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Abstract We consider a conductance-based neural network inspired by the gener-
alized Integrate and Fire model introduced by Rudolph and Destexhe in 1996. We
show the existence and uniqueness of a unique Gibbs distribution characterizing spike
train statistics. The corresponding Gibbs potential is explicitly computed. These re-
sults hold in the presence of a time-dependent stimulus and apply therefore to non-
stationary dynamics.

1 Introduction

Neural networks have an overwhelming complexity. While an isolated neuron can
exhibit a wide variety of responses to stimuli [1], from regular spiking to chaos [2,
3], neurons coupled in a network via synapses (electrical or chemical) may show an
even wider variety of collective dynamics [4] resulting from the conjunction of non-
linear effects, time propagation delays, synaptic noise, synaptic plasticity, and exter-
nal stimuli [5]. Focusing on the action potentials, this complexity is manifested by
drastic changes in the spikes activity, for instance when switching from spontaneous
to evoked activity (see for example A. Riehle’s team experiments on the monkey
motor cortex [6–9]). However, beyond this, complexity may exist some hidden laws
ruling an (hypothetical) “neural code” [10].

One way of unraveling these hidden laws is to seek some regularities or repro-
ducibility in the statistics of spikes. While early investigations on spiking activities
were focusing on firing rates where neurons are considered as independent sources,
researchers concentrated more recently on collective statistical indicators such as
pairwise correlations. Thorough experiments in the retina [11, 12] as well as in the
parietal cat cortex [13] suggested that such correlations are crucial for understanding
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spiking activity. Those conclusions where obtained using the maximal entropy prin-
ciple [14]. Assume that the average value of observables quantities (e.g., firing rate
or spike correlations) has been measured. Those average values constitute constraints
for the statistical model. In the maximal entropy principle, assuming stationarity, one
looks for the probability distribution which maximizes the statistical entropy given
those constraints. This leads to a (time-translation invariant) Gibbs distribution. In
particular, fixing firing rates and the probability of pairwise coincidences of spikes
lead to a Gibbs distribution having the same form as the Ising model. This idea has
been introduced by Schneidman et al. in [11] for the analysis of retina spike trains.
They reproduce accurately the probability of spatial spiking pattern. Since then, their
approach has known a great success (see, e.g., [15–17]), although some authors raised
solid objections on this model [12, 18–20] while several papers have pointed out the
importance of temporal patterns of activity at the network level [21–23]. As a conse-
quence, a few authors [13, 24, 25] have attempted to define time-dependent models
of Gibbs distributions where constraints include time-dependent correlations between
pairs, triplets, and so on [26]. As a matter of fact, the analysis of the data of [11] with
such models describes more accurately the statistics of spatio-temporal spike patterns
[27].

Taking into account all constraints inherent to experiments, it seems extremely
difficult to find an optimal model describing spike trains statistics. It is in fact likely
that there is not one model, but many, depending on the experiment, the stimulus,
the investigated part of the nervous system and so on. Additionally, the assumptions
made in the works quoted above are difficult to control. Especially, the maximal en-
tropy principle assumes a stationary dynamics while many experiments consider a
time-dependent stimulus generating a time-dependent response where the stationary
approximation may not be valid. At this stage, having an example where one knows
the explicit form of the spike trains, probability distribution would be helpful to con-
trol those assumptions and to define related experiments.

This can be done considering neural network models. Although, to be tractable,
such models may be quite away from biological plausibility, they can give hints on
which statistics can be expected in real neural networks. But, even in the simplest ex-
amples, characterizing spike statistics arising from the conjunction of non-linear ef-
fects, time propagation delays, synaptic noise, synaptic plasticity, and external stimuli
is far from being trivial on mathematical grounds.

In [28], we have nevertheless proposed an exact and explicit result for the char-
acterization of spike trains statistics in a discrete-time version of Leaky Integrate-
and-Fire neural network. The results were quite surprising. It has been shown that
whatever the parameters value (in particular synaptic weights), spike trains are dis-
tributed according to a Gibbs distribution whose potential can be explicitly com-
puted. The first surprise lies in the fact that this potential has infinite range, namely
spike statistics has an infinite memory. This is because the membrane potential evo-
lution integrates its past values and the past influence of the network via the leak
term. Although leaky integrate and fire models have a reset mechanism that erases
the memory of the neuron whenever it spikes, it is not possible to upper bound the
next time of firing. As a consequence, statistics is non-Markovian (for recent exam-
ples of non-Markovian behavior in neural models see also [29]). The infinite range of
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the potential corresponds, in the maximal entropy principle interpretation, to having
infinitely many constraints.

Nevertheless, the leak term influence decays exponentially fast with time (this
property guarantees the existence and uniqueness of a Gibbs distribution). As a con-
sequence, one can approximate the exact Gibbs distribution by the invariant proba-
bility of a Markov chain, with a memory depth proportional to the log of the (discrete
time) leak term. In this way, the truncated potential corresponds to a finite number
of constraints in the maximal entropy principle interpretation. However, the second
surprise is that this approximated potential is nevertheless far from the Ising model
or any of the models discussed above, which appear as quite bad approximations. In
particular, there is a need to consider n-uplets of spikes with time delays. This mere
fact asks hard problems about evidencing such type of potentials in experiments. Es-
pecially, new type of algorithms for spike trains analysis has to be developed [30].

The model considered in [28] is rather academic: time evolution is discrete,
synaptic interactions are instantaneous, dynamics is stationary (the stimulus is time-
constant) and, as in a leaky integrate and fire model, conductances are constant. It
is therefore necessary to investigate whether our conclusions remain for more real-
istic neural networks models. In the present paper, we consider a conductance-based
model introduced by Rudolph and Destexhe in [31] called “generalized Integrate and
Fire” (gIF) model. This model allows one to consider realistic synaptic responses
and conductances depending on spikes arising in the past of the network, leading to
a rather complex dynamics which has been characterized in [32] in the deterministic
case (no noise in the dynamics). Moreover, the biological plausibility of this model
is well accepted [33, 34].

Here, we analyze spike statistics in the gIF model with noise and with a time-
dependent stimulus. Moreover, the post-synaptic potential profiles are quite general
and summarize all the examples that we know in the literature. Our main result is to
prove the existence and uniqueness of a Gibbs measure characterizing spike trains
statistics, for all parameters compatible with physical constraints (finite synaptic
weights, bounded stimulus, and positive conductances). Here, as in [28], the cor-
responding Gibbs potential has infinite range corresponding to a non-Markovian dy-
namics, although Markovian approximations can be proposed in the gIF model too.
The Gibbs potential depends on all parameters in the model (especially connectivity
and stimulus) and has a form quite more complex than Ising-like models. As a by-
product of the proof of our main result, additional interesting notions and results are
produced such as continuity, with respect to a raster, or exponential decay of memory
thanks to the shape of synaptic responses.

