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ABSTRACT

Motivation: It becomes widely accepted that human cancer is a dis-

ease involving dynamic changes in the genome and that the missense

mutations constitute the bulk of human genetic variations. A multitude

of computational algorithms, especially the machine learning-based

ones, has consequently been proposed to distinguish missense

changes that contribute to the cancer progression (‘driver’ mutation)

from those that do not (‘passenger’ mutation). However, the existing

methods have multifaceted shortcomings, in the sense that they either

adopt incomplete feature space or depend on protein structural data-

bases which are usually far from integrated.

Results: In this article, we investigated multiple aspects of a missense

mutation and identified a novel feature space that well distinguishes

cancer-associated driver mutations from passenger ones. An index

(DX score) was proposed to evaluate the discriminating capability of

each feature, and a subset of these features which ranks top was

selected to build the SVM classifier. Cross-validation showed that

the classifier trained on our selected features significantly outperforms

the existing ones both in precision and robustness. We applied our

method to several datasets of missense mutations culled from pub-

lished database and literature and obtained more reasonable results

than previous studies.

Availability: The software is available online at http://www.methodis

thealth.com/software and https://sites.google.com/site/driver

mutationidentification/.

Contact: xzhou@tmhs.org

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Human malignancies are believed to arise as a result of somatic

alterations within the cancer genome that leads to activation of
oncogenes or inactivation of tumor suppressor genes (Hanahan

and Weinberg, 2000; Stratton et al., 2009; Weinberg, 2002, 2006;
Weir et al., 2004). With the recent considerable improvement in

genome analysis technologies, diverse alterations including point
mutations, copy number increases and decreases, loss of allelic

heterozygosity and chromosome translocations in the genome

of a particular cancer type have gradually been specified.

Among these, the missense mutations (a point mutation that

results in a codon coding for a different amino acid) attract

increasing attentions in that they are recurrently identified

within the cancer genomes (Jones et al., 2008; Krawczak et al.,

2000; Parsons et al., 2008; Sjoblom et al., 2006). Although up to

hundreds of missense mutations were characterized in the

genome of some cancer type [e.g. brain, breast, colorectal and

pancreatic cancers, see http://www.sanger.ac.uk/genetics/CGP/

cosmic/ and also (Jones et al., 2008)], only a small fraction of

these mutations are suggested to directly contribute to the neo-

plastic process (‘driver’ mutation), whereas the remaining bulk

consists of neutral polymorphisms which are believed to have no

direct effect on the tumorigenesis (‘passenger’ mutation)

(Stratton et al., 2009; Wood et al., 2007).

Differentiating driver mutation and passenger mutations is

critical for understanding the molecular mechanisms responsible

for cancer progression and also provides prognostic and diag-

nostic markers as well as targets for therapeutic interventions.

However, the ability to distinguish these drivers is seriously lim-

ited by in vivo functional analyses alone. Therefore, this situation

has provoked a bunch of mathematical methods that assist in

prioritizing potential drivers for further analysis during the past

years. These methods can be mainly categorized into two classes,

the statistical method and the machine learning-based method.

The former is largely based on the assumption that mutations

that occur more frequently are more likely to be a driver muta-

tion [e.g. (Greenman et al., 2006; Parmigiani et al., 2007)], which

turned out to be somehow unreasonable according to recent re-

ports, for example, Wood et al. (2007) pointed that it is the ‘hills’

(infrequently mutant genes) not the ‘mountains’ (frequently

mutant genes) that dominate the cancer genome landscape.

For the machine learning-based method, on the other hand, re-

searchers typically extract features related to the missense muta-

tions, train a classifier using label-clear mutations and perform

classifications for the unknowns on the trained classifier.

Through this routine, several groups have reported their results

so far (Carter et al., 2009; Krishnan andWesthead, 2003; Ng and

Henikoff, 2001; Ng and Henikoff, 2002; Sjoblom et al., 2006)

and claimed their performance is better than others based on

different classifier tools, training data and, particularly, on dif-

ferent feature spaces.
The existing machine learning-based methods have shortcom-

ings on several aspects, especially on the feature space they

employ to construct the classifier. For example, in Carter et al.*To whom correspondence should be addressed.
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(2009) and Krishnan and Westhead (2003), features relating to
physicochemical properties of amino acids and structural traits
of proteins are predicted using computational software. The re-

liability as well as significance of such kind of features are dubi-
ous (Krishnan and Westhead, 2003). Others may avoid the
predicted attributes by relying on the published databases that

