provements tend to slow down as reads get longer. For example,

when read length increases from 32 to 50 bp, the sensitivity of

CEM (on reads with mapping) increases from 0.35 to 0.41. This

increase is much more drastic than the improvement obtained

when increasing read length from 100 to 200bp, which is only

around 0.03. Similar trends can be observed for Cufflinks

(on reads with mapping) and for the value of precision.
Longer reads incur less ambiguity in mapping to the reference

genome. For example, among all 32 bp reads mapped to the

reference genome, 25% can be mapped to multiple locations.

But for the 200bp reads, only 12% are mapped to more than

one location in the reference genome. However, in spite of the

reduced ambiguity in mapping when longer reads are used, the

differences in sensitivity and precision of both programs on reads

with/without mapping are consistently observed in Figure 2

(which is always �0.1). This shows that even for long reads,

the mappability bias still affects the accuracy of transcriptome

assembly.

3.1.3 Performance in abundance level estimation We assemble
transcripts from simulated RNA-Seq reads using the above al-

gorithms, and then match their results to known mouse isoforms.

For the matched isoforms, we compare the logarithms of the

predicted and true abundance levels in Table 1 using coefficient

of determination (i.e. the R2-value).
As shown in the table, all algorithms achieve high precision in

abundance estimation on both Uniform and RNAf datasets

(R240:8), but CEM outperforms the other three methods on

all datasets. The cDNAf positional profile contains more biases

compared with the RNAf profile, since it has a more extreme

head and tail positional distribution as shown in Supplementary

Figure S2A. Not surprisingly, lower R2-value is obtained for all

methods on data with cDNAf positional biases. On the other

hand, Cufflinks-bias demonstrates a clear advantage over

Cufflinks on data with cDNAf positional biases.

3.2 Real data analysis

3.2.1 Correlation with microarray quality control data We
compare the abundance estimations for the microarray quality

control (MAQC) (MAQC Consortium, 2006) Human Brain

Reference (HBR) sample between Taqman quantitative reverse

transcription–polymerase chain reaction (qRT–PCR) measure-

ments and RNA-Seq analysis. The RNA-Seq reads and

qRT–PCR measurements are downloaded from the NCBI

SRA archive (accession number SRA012427) and Gene Expres-

sion Omnibus (accession number GSE5350), respectively. Since

Taqman qRT–PCR only measures the expression levels of genes,

we only compare gene abundance estimations between RNA-Seq

and qRT–PCR. In RNA-Seq, the expression level of a gene is

obtained by summing up the abundance levels of all isoforms

induced by the gene.
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Fig. 2. The effect of read length on both sensitivity (A) and precision (B)

Table 1. Comparison of the R2-values of the four algorithms in isoform

abundance estimation on data with various positional biases

Dataseta CEM IsoLasso Cufflinks Cufflinks-bias

Uniform 0.90 0.87 0.86 0.89

RNAf 0.87 0.80 0.83 0.84

cDNAf 0.84 0.72 0.76 0.82

aAll R2 measurements have p-value5 2.2e-16 using Pearson’s correlation test.
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Among 1097 Taqman qRT–PCR measurements of genes, 289
and 276 are correctly assembled by CEM and Cufflinks-bias,
respectively, as shown in Figure 3A. The intersection of both

programs covers 251 transcripts (485%), showing a high con-
sistency between both methods. CEM recovers slightly more (13)
transcripts than Cufflinks-bias. For the 38 and 25 transcripts

uniquely assembled by CEM and Cufflinks-bias, Figure 3B
plots the distribution of their qRT–PCR measurements. A few
highly expressed transcripts are correctly assembled by CEM but

not by Cufflinks-bias (for example, the isoforms of the AES gene
shown in Supplementary Fig. S6).
To compare the abundance estimations, we run the four algo-

rithms in two different ways. In the first case (the ‘de novo’
approach), the algorithms are invoked to assemble transcripts
and the results are matched against the known structures of

RefSeq transcripts corresponding to Taqman gene measure-
ments. (Note that here the term ‘de novo’ has a different meaning
than it does in ‘de novo assembly’.) The abundance levels are

compared with qRT–PCR measurements only for the matched
genes. In the second case (the ‘refonly’ approach), the structures
of all Taqman transcripts are provided, and the estimated abun-

dance levels of all genes are compared with qRT–PCR
measurements.
Figure 4 shows the R2-values between RNA-Seq and Taqman

qRT–PCR measurements for both ‘de novo’ and ‘refonly’
approaches. We first compare the R2-values of the top 100 pre-
dicted highly expressed genes in Figure 4A (note that different

numbers of genes between 50 and 200 give similar results). For
these genes, the ‘de novo’ approach shows higher values of R2

than the ‘refonly’ approach. And among the four compared

methods, CEM achieves the highest correlation.
However, when comparing RNA-Seq-based abundance esti-

mations of all genes (instead of only highly expressed genes),

Cufflinks-bias shows a clear improvement over Cufflinks as
shown in Figure 4B and achieves the highest correlation
among all four algorithms. This increased performance of

Cufflinks-bias suggests that Cufflinks-bias corrects biases the
best in the estimation of the abundance levels of moderately
and lowly expressed genes, while CEM algorithm works the

best for highly expressed genes. This is consistent with the
observed advantage of CEM in the simulated data experiments.
The expression levels of genes also have an impact on the

performance of the ‘de novo’ and ‘refonly’ approaches. For the
100 genes with the highest predicted expression levels, the R2-
values from the ‘de novo’ approach are higher than those ob-

tained by ‘refonly’ approach where known transcript structures
are provided. However, for all genes, a large improvement in R2-
values is observed for the ‘refonly’ approach over the ‘de novo’

approach as shown in Figure 4B. This suggests that knowing
correct transcript structures is crucial for estimating the expres-
sion levels of lowly and moderately expressed genes, since it

might be difficult for the algorithms to correctly assemble the
isoforms of these genes from RNA-Seq reads.
We also analyze the regression line between RNA-Seq and

Taqman qRT–PCR measurements in Table 2. The regression

slope reflects the fold change between the expression levels of
genes, where the ideal slope of 1.0 indicates that two methods
are perfectly consistent in detecting fold changes between genes.