The paper is organized as follows. In Section 2, we briefly introduce integrate and
fire models and propose two important extensions of the classical models: the spike
has a duration and the membrane potential is reset to a non-constant value. These
extensions, which are necessary for the validity of our mathematical results, render
nevertheless the model more biologically plausible (see Section 9). One of the keys of
the present work is to consider spike trains (raster plots) as infinite sequences. Since
in gIF models, conductances are updated upon the occurrence of spikes, one has to
consider two types of variables with distinct type of dynamics. On the one hand, the
membrane potential, which is the physical variable associated with neurons dynam-
ics, evolves continuously. On the other hand, spikes are discrete events. Conductances
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are updated according to these discrete-time events. The formalism introduced in Sec-
tions 2 and 3 allows us to handle properly this mixed dynamics. As a consequence,
these sections define gIF model with more mathematical structure than the original
paper [31] and mostly contain original results. Moreover, we add to the model sev-
eral original features such as the consideration of a general form of synaptic profile
with exponential decay or the introduction of noise. Section 4 proposes a prelimi-
nary analysis of gIF model dynamics. In Sections 5 and 6, we provide several useful
mathematical propositions as a necessary step toward the analysis of spike statistics,
developed in Section 7, where we prove the main result of the paper: existence and
uniqueness of a Gibbs distribution describing spike statistics. Sections 8 and 9 are
devoted to a discussion on practical consequences of our results for neuroscience.

2 Integrate and fire model

We consider the evolution of a set of N neurons. Here, neurons are considered as
“points” instead of spatially extended and structured objects. As a consequence, we
define, for each neuron k ∈ {1, . . . ,N}, a variable Vk(t) called the “membrane poten-
tial of neuron k at time t” without specification of which part of a real neuron (axon,
soma, dendritic spine, . . . ) it corresponds to. Denote V (t) the vector (Vk(t))

N
k=1.

We focus here on “integrate and fire models”, where dynamics always consists of
two regimes.

2.1 The “integrate regime”

Fix a real number θ called the “firing threshold of the neuron”.1 Below the threshold,
Vk < θ , neuron k’s dynamics is driven by an equation of the form:

Ck

dVk

dt
+ gkVk = ik, (1)

where Ck is the membrane capacity of neuron k. In its most general form, the neuron
k’s membrane conductance gk > 0 depends on Vk plus additional variables such as
the probability of having ionic channels open (see, e.g., Hodgkin-Huxley equations
[35]) as well as on time t . The explicit form of gk in the present model is developed
in Section 3.4. The current ik typically depends on time t and on the past activity of
the network. It also contains a stochastic component modeling noise in the system
(e.g., synaptic transmission, see Section 3.5).

1We assume that all neurons have the same firing threshold. The notion of threshold is already an approx-
imation which is not sharply defined in Hodgkin-Huxley [35] or Fitzhugh-Nagumo [40, 41] models (more
precisely it is not a constant but it depends on the dynamical variables [55]). Recent experiments [62–64]
even suggest that there may be no real potential threshold.
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Fig. 1 Time course of the membrane potential in our model. The blue dashed curve illustrates the shape
of a real spike, but what we model is the red curve.

2.2 LIF model

A classical example of integrate and fire model is the Leaky Integrate and Fire’s (LIF)
introduced in [36] where Equation (1) reads:

dVk

dt
= −Vk

τL

+ ik(t)

Ck

. (2)

where gk is a constant and τL = Ck

gk
is the characteristic time for membrane potential

decay when no current is present (“leak term”).

2.3 Spikes

The dynamical evolution (1) may eventually lead Vk to exceed θ . If, at some time t ,
Vk(t) = θ , then neuron k emits a spike or “fires”. In our model, like in biophysics,
a spike has a finite duration δ > 0; this is a generalization of the classical formula-
tion of integrate and fire models where the spike is considered instantaneous. On
biophysical grounds, δ is of order of a millisecond. Changing the time units, we may
set δ = 1 without loss of generality. Additionally, neurons have a refractory period
τrefr > 0 where they are not able to emit a new spike although their membrane poten-
tial can fluctuate below the threshold (see Figure 1). Hence, spikes emitted by a given
neuron are separated by a minimal time scale

τsep = δ + τrefr. (3)
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2.4 Raster plots

In experiments, spiking neuron activity is represented by “raster plots”, namely a
graph with time in abscissa, and a neuron labeling in ordinate such that a vertical bar
is drawn each “time” a neuron emits a spike. Since spikes have a finite duration δ

such a representation limits the time resolution: events with a time scale smaller than
δ are not distinguished. As a consequence, if neuron 1 fires at time t1 and neuron 2 at
time t2 with |t2 − t1| < δ = 1 the two spikes appear to be simultaneous on the raster.
Thus, the raster representation introduces a time quantization and has a tendency to
enhance synchronization. In gIF models, conductances are updated upon the occur-
rence of spikes (see Section 3.2) which are considered as such discrete events. This
could correspond to the following “experiment”. Assume that we measure the spikes
emitted by a set of in vitro neurons and that we use this information to update the
conductances of a model, in order to see how this model “matches” the real neu-
rons (see [34] for a nice investigation in this spirit). Then, we would have to take
into account that the information provided by the experimental raster plot is discrete,
even if the membrane potential evolves continuously. The consequences of this time
discretization as well as the limit δ → 0 are developed in the discussion section.

As a consequence, one has to consider two types of variables with distinct type of
dynamics. On the one hand, the membrane potential, which is the physical variable
associated with neuron dynamics, evolves with a continuous time. On the other hand,
spikes, which are the quantities of interest in the present paper, are discrete events.
To properly define this mixed dynamics and study its properties, we have to model
spikes times and raster plots.

2.5 Spike times

If, at time t , Vk(t) = θ , a spike is registered at the integer time immediately after
t , called the spike time. Choosing integers for the spike time occurrence is a direct
consequence of setting δ = 1. Thus, to each neuron k and integer n, we associate a
“spiking state” defined by:

ωk(n) =
{

1 if ∃t ∈ ]n − 1, n] such that Vk(t) = θ;
0 otherwise.

For convenience and in order to simplify the notations in the mathematical de-
velopments, we call [t] the largest integer which is ≤ t (thus [−1.2] = −2 and
[1.2] = 1). Thus, the integer immediately after t is [t + 1] and we have therefore
that ωk([t + 1]) = 1 whenever Vk(t) = θ . Although, characteristic events in a raster
plot are spikes (neuron fires), it is useful in subsequent developments to consider also
the case when neuron is not firing (ωk(n) = 0).

2.6 Reset

In the classical formulation of integrate and fire models, the spike occurs simultane-
ously with a reset of the membrane potential to some constant value Vreset, called the
“reset potential”. Instantaneous reset is a source of pathologies as discussed in [32,
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37] and in the discussion section. Here, we consider that reset occurs after the time
delay τsep ≥ 1 including spike duration and refractory period. We set:

Vk(t) = θ ⇒ Vk

([t + τsep]
) = Vreset. (4)

The reason why the reset time is the integer number [t + τsep] instead of the real
t + τsep is that it eases the notations and proofs. Since the reset value is random (see
below and Figure 1), this assumption has no impact on the dynamics.