contain structural traits or annotations they need (Jones et al.,
2008; Sunyaev et al., 2001). The applicability of these models is
limited because of the probable incompleteness of their cited

databases. The remaining work avoids the above flaws at the
price of missing some important properties of the mutation
under investigation—they set up too simple rules for discrimin-

ation (Kaminker et al., 2007; Ng and Henikoff, 2001). The short-
comings mentioned here make questionable the reliability and/or
robustness of prediction of the existing methods.
In this article, we comprehensively investigated the properties

relating to a particular missense mutation. Besides the previously
used features such as physicochemical changes upon the amino
acid substitution and binary categorical features extracted from

public annotated databases, we for the first time systematically
studied all kinds of substitution scoring matrix (SSM) features
and protein sequence-specific (PSS) features to evaluate their

potential power of discrimination (see Section 2). A SSM (or
mutation matrix) is typically a 20� 20 numerical matrix with
each element representing the similarity and distance of a par-

ticular pair of amino acids with respect to a particular physico-
chemical or biochemical property (Kawashima et al., 2008),
making it potentially a candidate feature for discrimination.

Some researchers (e.g. Carter et al., 2009; Jones et al., 2008)
have incorporated several well-known substitution matrices
such as PAM (Dayhoff et al., 1978), BLOSUM (Henikoff and

Henikoff, 1992) and Grantham Score (Grantham, 1974) as pre-
dictive features, but is much incomplete. We explored many such
substitution scoring matrices as candidate features and assessed

their distinguishing capability. The PSS features were widely
overlooked in the previous related studies. Instead, they use
structural or functional properties of proteins predicted by com-

putational tools. This scheme is of weak reliability since it easily
loses some essential information. To compensate this potential
information loss, we parse the protein sequences directly, by

which we obtained the sequence-specific features (k-gram fea-
tures, see Section 2).
To summarize, we proposed a set of 126 candidate predictive

descriptors for training a mutation classifier, most of which have
not been used previously. These features describe a missense mu-
tation from multiple angles including amino acid residues, pro-

tein sequence profiles and functional annotations culled from
open databases (details in Section 2). A novel scoring system
(DX score) was employed to evaluate the performance of each

feature in distinguishing the positive from the negative.
Numerical experiments showed that support vector machine
(SVM) classifier trained by the top-ranked 70 features got high-

est cross-validation (CV) accuracy and outperformed the previ-
ous methods both in precision and robustness. Among the
top-ranked 70 features, our proposed SSM and PSS features,

which were largely neglected or simply overlooked in the previ-
ous studies, take an overwhelming part (see Section 3). This
clearly demonstrates the significance of them as predictive fea-

tures of a mutation classifier. We tested the classifier on several

distinct datasets collected from published databases along with

literature and got more sensible predictions than before.

Particularly, these novel predictive features are expected to sig-

nificantly improve the current in silico studies of driver mutation

identification.

2 MATERIALS AND METHODS

2.1 The whole framework and involved datasets

This work could be divided into two phases: the training phase and clas-

sification (test) phase. As illustrated in Figure 1, the left box shows the

flowchart of the training phase, i.e. data preparation, feature extraction

along with selection and classifier training. Similarly, the right box illus-

trates the procedure of the classification phase, which includes data col-

lection, feature extraction and mutation classification. The GeneCards is

employed here to help map the referred gene name/ID to the protein

dataset (identified as Uniprot_sprot.dat in UniProtKB) in order to get

their sequences. The detail of configuration and implementation of the

proposed system will be elucidated in the following sections and the

Supplementary Materials.

In the training phase, neutral polymorphisms (passenger mutations)

were obtained by picking out the records with type ‘Polymorphism’ in the

file humsavar.txt (release 56.8) from the Swiss-Prot Variant Pages (http://

www.uniprot.org/docs/humsavar); cancer-associated variants (putative

driver mutations) were collected from the COSMIC site (v42, see

http://www.sanger.ac.uk/genetics/CGP/cosmic/) by extracting those with

explicit missense mutation profile, i.e. the information of the wildtype

residue, the mutant residue and the mutant position is complete; protein

sequences of human being were extracted from the file uniprot_sprot.dat

on the Swiss-Prot downloading site (http://www.uniprot.org/downloads).