Table 2 shows that although the R2-values are relatively low for

the top 100 genes using the ‘refonly’ approach, CEM, IsoLasso
and Cufflinks are able to detect fold changes quite accurately

(slope 40:9). On the other hand, Cufflinks-bias is unable to
match the performance on these highly expressed genes

(slope¼ 0.75) for some reason (e.g. perhaps due to incorrect cor-

rection of their expression levels). Table 2 also shows that
providing transcript structures helps the fold change detection

(the slopes in the refonly columns are40.75 while the slopes in
the ‘de novo’ columns are only between 0.4 and 0.5).

Supplementary Figure S7 compares the running times of all
four algorithms for processing 80 M paired-end reads on a Linux

machine with 16 G memory and 2.6GHz 8-core CPU. Since
both Cufflinks and Cufflinks-bias provide the option of multi-

threading (‘-p’ option), we also include the results of both
Cufflinks and Cufflinks-bias using four threads. We can see

that for both Cufflinks and Cufflinks-bias, using multiple threads

greatly reduces the processing time needed: only about
one-fourth of the time is required for four threads compared

with one thread. This is partly because transcriptome assembly
can be trivially performed in parallel, allowing reads mapped to

different genes to be processed simultaneously. If only a single

thread is used, the speeds of all algorithms are approximately at
the same level, with CEM slightly leading the edge.

3.2.2 Exon inclusion ratio analysis The exon inclusion ratio

(or ‘percent spliced in’ value, �) measures the percentage of
mRNA transcripts that include an exon to the total amount of

transcripts that include or exclude that exon. The �-value is

A B

Fig. 3. Comparison of the transcriptome assembly results between CEM

and Cufflinks-bias. (A) The assembled transcripts by CEM and

Cufflinks-bias match 289 and 276 of the 1097 Taqman qRT–PCR tran-

scripts, respectively. (B) The distributions of the qRT–PCR measure-

ments of the 38 and 25 transcripts uniquely assembled by CEM and

Cufflinks

A B

Fig. 4. The R2-values between RNA-Seq and Taqman qRT–PCR meas-

urements of the MAQC HBR sample for the top 100 predicted highly

expressed genes (A) and for all genes (B)
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frequently used to study the mechanism of alternative splicing

(Pan et al., 2004; Wang et al., 2008; Xiao et al., 2009). In Xiao

et al. (2009), both qRT–PCR and mRNA-Seq experiments are

performed to measure the �-values for human HEK 293T cells,

including hnRNP H knockdown (or ‘KD’) cells and correspond-

ing control (or ‘CTRL’) cells. RNA-Seq reads are first mapped

to the human reference genome, and the �-value is calculated as

� ¼ dI=ðdI þ dEÞ, where dI (inclusion density) is defined as the

read density of the test exon and its two flanking junctions and

dE (exclusion density) is the read density of the exclusion junction

formed by the two flanking exons (see Supplementary Fig. S8).

However, this method (called the ‘direct’ method) is sensitive to

the value of dE, which may not be accurate if few reads are

mapped to the exclusion junction. Alternatively, the �-value

can be calculated based on the abundance levels of two isoforms

including and excluding the test exon: � ¼ qI=ðqI þ qEÞ, where qI
and qE are the estimated abundance levels of two isoforms

including and excluding the test exon, respectively, as illustrated

in Supplementary Figure S8. We calculate the �-values using

both the ‘direct’ method and the above method based on isoform

abundance levels estimated by our CEM algorithm and correlate

the results with the �-values calculated by qRT–PCR experi-

ments in Table 3.
Table 3 shows a significantly improved correlation using the

isoform abundance method based on CEM over the ‘direct’

method. The CEM algorithm achieves higher R2-values on

both CTRL and KD datasets, and the regression slope (40:9)
on the KD dataset shows that the �-values obtained by CEM

are quite consistent with the qRT–PCR data.

4 CONCLUSIONS AND DISCUSSION

Biases in RNA-Seq data are difficult to deal with because they

affect both transcriptome assembly and isoform abundance

estimation. The current literature focuses on correcting biases
for isoform abundance estimation, but little has been done for

transcriptome assembly. In this article, we present a quasi-
multinomial distribution-based statistical framework and

component elimination EM algorithm for both transcriptome
assembly and isoform abundance estimation from biased

RNA-Seq data. Biases are captured by a single parameter � in
the quasi-multinomial model, and the component elimination

EM algorithm ensures that good interpretation (or sparsity) is
achieved in transcriptome assembly.

Both simulated and real data experiments reveal interesting
effects of different biases. Although the precision and sensitivity

of a method in transcriptome assembly are affected by both pos-
itional and mappability biases, the recovery of isoforms/genes

with different abundance levels are affected differently. While
mappability biases reduce the sensitivity and precision for all

genes, positional biases have a negative effect mainly on lowly
or moderately expressed genes. A comparison between our CEM

algorithm and the other methods in the literature shows that for
highly expressed isoforms, our algorithm achieves higher sensi-

tivity and precision in assembly. Also, our algorithm shows a

higher accuracy in isoform abundance estimation (validated by
MAQC gene expression level measurements).
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