Indeed, in our model, the reset value Vreset is not a constant. This is a Gaussian
random variable with mean zero (we set the rest potential to zero without loss of gen-
erality) and variance σ 2

R > 0. In this way, we model the spike duration and refractory
period, as well as the random oscillations of the membrane potential during the re-
fractory period. As a consequence, the value of Vk when the neuron can fire again
is not a constant, as it is in classical IF models. A related reference (spiking neurons
with partial reset) is [38]. The assumption that σ 2

R > 0 is necessary for our mathemat-
ical developments (see the bounds (37)). We assume σ 2

R to be small to avoid trivial
and unrealistic situations where Vreset ≥ θ with a large probability leading the neuron
to fire all the time. Note, however, that this is not a required assumption to estab-
lish our mathematical results. We also assume that, in successive resets, the random
variables Vreset are independent.

2.7 The shape of membrane potential during the spike

On biophysical grounds, the time course of the membrane potential during the spike
includes a depolarization and re-polarization phase due to the non-linear effects of
gated ionic channels on the conductance. This leads to introduce, in modeling, addi-
tional variables such as activation/inactivation probabilities as in the Hodgkin-Huxley
model [35] or adaptation current as, e.g., in FitzHugh-Nagumo model [39–42] (see
the discussion section for extensions of our results to those models). Here, since we
are considering only one variable for the neuron state, the membrane potential, we
need to define the spike profile, i.e., the course of Vk(t) during the time interval
(t, [t + τsep]). It turns out that the precise shape of this profile plays no role in the de-
velopments proposed here, where we concentrate on spike statistics. Indeed, a spike
is registered whenever Vk(t) = θ , and this does not depend on the spike shape. What
we need is therefore to define the membrane potential evolution before the spike,
given by (1), and after the spike, given by (4) (see Figure 1).

2.8 Mathematical representation of raster plots

The “spiking pattern” of the neural network at integer time n is the vector ω(n) =
(ωk(n))Nk=1. For m < n, we note ωn

m = {ω(m)ω(m + 1) · · ·ω(n)} the ordered se-
quence of spiking patterns between m and n. Such sequences are called spike blocks.
Additionally, we note that ω

n1−1
m ωn

n1
= ωn

m, the concatenation of the blocks ω
n1−1
m

and ωn
n1

.

Call A = {0,1}N the set of spiking patterns (alphabet). An element of X
def= AZ,

i.e., a bi-infinite ordered sequence ω = {ω(n)}+∞
n=−∞ of spiking patterns, is called a
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“raster plot”. It tells us which neurons are firing at each time n ∈ Z. In experiments,
raster plots are obviously finite sequences of spiking pattern but the extension to Z,
especially the possibility of considering an arbitrary distant past (negative times), is
a key of the present work. In particular, the notation ωn−∞ refers to spikes occurring
from −∞ to n.

To each raster ω ∈ X and each neuron index j = 1, . . . ,N , we associate an ordered
(generically infinite) list of “spike times” {t (r)j (ω)}∞r=1 (integer numbers) such that

t
(r)
j (ω) is the r-th time of firing of neuron j in the raster ω. In other words, we

have ωj (n) = 1 if and only if n = t
(r)
j (ω) for some r = 1, . . . ,+∞. We use here the

following convention. The index k is used for a post-synaptic neuron while the index
j refers to pre-synaptic neurons. Spiking events are used to update the conductance
of neuron k according to spikes emitted by pre-synaptic neurons. That is why we
label the spike times with an index j .

We introduce here two specific rasters which are of use in the paper. We note �0

the raster such that ωk(n) = 0, ∀k = 1, . . . ,N , ∀n ∈ Z (no neuron ever fires) and �1

the raster ωk(n) = 1, ∀i = 1, . . . ,N , ∀n ∈ Z (each neuron is firing at every integer
time).

Finally, we use the following notation borrowed from [43]. We note, for n ∈ Z,
m ≥ 0, and r integer:

ω
m,n= ω′ if ω(r) = ω′(r),∀r ∈ {n − m, . . . , n}. (5)

For simplicity, we consider that τref, the refractory period, is smaller than 1 so
that a neuron can fire two consecutive time steps (i.e., one can have ωk(n) = 1 and
ωk(n + 1) = 1). This constraint is discussed in Section 9.2.

2.9 Representation of time-dependent functions

Throughout the paper, we use the following convention. For a real function of t and
ω, we write f (t,ω) for f (t,ω

[t]
−∞) to simplify notations. This notation takes into ac-

count the duality between variables such as membrane potential evolving with respect
to a continuous time and raster plots labeled with discrete time. Thus, the function
f (t,ω) is a function of the continuous variable t and of the spike block ω

[t]
−∞, where

by definition [t] ≤ t , namely f (t,ω) depends on the spike sequences occurring be-
fore t . This constraint is imposed by causality.

2.10 Last reset time

We define τk(t,ω) as the last time before t where neuron k’s membrane potential has
been reset, in the raster ω. This is −∞ if the membrane potential has never been reset.
As a consequence of our choice (4) for the reset time τk(t,ω) is an integer number
fixed by t and the raster before t . The membrane potential value of neuron k at time t

is controlled by the reset value Vreset at time τk(t,ω) and by the further subthreshold
evolution (1) from time τk(t,ω) to time t .
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3 Generalized integrate and fire models

In this paper, we concentrate on an extension of (2), called “generalized Integrate-
and-Fire” (gIF), introduced in [31], closer to biology [33, 34], since it considers more
seriously neurons interactions via synaptic responses.

3.1 Synaptic conductances

Depending on the neurotransmitter they use for synaptic transmission (AMPA,
NMDA, GABA A, GABA B [44]), neurons can be excitatory (population E ) or in-
hibitory (population I ). This is modeled by introducing reversal potentials E+ for
excitatory (typically E+ � 0 mV for AMPA and NMDA) and E− for inhibitory
(E− � −70 mV for GABA A and E− � −95 mV for GABA B). We focus here
on one population of excitatory and one population of inhibitory neurons although
extensions to several populations may be considered as well. Also, each neuron is
submitted to a current Ik(t). We assume that this current has some stochastic compo-
nent that mimics synaptic noise (Section 3.5).

The variation in the membrane potential of neuron k at time t reads:

Ck

dVk

dt
= −gL,k(Vk − EL) − g

(E )
k (t)

(
Vk − E+) − g

(I)
k (t)

(
Vk − E−) + Ik(t), (6)

where gL,k is a leak conductance, EL < 0 is the leak reversal potential (about

−65 mV), g
(E )
k (t) the conductance of the excitatory population and g

(I)
k (t) the con-

ductance of inhibitory population. They are given by:

g
(E )
k (t) =

∑
j∈E

gkj (t); g
(I)
k (t) =

∑
j∈I

gkj (t), (7)

where gkj is the conductance of the synaptic contact j → k.
We may rewrite Equation (6) in the form (1) setting

gk(t) = gL,k + g
(E )
k (t) + g

(I)
k (t),

and

ik(t) = gL,kEL + g
(E )
k (t)E+ + g

(I)
k (t)E− + Ik(t).