In the test phase, the passenger mutations were collected from the

latest Swiss-Prot variant page (humsavar.txt, release January 25, 2012)

by removing those that appeared in the training data; the driver muta-

tions consisting of four disjointed sets (EGFR, TP53, cosmic2þ and

breast/colon, see Section 3) were searched from a recent breast and colo-

rectal tumor resequencing study (Wood et al., 2007) and the latest version

of COSMIC (v57) held out of the training data. We constructed receiver

operating characteristic (ROC) and precision–recall (PR) curves (preci-

sion–recall, see Section 2.4) for EGFR, TP53 and cosmic2þ datasets

while conducted functional analysis for the breast/colon data, since the

Fig. 1. Schematic framework for identifying driver mutations in a cancer

genome
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first three have been well studied experimentally whereas the last one

lacks substantial experimental validation.

Since the original paper provided the related gene names without cor-

responding protein sequences, we hence resorted to a particular database

GeneCards which refers to an online database that assists in identifying a

gene with multiple nicknames [see http://www.genecards.org/ and (Lancet

et al., 2008)]. By this method most of the referred mutations with only

gene name/ID offered can be mapped onto the annotated database (the

category of human in Uniprot_sprot.dat) and consequently the related

protein sequences can be obtained.

2.2 Feature extraction

We investigated a total of 126 attributes that describe a mutation on

several aspects. These attributes can be categorized into four groups: 15

of them are related to amino acid residue changes (AARCs), such as

change in mass, surface, volume, polarity and charge; 51 features are

extracted from dozens of published substitution scoring matrices; 31 of

them are PSS features and 29 annotated features are counted from public

databases. A summary of all the 126 features is shown in Supplementary

Table S1.

2.2.1 AARC features The 20 amino acids that compose proteins

have a varied spectrum of physicochemical properties, such as molecular

mass, polarity, hydrophobicity and solvent accessibility. Therefore, a resi-

due change may affect a protein function on many aspects, e.g. its struc-

tural stability and solvent accessibility. We summarized these properties

based on two online amino acid information repositories from BMRB

(http://www.bmrb.wisc.edu/referenc/aa_tables.html) and JenaLib (http://

www.imb-jena.de/IMAGE_AA.html) and got a total of 14 features, as

listed in Supplementary Table S3. Variables such as acidicity, polarity,

hydrophobicity and charge are assigned a descriptive integer based on

their chemical properties. For example, the amino acids {C, F, I, L, M, V,

W} and {D, E, G, K, N, P, Q, R, S, T} are assigned a value of �1 or þ1

based on whether they are hydrophilic or hydrophobic, respectively;

whereas the remaining ones that are deemed neutral in hydrophobicity

are assigned a 0. The AARC feature for a missense mutation from residue

Ai!Aj is calculated as the difference of the two corresponding values in

this table.

2.2.2 SSM features A SSM (or simply a mutation matrix) is typ-

ically a 20� 20 numerical matrix with each element describing the rate at

which one residue in a sequence changes into other residue over time. It

works for cases where proteins are evolutionarily related. It has originally

been designed as the basis for scoring schemes in the sequence alignment

and other types of comparative analysis. We employed these SSMs in our

tool under our assumption that the mutations between wild-type and

mutant proteins within the same cell follow processes similar to those

occurring during species evolution. The most commonly used substitution

matrices are the series proposed by Dayhoff et al. in the 1970s and

Henikoff et al. in the 1990s, respectively. Since the values in a substitution

matrix depict the similarity and distance of a particular pair of amino

acids with respect to a particular physicochemical or biochemical prop-

erty (Kawashima et al., 2008), it is a candidate predictive feature for

differentiation. We are not the first to come up with this idea, the authors

in Carter et al. (2009) and Jones et al. (2008) have incorporated several

well-known substitution matrices such as PAM (Dayhoff et al., 1978),

BLOSUM (Henikoff and Henikoff, 1992) and Grantham Score

(Grantham, 1974) as predictive features. In this article, we explored a

great many scoring matrices collected from the AAIndex database

(Kawashima et al., 2008). The hitherto latest version of AAIndex includes

a total of 94 amino acid substitution matrices, of which we picked 51

most relevant ones (see Supplementary Table S1). The SSM feature for a

missense mutation Ai!Aj is assigned as the element (i, j) of the asso-

ciated mutation matrix.