3.2 Conductance update upon a spike occurrence

The conductances gkj (t) in (7) depend on time t but also on pre-synaptic spikes
occurring before t . This is a general statement, which is modeled in gIF models as
follows. Upon arrival of a spike in the pre-synaptic neuron j at time t

(r)
j (ω), the

membrane conductance of the post-synaptic neuron k is modified as:

gkj (t) = gkj

(
t
(r)
j (ω)

) + Gkjαkj

(
t − t

(r)
j (ω)

)
, t > t

(r)
j (ω). (8)

In this equation, the quantity Gkj ≥ 0 characterizes the maximal amplitude of the
conductance during a post-synaptic potential. We use the convention that Gkj = 0 if
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and only if there is no synapse between j and k. This allows us to encode the graph
structure of the neural network in the matrix G with entries Gkj . Note that the Gkj ’s
can evolve in time due to synaptic plasticity mechanisms (see Section 9.4).

The function αkj (called “alpha” profile [44]) mimics the time course of the synap-
tic conductance upon the occurrence of the spike. Classical examples are:

αkj (t) = e
− t

τkj H(t), (9)

(exponential profile) or:

αkj (t) = t

τkj

e
− t

τkj H(t), (10)

with H the Heaviside function (that mimics causality) and τkj is the characteristic
decay times of the synaptic response. Since t is a time, the division by τkj ensures
that αkj (t) is a dimensionless quantity: this eases the legibility of the subsequent
equations on physical grounds (dimensionality of physical quantities).

Contrarily to (9) the synaptic profile (10), with αkj (0) = 0 while αkj (t) is maximal
for t = τkj , allows one to smoothly delay the spike action on the post-synaptic neuron.
More general forms of synaptic responses could be considered as well. For example,
the α profile may obey a Green equation of type [45]:

k∑
l=0

a
(l)
kj

dlαkj

dul
(t) = δ(t),

where k = 1, a
(0)
kj = 1

τkj
, a

(1)
kj = 1, corresponds to (9), and so on.

3.3 Mathematical constraints on the synaptic responses

In all the paper, we assume that the αkj ’s are positive and bounded. Moreover, we
assume that:

αkj (t) ∼ td

τ d
kj

e
− t

τkj
def= fkj (t), t → +∞, (11)

for some integer d . So that αkj (t) decays exponentially fast as t → +∞, with a
characteristic time τkj , the decay time of the evoked post-synaptic potential. This
constraint matches all synaptic response kernels that we know (where typically d =
0,1) [44, 45].

This has the following consequence. For all t , M < t integer, r integer, we have,
setting t = {t} + [t], where {t} is the fractional part:∑

r<M

αkj (t − r) =
∑
r<M

αkj

([t] − r + {t}) =
∑

n>[t]−M

αkj

(
n + {t}).

Therefore, as M → −∞,

∑
r<M

αkj (t − r) ∼
∑

n≥[t]−M+1

fkj

(
n + {t}) <

∫ +∞

t−M

fkj (u)du = Pd

(
t − M

τkj

)
e
− t−M

τkj ,
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where Pd() is a polynomial of degree d .
We introduce the following (Hardy) notation: if a function f (t) is bounded from

above, as t → +∞, by a function g(t) we write: f (t)  g(t). Using this notation, we
have therefore:

Proposition 1 ∑
r<M

αkj (t − r)  Pd

(
t − M

τkj

)
e
− t−M

τkj , (12)

as M → −∞.

Additionally, the constraint (11) implies that there is some α+ < +∞ such that,
for all t , for all k, j : ∑

r<t

αkj (t − r) ≤ α+. (13)

Indeed, for n ≥ 0 integer, call Akj (n) = sup{αkj (n + x);x ∈ [0,1[}. Then,

∑
r<t

αkj (t − r) =
+∞∑
n=1

αkj

(
n + {t}) ≤

+∞∑
n=1

Akj (n).

Due to (11), this series converges (e.g., from Cauchy criterion). We set:

α+ = max
kj

+∞∑
n=1

Akj (n).

On physical grounds, it implies that the conductance gk remains bounded, even if
each pre-synaptic neuron is firing all the time (see Equation (29) below).

3.4 Synaptic summation

Assume that Equation (8) remains valid for an arbitrary number of pre-synaptic spikes
emitted by neuron j within a finite time interval [s, t] (i.e., neglecting non-linear
effects such as the fact that there is a finite amount of neurotransmitter leading to
saturation effects). Then, one obtains the following equation for the conductance gkj

at time t , upon the arrival of spikes at times t
(r)
j (ω) in the time interval [s, t]:

gkj (t) = gkj (s) + Gkj

∑
{r;s≤t

(r)
j (ω)<t}

αkj

(
t − t

(r)
j (ω)

)
.

The conductance at time s, gkj (s), depends on the neuron j ’s activity preceding s.
This term is therefore unknown unless one knows exactly the past evolution before s.
One way to circumvent this problem is to taking s arbitrary far in the past, i.e., taking
s → −∞ in order to remove the dependence on initial conditions. This corresponds
to the following situation. When one observes a real neural network, the time where
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the observation starts, say t = 0, is usually not the time when the system has begun
to exist, s in our notations. Taking s arbitrary far in the past corresponds to assuming
that the system has evolved long enough so that it has reached sort of a “permanent
regime”, not necessarily stationary, when the observation starts. On phenomenologi-
cal grounds, it is enough to take −s larger than all characteristic relaxation times in
the system (e.g., leak rate and synaptic decay rate). Here, for mathematical purposes,
it is easier to take the limit s → −∞.

Since gkj (t) depends on the raster plot up to time t , via the spiking times t
(r)
j (ω),

this limit makes only sense when taking it “conditionally” to a prescribed raster plot
ω. In other words, one can know the value of the conductances gkj at time t only if
the past spike times of the network are known. We write gkj (t,ω) from now on to
make this dependence explicit.

We set

αkj (t,ω) = lims→−∞
∑

{r;s≤t
(r)
j (ω)<t} αkj

(
t − t

(r)
j (ω)

)
≡ ∑

{r;t (r)j (ω)<t} αkj

(
t − t

(r)
j (ω)

)
, (14)

with the convention that
∑

∅ = 0 so that αkj (t,�0) = 0 (recall that �0 is the raster
such that no neuron ever fires). The limit (14) exists from (13).

3.5 Noise

We allow, in the definition of the current Ik(t) in Equation (6), the possibility of
having a stochastic term corresponding to noise so that:

Ik(t) = i
(ext)
k (t) + σBξk(t), (15)

where i
(ext)
k (t) is a deterministic external current and ξk(t) a noise term whose ampli-

tude is controlled by σB > 0. The model affords an extension where σB depends on
k but this extension is straightforward and we do not develop it here. The noise term
can be interpreted as the random variation in the ionic flux of charges crossing the
membrane per unit time at the post-synaptic button, upon opening of ionic channels
due to the binding of neurotransmitter.

We assume that ξk(t) is a white noise, ξk(t) = dBk

dt
where dBk(t) is a Wiener

process, so that dB(t) = (dBk(t))
N
k=1 is a N -dimensional Wiener process. Call P the

noise probability distribution and E[] the expectation under P . Then, by definition,
E[dBk(t)] = 0, ∀k = 1, . . . ,N, t ∈ R, and E[dBk(s)dBl(t)] = δklδ(t − s)dt where
δkl = 1 if l = k, l, k = 1, . . . ,N and δ(t − s) is the Dirac distribution.

3.6 Differential equation for the integrate regime of gIF

Summarizing, we write Equation (6) in the form:

Ck

dVk

dt
+ gk(t,ω)Vk = ik(t,ω), (16)



Journal of Mathematical Neuroscience (2011) 1:8 Page 13 of 42

where:

gk(t,ω) = gL,k +
N∑

j=1

Gkjαkj (t,ω). (17)

This is the more general conductance form considered in this paper.
Moreover,

ik(t,ω) = gL,kEL +
N∑

j=1

Wkjαkj (t,ω) + i
(ext)
k (t) + σBξk(t), (18)

where Wkj is the synaptic weight:

{
Wkj = E+Gkj , if j ∈ E ,

Wkj = E−Gkj , if j ∈ I.

These equations hold when the membrane potential is below the threshold (Integrate
regime).

Therefore, gIF models constitute rather complex dynamical systems: the vector
field (r.h.s) of the differential Equation (16) depends on an auxiliary “variable”, which
is the past spike sequence ω

[t]
−∞ and to define properly the evolution of Vk from

time t to later times one needs to know the spikes arising before t . This is precisely
what makes gIF models more interesting than LIF. The definition of conductances
introduces long-term memory effects.

IF models implement a reset mechanism on the membrane potential: If neuron k

has been reset between s and t , say at time τ , then Vk(t) depends only on Vk(τ) and
not on previous values, as in (4). But, in gIF model, contrarily to LIF, there is also a
dependence in the past via the conductance and this dependence is not erased by the
reset. That is why we have to consider a system with infinite memory.

3.7 The parameters space

The stochastic dynamical system (16) depends on a huge set of parameters: the
membrane capacities Ck , k = 1, . . . ,N , the threshold θ , the reversal potentials
EL, E+, E−, the leak conductance gL; the maximal synaptic conductances Gkj ,
k, j = 1, . . . ,N which define the neural network topology; the characteristic times
τkj , k, j = 1, . . . ,N of synaptic responses decay; the noise amplitude σB ; and addi-

tionally, the parameters defining the external current i
(ext)
k . Although some parame-

ters can be fixed from biology, such as Ck , the reversal potentials, τkj , . . . some others
such as the Gkj ’s must be allowed to vary freely in order to leave open the possibility
of modeling very different neural networks structures.

In this paper, we are not interested in describing properties arising for specific val-
ues of those parameters, but instead in generic properties that hold on sets of param-
eters. More specifically, we denote the list of all parameters ((Ck)

N
k=1,EL,E+,E−,

(Gkj )
N
k,j=1, . . .) by the symbol γ . This is a vector in R

K where K is the total number
of parameters. In this paper, we assume that γ belongs to a bounded subset H ⊂ R

K .
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Basically, we want to avoid situations where some parameters become infinite, which
would be unphysical. So the limits of H are the limits imposed by biophysics. Addi-
tionally, we assume that σR > 0 and σB > 0. Together with physical constraints such
as “conductances are positive”, these are the only assumption made in parameters.
All mathematical results stated in the paper hold for any γ ∈ H.

4 gIF model dynamics for a fixed raster

We assume that the raster ω is fixed, namely the spike history is given. Then, it is
possible to integrate the Equation (16) (Integrate regime) and to obtain explicitly the
value of the membrane potential of a neuron at time t , given the membrane potential
value at time s. Additionally, the reset condition (4) has the consequence of removing
the dependence of neuron k on the past anterior to τk(t,ω).

4.1 Integrate regime

For t1 ≤ t2, t1, t2 ∈ R, set:

�k(t1, t2,ω) = e
− 1

Ck

∫ t2
t1

gk(u,ω)du
. (19)

We have:

�k(t1, t1,ω) = �k(t2, t2,ω) = 1,

and:

∂�k(t1, t2,ω)

∂t1
= gk(t1,ω)

Ck

�k(t1, t2,ω).

Fix two times s < t and assume that for neuron k, Vk(u) < θ , s ≤ u ≤ t so that the
membrane potential Vk obeys (16). Then,

∂

∂t1

[
�k(t1, t2,ω)Vk(t1)

] = �k(t1, t2,ω)

[
dVk

dt1
+ gk(t1,ω)

Ck

Vk(t1)

]

= �k(t1, t2,ω)
ik(t1,ω)

Ck

.

We have then integrating the previous equation with respect to t1 between s and t

and setting t2 = t :

Vk(t) = �k(s, t,ω)Vk(s) + 1

Ck

∫ t

s

�k(t1, t,ω)ik(t1,ω)dt1.

This equation gives the variation in membrane potential during a period of rest (no
spike) of the neuron. Note, however, that this neuron can still receive spikes from the
other neurons via the update of conductances (made explicit in the previous equation
by the dependence in the raster plot ω).
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The term �k(s, t,ω) given by (19) is an effective leak between s, t . In the leaky

integrate and fire model, it would have been equal to e
− ∫ t

s
1

τL
dt1 = e

− t−s
τL . The term:

Vk(s, t,ω)
def= 1

Ck

∫ t

s

�k(t1, t,ω)ik(t1,ω)dt1,

has the dimension of a voltage. It corresponds to the integration of the total current
between s and t weighted by the effective leak term �k(t1, t,ω). It decomposes as

Vk(s, t,ω) = V (syn)

k (s, t,ω) + V (ext)
k (s, t,ω) + V (B)

k (s, t,ω),

where,

V (syn)

k (s, t,ω) = 1

Ck

N∑
j=1

Wkj

∫ t

s

�k(t1, t,ω)αkj (t1,ω)dt1, (20)

is the synaptic contribution. Moreover,

V (ext)
k (s, t,ω) = EL

τL,k

∫ t

s

�k(t1, t,ω)dt1 + 1

Ck

∫ t

s

i
(ext)
k (t1)�k(t1, t,ω)dt1,

where we set:

τL,k
def= Ck

gL,k

, (21)

the characteristic leak time of neuron k. We have included the leak reversal potential
term in this “external” term for convenience. Therefore, even if there is no external
current, this term is nevertheless non-zero.

The sum of the synaptic and external terms gives the deterministic contribution in
the membrane potential. We note:

V (det)
k (s, t,ω) = V (syn)

k (s, t,ω) + V (ext)
k (s, t,ω).