2.2.3 PSS features We adopted two methods to investigate the

whole sequence profile of a given protein: the 2-gram encoding method

and 6-letter exchange group encoding method based on Wu et al. (1992,

1995); see also Wang et al. (2001). The 2-gram encoding method extracts

various patterns of two consecutive amino acid residues in a protein se-

quence and count the number of occurrences of the extracted residue

pairs. One can define k-gram (k43) features similarly. We limited our

study to k¼ 2, following the report of Wang et al. showing satisfactory

results using 2-gram features alone. Alternatively, a protein sequence can

be represented by a 6-letter exchange group {e1, e2, e3, e4, e5, e6} with

e12{D,E,N,Q}, e22{H,R,K}, e32{C}, e42{S,T,P,A,G}, e52{M,I,L,V},

e62{F,Y,W}. Exchange groups represent conservative replacements

through evolution, with each group bearing similar chemical properties

(Supplementary Table S4, see also Dayhoff et al., 1978). The 6-letter

exchange group encoding method first represents a protein sequence by

the 6-letter exchange group and then encodes the 6-letter sequence by

repeating the 2-gram encoding scheme. There are 202 þ 62 ¼ 436 possible

2-grams in total, which is a huge feature space for most applications. We

follow the method as described in Wang et al. (2001) to select the 30 most

relevant features (2-grams) based on a DX score (detailed in next section).

To compensate the possible information loss due to ignoring the rest of

the 2-grams, we calculate a linear correlation coefficient (LCC) between

the values of the 436 2-grams with respect to the protein sequence

S and the mean value of the 436 2-grams in the positive training dataset

as [still following (Wang et al., 2001)]:

LCCðSÞ ¼

436
P436
j¼1

xj �xj �
P436
j¼1

xj
P436
j¼1

�xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
436

P436
j¼1

x2j � ð
P436
j¼1

xjÞ
2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
436

P436
j¼1

�xj
2
� ð
P436
j¼1

�xj Þ
2

s ,

where xj is the mean value of the j-th 2-grams, 1 � j � 436, in the positive

training dataset and xj is the feature value of the j-th 2-grams with respect

to the protein sequence S, defined as xj¼ cj/(len(S)� 1) in which cj and

len(S) are the number of the occurrence of the j-th 2-grams in the se-

quence S and the length of S, respectively. Note that in our study we

selected the 30 features only from the 400 2-grams but not from the

6-letter exchange group, since the latter is derived from PAM (Dayhoff

et al., 1978) and has been considered in the scoring matrix features al-

ready, as discussed above. However, we need the latter part to calculate

the LCC value. Finally, we got 31 PSS features in total.

2.2.4 Annotated features Following Jones et al. (2008), we ex-

tracted 29 features by retrieving several databases, including UniProt

KnowledgeBase, SwissProt variant page and COSMIC database. Note

that these features include 14 binary categorical features (features 98

through 111 in Supplementary Table S1) annotated in the ‘FT’

(Feature Table, see Supplementary Fig. S1) domain of the UniProt

KnowledgeBase, which means if the mutated gene in study is not included

in the database, these features are unavailable for the referring mutations.

For simplicity, we will next call these 14 features as additional features.

This situation largely restricted the applicability of the involved methods,

as mentioned above. We extracted these features for comparison, which

will be further discussed shortly.

2.3 Feature selection (DX score)

Feature selection is performed in order to remove the most irrelevant and

redundant features and ultimately and help improve the performance of

learning models. Different methods have been proposed to implement the

feature selection. Here we solve this problem based on the DX score as

shown above, where the author adopted it to pick out the most relevant

2-gram features (Wang et al., 2001). Intuitively, this DX score bears the

capability of assessing a feature’s discrimination power in general case.
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By the following definition (see Solovyev and Makarova, 1993), the DX

score can be considered as a type of signal-noise-ratio:

DX ¼
ðm1 �m0Þ

2

d21 þ d20
,

where m1 and d1 (m0 and d0, respectively) are the mean value and the

standard deviation of the feature in the positive (negative, respectively)

training dataset. Intuitively, the larger the DX score, the feature more

likely separates the positive from the negative. We further point out that

the DX score is equal to the feature score (scaled by a constant) given by

the feature selection tool fselect.py of LIBSVM. In addition, the feature

selection result obtained by DX score is comparable to the SVM-RFE

algorithm, but is superior to the SVM-RFE in computational complexity.

The detail concerning these issues is presented in the Supplementary

Materials.