Finally,

V (B)
k (s, t,ω)

def= σB

Ck

∫ t

s

�k(t1, t,ω)ξk(t1)dt1 = σB

Ck

∫ t

s

�k(t1, t,ω)dBk(t1), (22)

is a noise term. This is a Gaussian process with mean 0 and variance:

(
σB

Ck

)2

E

[(∫ t

s

�k(t1, t,ω)dBk(t1)

)2]
=

(
σB

Ck

)2 ∫ t

s

�2
k (t1, t,ω)dt1. (23)

The square root of this quantity has the dimension of a voltage.
As a final result, for a fixed ω, the variation in membrane potential during a period

of rest (no spike) of neuron k between s and t reads (subthreshold oscillations):

Vk(t) = �k(s, t,ω)Vk(s) + V (det)
k (s, t,ω) + V (B)

k (s, t,ω). (24)
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4.2 Reset

In Equation (4), as in all IF models that we know, the reset of the membrane potential
has the effect of removing the dependence of Vk on its past since Vk([t + τsep]) is
replaced by Vreset. Hence, reset removes the dependence in the initial condition Vk(s)

in (24) provided that neuron k fires between s and t in the raster ω. As a consequence,
Equation (24) holds, from the “last reset time” introduced in Section 2.10 up to time
t . Then, Equation (24) reads

Vk(t) = V (det)
k

(
τk(t,ω), t,ω

) + V (noise)
k

(
τk(t,ω), t,ω

)
, (25)

where:

V (noise)
k

(
τk(t,ω), t,ω

) = �k

(
τk(t,ω), t,ω

)
Vreset + V (B)

k

(
τk(t,ω), t,ω

)
, (26)

is a Gaussian process with mean zero and variance:

σ 2
k

(
τk(t,ω), t,ω

) = �2
k

(
τk(t,ω), t,ω

)
σ 2

R +
(

σB

Ck

)2 ∫ t

τk(t,ω)

�2
k (t1, t,ω)dt1. (27)

5 Useful bounds

We now prove several bounds used throughout the paper.

5.1 Bounds on the conductance

From (13), and since αkj (t) ≥ 0:

0 = αkj (t,�0) ≤ αkj (t,ω) =
∑

{r;t (r)j (ω)<t}
αkj

(
t − t

(r)
j (ω)

) ≤
∑
r<t

αkj (t − r)

= αkj (t,�1) ≤ α+. (28)

Therefore,

gL,k = gk(t,�0) ≤ gk(t,ω) ≤ gk(t,�1)
def= gM,k ≤ gL,k + α+

N∑
j=1

Gkj , (29)

so that the conductance is uniformly bounded in t and ω. The minimal conductance
is attained when no neuron fires ever so that �0 is the “lowest conductance state”.
On the opposite, the maximal conductance is reached when all neurons fire all the
time so that �1 is the “highest conductance state”. To simplify notations, we note
τM,k = Ck

gM,k
. This is the minimal relaxation time scale for neuron k while τL,k = Ck

gL,k

is the maximal relaxation time.

τM,k = Ck

gM,k

≤ τL,k = Ck

gL,k

. (30)
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5.2 Bounds on membrane potential

Now, from (19), we have, for s < t :

0 ≤ �k(s, t,�1) = e
− t−s

τM,k ≤ �k(s, t,ω) ≤ �k(s, t,�0) = e
− t−s

τL,k < 1. (31)

As a consequence, �k(s, t,ω) → 0 exponentially fast as s → −∞.
Moreover,

0 ≤
∫ t

s

�k(t1, t,ω)αkj (t1,ω)dt1 ≤ α+
∫ t

s

e
− t−t1

τL,k dt1

= α+τL,k

(
1 − e

− t−s
τL,k

)
≤ α+τL,k, (32)

so that:

α+

gL,k

∑
j∈I

Wkj ≤ V (syn)

k (s, t,ω) ≤ α+

gL,k

∑
j∈E

Wkj . (33)

Thus, V (syn)

k (s, t,ω) is uniformly bounded in s, t .

Establishing similar bounds for V (ext)
k (s, t,ω) requires the assumption that A ≤

i
(ext)
k (t) ≤ B , but obtaining tighter bounds requires additionally the knowledge of the

sign of A
Ck

+ EL

τL,k
and of B

Ck
+ EL

τL,k
. Here, we have only to consider that:

∣∣i(ext)
k (t)

∣∣ ≤ i+.

In this case,

∣∣V (ext)
k (s, t,ω)

∣∣ =
∣∣∣∣ EL

τL,k

∫ t

s

�k(t1, t,ω)dt1 + 1

Ck

∫ t

s

i
(ext)
k (t1)�k(t1, t,ω)dt1

∣∣∣∣
≤

[ |EL|
τL,k

+ i+

Ck

]∫ t

s

�k(t1, t,ω)dt1 ≤
[ |EL|

τL,k

+ i+

Ck

]∫ t

s

e
− t−t1

τL,k dt1,

so that:

∣∣V (ext)
k (s, t,ω)

∣∣ ≤
(

|EL| + i+

gL,k

)(
1 − e

− t−s
τL,k

)
≤ |EL| + i+

gL,k

. (34)

Consequently,

Proposition 2

V −
k

def= α+

gL,k

∑
j∈I

Wkj −
(

|EL| + i+

gL,k

)
< V (det)

k (s, t,ω) < V +
k

def= α+

gL,k

∑
j∈E

Wkj + |EL| + i+

gL,k

, (35)
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which provides uniform bounds in s, t , ω for the deterministic part of the membrane
potential.

5.3 Bounds on the noise variance

Let us now consider the stochastic part V (noise)
k (τk(t,ω), t,ω). It has zero mean, and

its variance (27) obeys the bounds:

e
−2

t−τk(t,ω)

τM,k σ 2
R + τM,k

2

(
σB

Ck

)2 (
1 − e

−2
t−τk (t,ω)

τM,k

)

≤ σ 2
k

(
τk(t,ω), t,ω

)
≤ e

−2
t−τk (t,ω)

τL,k σ 2
R + τL,k

2

(
σB

Ck

)2 (
1 − e

−2
t−τk(t,ω)

τL,k

)
.