2.4 Classification using SVM

SVM algorithm was proposed by Vapnik as an effective learning ap-

proach for solving two-class pattern recognition problems (Boser et al.,

1992; Cortes and Vapnik, 1995). SVM as a typical supervised machine

learning method is attractive because it is not only well founded theoret-

ically but also superior in practical applications. In most of the pattern

recognition areas, SVM performs substantially better than that of other

machine learning methods, including Neural Network and Decision Tree

classifier (You et al., 2010). In this study, we employed two SVM tools

LIBSVM (Chang and Lin, 2011) and SVMlight (Joachims, 1999) as clas-

sifiers, depending on specific purposes. The updated version of LIBSVM

can perform the CV automatically, while SVMlight calculates a continu-

ous value reflecting the probability of each classification, which facilitates

the ROC and PR analyses. The precision and recall statistics are

computed as: precision¼TP/(TPþFP) and recall¼TP/(TPþFN).

Furthermore, it is straightforward to build a classifier using these two

software since all we need to do is to choose a kernel function and to set

the related parameters, certainly an input file with standard SVM format

is also required. After various trials of different parameters for best per-

formance, we chose the radial basis function with parameter

gamma¼ 0.03 and other parameters remained default for both classifiers.

2.5 CV methods

Machine learning methods are generally evaluated by a statistical tech-

nique called CV. In n-fold CV, we first collected a training dataset with

equal number of both types (drivers and passengers) and then randomly

partitioned the dataset into n subsets of approximately equal size, with

each subset still containing an equal number of mutations of both types.

Finally, n� 1 such subsets are combined for training the classifier, which

is subsequently tested on the withheld data. This procedure is repeated

n times with each subset playing the role of the test subset once. The

prediction accuracy of n-fold CV is defined as the percentage of missense

mutations correctly classified in the test phrase, averaging on n times of

tests.

3 RESULTS

3.1 Optimization of the feature space

Preliminarily, we collected 29492 neutral polymorphisms pos-

sessing domain ‘Main gene name’ (to differ from those records

simply identified as ‘n.a.’) from the Swiss-Prot website and 4881

cancer-associated missense mutations with explicit mutation pro-

file from the 42nd version of COSMIC database (details in

Section 2). By removing polymorphisms whose associated gene

overlaps with records in the cancer-associated dataset, we got

23 956 polymorphisms. Using the GeneCards database, we

mapped most of the detected polymorphisms to the

UniProtKB database and finally extracted all the 126 features

for 23 888 polymorphisms and 4193 cancer-associated mutations,

respectively. In our configuration, cancer-associated mutations

are labeled positive and neutral polymorphisms negative. To re-

lieve the unbalance of the training data, we randomly chose 4193

polymorphisms from the whole 23 888 ones and constructed the

training dataset with the two sets of equal size (4193 positive and

4193 negative).
Then we calculated the DX score of each feature of the train-

ing data and ranked them from high to low. Following Krishnan

et al. (Krishnan and Westhead, 2003), we obtained the final fea-

ture space through the steps as follows: set up an empty feature

set first, features are then added sequentially (with DX score

from high to low) into the basic set to test their impact on the

prediction performance, based on 5-fold CV accuracy. This pro-

cedure is illustrated in Figure 2, from which it can be seen that

the highest accuracy was achieved by adopting the top-ranked 70

features. We also tried several different folds and kernel func-

tions to repeat this procedure and got very similar results

(Supplementary Fig. S2). The top-ranked 70 features together

with their DX scores are listed in Supplementary Table S2.

3.2 Performance of the features in discrimination

Jones et al. (2008) and Parsons et al. (2008) adopted the same 58

predictive features to analyze missense mutations of human pan-

creatic cancer and glioblastoma multiforme respectively, while

Carter et al. (2009) selected 49 from 90 candidate predictive fea-

tures to perform driver mutation prediction. The two feature

sets stand for the hitherto most comprehensive ones in the

existing driver mutation identification studies. The latter 49 fea-

tures largely overlapped with the former 58 ones, of which 41

features can be extracted (underlined ones in Supplementary

Table S1). The remaining features predicted by computational

algorithms are missed here because of software accessibility

issue. However, the extracted 41 features assumedly possess

the essential information contained in the 58 ones, since the pre-

dicted structural and functional impacts of the residue have al-

ready been implicitly included in the biochemical properties

of amino acids and the windows-based sequence composition

Fig. 2. Performance of 5-fold CV by adding features sequentially. The

highest prediction accuracy was achieved using the top-ranked 70 features

with 5-fold CV and RBF as kernel function
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features. In the present study, if there are no special instructions,

we compare two feature spaces, one composed of 41 features,

which we term ‘previous’, and our enlarged feature space, com-

posed of 70 features with feature selection, which we term

‘proposed’.