If σ 2
R <

τM,k

2 ( σB

Ck
)2 the left-hand side is an increasing function of u = t −τk(t,ω) ≥

0 so that the minimum, σ 2
R is reached for u = 0 while the maximum is reached for

u = +∞ and is τM,k

2 ( σB

Ck
)2. The opposite holds if σ 2

R ≥ τM,k

2 ( σB

Ck
)2. The same argument

holds mutatis mutandis for the right-hand side. We set:

σ−
k

def= min

(
σB

Ck

√
τM,k

2
, σR

)
; σ+

k

def= max

(
σB

Ck

√
τL,k

2
, σR

)
(36)

so that:

Proposition 3

0 < σ−
k ≤ σk

(
τk(t,ω), t,ω

) ≤ σ+
k < +∞. (37)

5.4 The limit τk(t,ω) → −∞
For fixed s and t , there are infinitely many rasters such that τk(t,ω) < s (we remind
that rasters are infinite sequences). One may argue that taking the difference t − s

sufficiently large, the probability of such sequences should vanish. It is indeed possi-
ble to show (Section 8.1) that this probability vanishes exponentially fast with t − s,
meaning unfortunately that it is positive whatever t − s. So we have to consider cases
where τk(t,ω) can go arbitrary far in past (this is also a key toward an extension of
the present analysis to more general conductance-based models as discussed in Sec-
tion 9.3). Therefore, we have to check that the quantities introduced in the previous
sections are well defined as τk(t,ω) → −∞.

Fix s real. For all ω such that τk(t,ω) ≤ s - this condition ensuring that k does
not fire between s and t - we have, from (28), (31), 0 ≤ �k(t1, t,ω)αkj (t1,ω) ≤
α+e

− t−t1
τL,k , ∀t1 ∈ [s, t]. Now, since lims→−∞

∫ t

s
e
− t−t1

τL,k dt1 = τL,k exists, the limit

lim
τk(t,ω)→−∞ V (syn)

k

(
τk(t,ω), t,ω

) = 1

Ck

N∑
j=1

Wkj

∫ t

−∞
�k(t1, t,ω)αkj (t1,ω)dt1.
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exists as well. The same holds for the external term V (ext)
k (τk(t,ω), t,ω).

Finally, since �k(τk(t,ω), t,ω) → 0 as τk(t,ω) → −∞ the noise term (26) be-
comes in the limit:

lim
τk(t,ω)→−∞ V (noise)

k

(
τk(t,ω), t,ω

) = σB

Ck

∫ t

−∞
�k(t1, t,ω)dBk(t1),

which is a Gaussian process with mean 0 and a variance ( σB

Ck
)2

∫ t

−∞ �2
k (t1, t,ω)dt1

which obeys the bounds (37).

6 Continuity with respect to a raster

6.1 Definition

Due to the particular structure of gIF models, we have seen that the membrane poten-
tial at time t is both a function of t and of the full sequence of past spikes ω

[t]
−∞. One

expects, however, the dependence with respect to the past spikes to decay as those
spikes are more distant in the past. This issue is related to a notion of continuity with
respect to a raster that we now characterize.

Definition 1 Let m be a positive integer. The m-variation of a function f (t,ω) ≡
f (t,ω

[t]
−∞) is:

varm[f (t, ·)] = sup
{∣∣f (t,ω) − f

(
t,ω′)∣∣ : ω

m,[t]= ω′}. (38)

where the definition of
m,[t]= is given in Equation (5). Hence, this notion characterizes

the maximal variation of f (t, ·) on the set of spikes identical from time [t] − m to
time [t] (cylinder set). It implements the fact that one may truncate the spike history
to time [t] − m and make an error which is at most varm[f (t, ·)].

Definition 2 The function f (t,ω) is continuous if varm[f (t, ·)] → 0 as m → +∞.

An additional information is provided by the convergence rate to 0 with m. The
faster this convergence, the smaller the error made when replacing an infinite raster
by a spike block on a finite time horizon.

6.2 Continuity of conductances

Proposition 4 The conductance gk(t,ω) is continuous in ω, for all t , for all k =
1, . . . ,N .

Proof Fix k = 1, . . . ,N , t ∈ R, m > 0 integer. We have, for ω
m,[t]= ω′:
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∣∣αkj (t,ω) − αkj

(
t,ω′)∣∣

=
∣∣∣∣ ∑
{r;t (r)j (ω)<t}

αkj

(
t − t

(r)
j (ω)

) −
∑

{r ′;t (r′)j (ω′)<t}
αkj

(
t − t

(r ′)
j

(
ω′))∣∣∣∣

=
∣∣∣∣ ∑
{r;t (r)j (ω)<t−m}

αkj

(
t − t

(r)
j (ω)

) −
∑

{r ′;t (r′)j (ω′)<t−m}
αkj

(
t − t

(r ′)
j

(
ω′))∣∣∣∣,

since the set of firing times {t −m ≤ t
(r)
j (ω) < t}, {t −m ≤ t

(n′)
j (ω′) < t} are identical

by hypothesis. So, since αkj (x) ≥ 0,∣∣αkj (t,ω) − αkj

(
t,ω′)∣∣

≤
∑

{r;t (r)j (ω)<t−m}
αkj

(
t − t

(r)
j (ω)

) +
∑

{r ′;t (r′)j (ω′)<t−m}
αkj

(
t − t

(r ′)
j

(
ω′))

≤ 2
∑

r<t−m

αkj (t − r).

Therefore, as m → +∞, from (12) and setting M = t − m,

varm
[
αkj (t, ·)

] ≤ 2
∑
r<M

αkj (t − r)  2Pd

(
m

τkj

)
e
− m

τkj ,

which converges to 0 as m → +∞.
Therefore, from (17), gk(t,ω) is continuous with a variation

varm
[
gk(t, ·)

]  2
N∑

j=1

GkjPd

(
m

τkj

)
e
− m

τkj ,

which converges exponentially fast to 0 as m → +∞. �

6.3 Continuity of the membrane potentials

Proposition 5 The deterministic part of the membrane potential, V (det)
k (τk(t,ω),

t,ω), is continuous and its m-variation decays exponentially fast with m.

Proof In the proof, we shall establish precise upper bounds for the variation in
V (syn)

k (τk(t, ·), t, ·), V (ext)
k (τk(t, ·), t, ·) since they are used later on for the proof of

uniqueness of a Gibbs measure (Section 7.4.1). From the previous result, it is easy to

show that, for all ω
m,[t]= ω′, t1 ≤ t2 ≤ t :

∣∣�k(t1, t2,ω) − �k

(
t1, t2,ω

′)∣∣ ≤ �k(t1, t2,ω)

(
e

varm[gk ]
Ck

(t2−t1) − 1

)
,
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Therefore, from (31),

varm
[
�k(t1, t2, ·)

] ≤ e
− t2−t1

τL,k

(
e

varm[gk ]
Ck

(t2−t1) − 1

)

and �k(t1, t2,ω) is continuous in ω.
Now, the product �k(t1, t2,ω)αkj (t1,ω) is continuous as a product of continuous

functions. Moreover,

varm
[
�k(t1, t2, ·)αkj (t1, ·)

]
≤ sup

ω∈X

�k(t1, t2,ω)varm
[
αkj (t1, ·)

] + sup
ω∈X

αkj (t1,ω)varm
[
�k(t1, t2, ·)

]

= e
− t2−t1

τL,k

[
varm

[
αkj (t1, ·)

] +
(

e
varm[gk ]

Ck
(t2−t1) − 1

)
αkj (t1,�1)

]
,

so that:

varm
[
�k(t1, t2, ·)αkj (t1, ·)

]
< e

− t2−t1
τL,k

[
2Pd

(
m

τkj

)
e
− m

τkj +
(

e
varm[gk ]

Ck
(t2−t1) − 1

)
α+

]
.