A summary of the feature selection result is presented in

Table 1, where ‘Hit’ refers to the number of previous features

ranking the top 70. It is apparent from Table 1 that the even-

tual feature set mainly consists of SSM and PSS features that

never or seldom used before, whereas only 12 out of the previ-

ously used 41 features were selected by the scoring (Fig. 3). This

implies many powerful discriminators were neglected in the pre-

vious work and on the other hand, the existing could not capture

the essential information of a missense and hence cannot serve as

effective discriminators.

To evaluate the performance of the selected features in discri-

minating between driver and passenger mutations, we performed

hierarchical clustering analysis to them. For clarity of illustra-

tion, we randomly extracted a subset of missense mutations of

each type from the original training data to do clustering ana-

lysis. Figure 4 [drawn by Cluster 3.0 (de Hoon et al., 2004) with

centroid linkage method] shows the effect of hierarchical cluster-

ing on 100 neutral polymorphisms plus 100 cancer-associated

missense mutations, represented by the above mentioned 70

features. The left patch mainly constitutes cancer-associated

mutations while the right patch is dominated by neutral poly-

morphisms. Apparently, the features which well separate the

mutations almost locate in the middle part, and they mainly

comprise SSM and protein position-specific features

(see Table 1).

3.3 Comparison of the prediction performance with

others’ work

A 5-fold CV experiment with carefully calibrated parameters was

performed on a large set of training data, which contained 4193

polymorphisms versus 4193 cancer-associated missense muta-

tions. Figure 5 shows the comparison of the prediction perform-

ance with previous work [referring to the 41 features proposed by

Carter et al. (2009), Jones et al. (2008) and Parsons et al. (2008)].

We have an overall 5-fold CV accuracy (Section 2) of up to

83.7%, which is better than or comparable to previous studies,

say Kaminker et al. (2007); Krishnan and Westhead (2003); Ng

and Henikoff (2001); and Yue and Moult (2006) report overall

error rate generally larger than 0.2. Other study which reports

higher accuracy than ours has applicability problem in some

cases. Specifically, the aforementioned 14 additional features

(7 of them were selected into the best 70 features, Table S1),

which were proposed by Jones et al. (2008), Parsons et al.

(2008) and Carter et al. (2009) individually, may be unavailable

for some referred mutations (see Section 2). To investigate the

role played by these additional features (14 and 7 features of

Fig. 3. DX scores of the top 70 features. Only 12 out of 41 features

proposed by Jones et al. ranked within the top 70. Among the 12 features

selected by the DX scoring system, 7 are additional features; see

Supplementary Table S1. This implies that a large part of the effective

features in the existing methods has applicability problem

Fig. 5. Comparison of prediction accuracy obtained by previous and our

proposed feature space. Shown is the average performance of 5-fold CVs.

The terms including and excluding refer to tests performed with and

without the additional features, respectively

Fig. 4. Hierarchical clustering analysis for a representative subset of mu-

tations of each type. Shown is the clustering result on 200 randomly

chosen training samples with equal size for each type. The rows corres-

pond to features and columns represent mutations to be clustered

Table 1. Summary of the feature selection result

AARC SSM PSS AF Total

Proptosed 15 51 31 29 126

Top 70 1 40 21 8 70

Previous 7 5 0 29 41

Hit 0 4 0 8 12

We proposed a total of 126 features belonging to four disjoint groups. 12 out of 41

previously used features ranked within the top 70.
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previous and our proposed feature space respectively) on the

classification effect, we performed CV (with same folds and par-

ameter settings) with and without them on the same training set.

As expected, we generally got higher prediction accuracy with

these additional features than without them. However, our pro-

posed feature space consistently outperformed the previous in

both cases (Fig. 5).

To gain a test set, we picked out 117 EGFR and 1029 TP53

missense mutations (held out of the training data) which are

known as driver mutations for many human cancers from the

latest version of COSMIC database (v57). We compared the

performance of our method with the previous ones via ROC

and PR curves. To do this, we collected 4539 neutral variants

from the latest release of the file Humsavar.txt (see Section 2) as

passenger mutations. Figure 6 shows the ROC and PR curves

calculated for previous and our proposed method on the afore-

mentioned EGFR and TP53 driver mutations and passenger

ones. Our method is slightly superior to the previous one on

these two sets. In fact, both methods identified almost all the

drivers but ours has much higher specificity (true negative rate,

see Table 2).

However, the relevance of missense mutation of EGFR/TP53

genes to oncogenesis has widely been verified. The possibility

that they possess significant biochemical properties relevant to

cancer assumedly makes them easy to be identified as drivers. To

further assess the performance of our proposed method and pre-

vious ones, we test them on an extra mutation set. This extra test

dataset consists of 1113 missense mutations still culled from the

latest release of COSMIC. They should be absent from the train-

ing set and appear in at least two cancer samples (cosmic2þ).

The collection of passenger mutations was compiled in a similar

manner. Figure 7 illustrates the ROC curves calculated for pre-

vious and our proposed method on the cosmic2þ driver set and

aforementioned passenger set. It can be seen from Figure 7 and

Table 2 that previous method missed many driver mutations in

this extra set.
Finally, we applied the constructed classifier to two published

datasets corresponding to human breast and colorectal cancers

to test its prediction capability (Sjoblom et al., 2006). The data-

sets contain 794 and 662 missense mutations of breast and colo-

rectal cancers, respectively, 642 and 502 of which can be covered

by both previous and our proposed method. Table 3 lists the

number of breast/colorectal mutations classified as drivers by

previous and our proposed method, where ‘Consensus’ refers

to the number of mutations simultaneously predicted to be dri-

vers by both methods. The number in each parenthesis represents

the total number of mutations to be classified for each case. The

details of the driver genes predicted by previous and our pro-

posed method are shown in Supplementary Figure S3.

There is a lack of straightforward way to assess which method

picked out more actual driver mutations due to the unavailability

of definite biological experiments (the original paper identified

drivers by a statistical method). Actually, this is a general

problem encountered by related researchers, as mentioned in

Fig. 6. ROC and PR curves calculated for previous and our proposed

method on (A) 117 EGFR and (B) 1029 TP53 missense mutations, each

with 4539 neutral polymorphisms held out of the training set
Fig. 7. ROC and PR curves calculated for previous and our proposed

method on 1113 missense mutations appearing in at least two cancer

samples in COMIC along with 4539 neutral polymorphisms held out of

the training set

Table 3. Number of breast/colon mutations classified as drivers by

previous and our proposed method

Breast Colon

Previous 122 (745) 69 (608)

Proposed 67 (642) 40 (502)

Consensus 18 6

Shown in each parenthesis is the number of all mutations used in each test.

Table 2. Number of missense mutations correctly classified by previous

and our proposed method

Neutral EGFR TP53 Cosmic2þ

Previous 3773 (4539) 117 (117) 1029 (1029) 894 (1113)

Proposed 3888 (4539) 117 (117) 1029 (1029) 940 (1113)

Shown in parentheses are numbers of all mutations used in each test.
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Section 1; see also Gonzalez-Perez and Lopez-Bigas (2011). We

hence resorted to published resources on protein sequence and

functional annotations to investigate the relevance of these mu-

tations. Concretely, we scrutinized the ontology annotations of

each predicted driver gene with respect to its biochemical proper-

ties in the UniProtKB database (Wu et al., 2006) by checking a

set of keywords appearing in the ‘KW’ domain (red rectangle in

Supplementary Fig. S1). These keywords involve biological pro-

cesses thought to be crucial for cancer progression (Hanahan and

Weinberg, 2000; Weinberg, 2006), including ‘apoptosis’, ‘cell

cycle’ and ‘signaling pathway’. Intuitively if one gene were anno-

tated with them, it more likely turns out to be a driver. As shown

in Figure 8, for both breast and colorectal cancer types, we

invariantly got higher percentages of driver genes annotated

with at least one of the three keywords.
On the other hand, our results revealed generally much fewer

driver mutations in both cancer types than previous study

(10.4% versus 16.4% for breast and 8.0% versus 11.3% for

colon, Table 3), which is more consistent with the fact that in

most cancer genomes passenger mutations take the bulk

(Stratton et al., 2009). Another evidence that supports our results

lies in three comment papers (Forrest and Cavet, 2007; Getz

et al., 2007; Rubin and Green, 2007), in which the authors

re-analyzed the data in Sjoblom et al. (2006) with corrected par-

ameters and obtained reduced number of candidate driver

mutations.

4 DISCUSSION

In this work, we dramatically enlarged the existing features used

for missense mutation classification, and consequently improved

the prediction performance of previous classifiers that discrimin-

ate between driver and passenger mutations. Besides incorporat-

ing and extending existing features in relation to amino acid

properties and binary categorical features extracted from pub-

lished databases, we for the first time, to our best knowledge,

systematically studied all kinds of SSM and investigated their

potential power in distinguishing missense mutations. In add-

ition, we are the first to extensively explore the protein sequence

patterns instead of structural profiles predicted computationally.

This is justified in that protein structure prediction is largely
based on sequence alignment with proteins whose structures
are already known, hence we rationally expect less informa-

tion loss by parsing the sequences directly. Indeed, our feature se-
lection scheme confirms the high performance of the SSM
and PSS features in separating driver mutations from passenger

ones.
The 5-fold CV experiments performed on a large set of train-

ing data consistently showed strong prediction capability of our

method, both in accuracy and robustness. By applying the
trained classifier to several datasets of missense mutations
culled from published databases and literature, we obtained

more reasonable prediction results than previous studies (by
ROC and PR curves as well as functional relevance analysis).
Hence, our proposed novel feature extraction scheme is hoped to

significantly improve the current work of driver mutation
identification.
Another highlight of our work is that the feature extraction

scheme depends little on other computational software or data-
bases, which extended the applicability substantially. In prin-
ciple, given the mutation with associated protein sequence, our

system could automatically extract all the features except for the
14 additional ones as mentioned; while if the referred mutation
happens to be annotated in the UniProtKB database, then all the

126 features can be extracted without depending on any other
software or databases (although our tool only chooses the
top-ranked 70 ones for default). The reason that some data in

the classifying part cannot be covered lies in the fact that the
original paper did not provide the corresponding protein se-
quences but only a gene name/ID instead. In this case, we

have to map it to related databases to extract its protein sequence
first. At this step, if one data use a very uncommon gene name/
ID then we cannot map it to the records in UniProtKB, even

under the help of GeneCards. Another reason of miss-covering is
we discarded the mutations at the beginning and end of a se-
quence in that windows-based amino acid residue sequence com-

position features could not handle them. In practice, such kind of
mutations with missing values can be treated as in Carter et al.
(2009).

Of note, only one of the 15 AARC features ranked within the
top 70, namely the number of hydrogen atoms of one amino
acid. This is probably because most information of the amino

acid has been already contained in the SSM features, for ex-
ample, the 42nd feature incorporates biochemical and biophys-
ical properties of amino acids to construct the WAC matrix (Wei

et al., 1997). A large part of SSM and PSS features were selected
by the DX scoring scheme, namely, 40 out of 51 and 21 out of 31
for the former and latter, respectively. What is attractive is one of

the sequence specific features LCC ranks very top—it gets the
fourth highest DX score. This again confirms that PSS features
play a very significant role on discrimination.

Our proposed method outperforms previous ones, whether or
not including the additional features (Fig. 5). However, both
methods got higher CV accuracy when including the additional

categorical features (features 98 through 111, Supplementary
Table S1). This clearly demonstrates their superior distinguishing
capability, and the superiority was further boosted by the facts

that half of this part was selected (7 out of 14) by DX score and
two features of them ranked the top 2. This is not surprising by

Fig. 8. Ontology annotations of driver genes predicted by previous and

our proposed method. Shown is the percentage of predicted driver genes

(of each cancer type) annotated with one of the three keywords: apop-

tosis, cell cycle and signaling pathway by the UniProtKB database. The

term colon refers to colorectal cancer
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checking the description in Supplementary Table S2, namely,

they are annotated in the ‘FT’ domain (Supplementary Fig.

S1) as ‘MUTAGEN’ and ‘MOD_RES’ which refer to mutagenic

sites and modified residues, respectively. Intuitively, a mutation

with such features is more likely to be a deleterious substitution

or a disease-causing mutation. Considering the importance of

this part of features, we suggest that for a newly submitted mu-

tation for which the additional features are unavailable, one can

extract the remaining 63 features and leave the 7 specials (only 7

of them were selected into the final feature set) empty, since most

of the existing software can handle the data with missing fea-

tures, for example, the SVMlight (Joachims, 1999).
Although our work rectifies several shortcomings of the exist-

ing studies, further improvements are both needful and possible.

Particularly, the persistent update of related database cited in

this study is expected to improve the performance of our pro-

posed method. For example, new scoring matrix may expand the

feature space and make the classifier more effective; the increas-

ing integrity of GeneCards database could improve the coverage

of our system, i.e. more mutations can be predicted in an auto-

matic sense. On the other hand, the number and signature of

driver mutations vary between cancer types. Therefore, classifier

trained with data of same cancer type may be more effective to

classify mutations of that cancer. To make the training dataset

self-adaptive to a particular classification problem will appear in

our future work.
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