Since, as m → +∞:

e
varm[gk ]

Ck
(t2−t1) − 1 ∼ varm[gk]

Ck

(t2 − t1)

 2(t2 − t1)

Ck

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′ ,

we have,

varm
[
�k(t1, t2, ·)αkj (t1, ·)

]
 2e

− t2−t1
τL,k

[
Pd

(
m

τkj

)
e
− m

τkj + α+(t2 − t1)

Ck

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′

]
,

which converges to 0 as m → +∞.
Let us show the continuity of V (syn)

k (τk(t, ·), t, ·). We have, from (20),

∣∣V (syn)

k

(
τk(t,ω), t,ω

) − V (syn)

k

(
τk

(
t,ω′), t,ω′)∣∣

≤ 1

Ck

N∑
j=1

|Wkj |

×
∣∣∣∣
∫ t

τk(t,ω)

�k(t1, t,ω)αkj (t1,ω)dt1 −
∫ t

τk(t,ω
′)

�k

(
t1, t,ω

′)αkj

(
t1,ω

′)dt1

∣∣∣∣.
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The following inequality is used at several places in the paper. For a t1-integrable
function f (t1, t,ω), we have:

∣∣∣∣
∫ t

τk(t,ω)

f (t1, t,ω)dt1 −
∫ t

τk(t,ω
′)

f (t1, t,ω
′)dt1

∣∣∣∣
≤

∫ t

τk(t,ω)

∣∣f (t1, t,ω) − f
(
t1, t,ω

′)∣∣dt1 +
∣∣∣∣
∫ τk(t,ω

′)

τk(t,ω)

f
(
t1, t,ω

′)dt1

∣∣∣∣. (39)

Here, it gives, for t1 ≤ t :

∣∣∣∣
∫ t

τk(t,ω)

�k(t1, t,ω)αkj (t1,ω)dt1 −
∫ t

τk(t,ω
′)

�k

(
t1, t,ω

′)αkj

(
t1,ω

′)dt1

∣∣∣∣
≤

∫ t

τk(t,ω)

∣∣�k(t1, t,ω)αkj (t1,ω) − �k

(
t1, t,ω

′)αkj

(
t1,ω

′)∣∣dt1

+
∣∣∣∣
∫ τk(t,ω

′)

τk(t,ω)

�k

(
t1, t,ω

′)αkj

(
t1,ω

′)dt1

∣∣∣∣.
For the first term, we have,

∫ t

τk(t,ω)

∣∣�k(t1, t,ω)αkj (t1,ω) − �k

(
t1, t,ω

′)αkj

(
t1,ω

′)∣∣dt1

≤
∫ t

τk(t,ω)

varm
[
�k(t1, t, ·)αkj (t1, ·)

]
dt1 ≤

∫ t

−∞
varm

[
�k(t1, t, ·)αkj (t1, ·)

]
dt1


∫ t

−∞
2e

− t−t1
τL,k

[
Pd

(
m

τkj

)
e
− m

τkj + α+(t − t1)

Ck

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′

]
dt1

= 2Pd

(
m

τkj

)
e
− m

τkj

∫ t

−∞
e
− t−t1

τL,k dt1

+ 2α+

Ck

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′

∫ t

−∞
(t − t1)e

− t−t1
τL,k dt1

= 2τL,k

[
Pd

(
m

τkj

)
e
− m

τkj + α+τL,k

Ck

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′

]
.

Let us now consider the second term. If τk(t,ω) ≥ t −m or τk(t,ω
′) ≥ t −m, then

τk(t,ω) = τk(t,ω
′) and this term vanishes. Therefore, the supremum in the definition

of varm[V (syn)

k (τk(t, ·), t, ·)] is attained if τk(t,ω) < t − m and τk(t,ω
′) < t − m. We

may assume, without loss of generality, that τk(t,ω
′) ≥ τk(t,ω). Then, from (32),
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∫ τk(t,ω
′)

τk(t,ω)

�k

(
t1, t,ω

′)αkj

(
t1,ω

′)dt1

< α+
∫ τk(t,ω

′)

τk(t,ω)

e
− t−t1

τL,k dt1 = α+τL,ke
− t−τk(t,ω′)

τL,k

(
1 − e

− τk(t,ω′)−τk(t,ω)

τL,k

)

≤ α+τL,ke
− t−τk (t,ω′)

τL,k ≤ α+τL,ke
− m

τL,k .

So, we have, for the variation of V (syn)

k (τk(t, ·), t, ·), using (21):

varm
[

V (syn)

k

(
τk(t, ·), t, ·

)]
 1

gL,k

N∑
j=1

|Wkj |
[

2

(
Pd

(
m

τkj

)
e
− m

τkj + α+

gL,k

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′

)

+ α+e
− m

τL,k

]
,

so that finally,

varm
[

V (syn)

k

(
τk(t, ·), t, ·

)] 
N∑

j=1

A
(syn)

kj Pd

(
m

τkj

)
e
− m

τkj + B
(syn)

k e
− m

τL,k , (40)

with

A
(syn)

kj = 1

gL,k

(
2|Wkj | + α+ Gkj

gL,k

N∑
j ′=1

|Wkj ′ |
)

, (41)

B
(syn)

k = α+

gL,k

N∑
j=1

|Wkj |, (42)

and varm[V (syn)

k (τk(t, ·), t, ·)] converges to 0 exponentially fast as m → +∞.

Now, let us show the continuity of V (ext)
k (τk(t,ω), t,ω) with respect to ω. We have:

∣∣V (ext)
k

(
τk(t,ω), t,ω

) − V (ext)
k

(
τk

(
t,ω′), t,ω′)∣∣

=
∣∣∣∣
∫ t

τk(t,ω)

(
EL

τL,k

+ i
(ext)
k (t1)

Ck

)
�k(t1, t,ω)dt1

−
∫ t

τk(t,ω
′)

(
EL

τL,k

+ i
(ext)
k (t1)

Ck

)
�k

(
t1, t,ω

′)dt1

∣∣∣∣
≤

∫ t

τk(t,ω)

∣∣∣∣ EL

τL,k

+ i
(ext)
k (t1)

Ck

∣∣∣∣∣∣�k(t1, t,ω) − �k

(
t1, t,ω

′)∣∣dt1
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+
∫ τk(t,ω

′)

τk(t,ω)

∣∣∣∣ EL

τL,k

+ i
(ext)
k (t1)

Ck

∣∣∣∣�k

(
t1, t,ω

′)dt1

≤
( |EL|

τL,k

+ i+

Ck

)

×
(∫ t

τk(t,ω)

∣∣�k(t1, t,ω) − �k

(
t1, t,ω

′)∣∣dt1 +
∫ τk(t,ω

′)

τk(t,ω)

�k

(
t1, t,ω

′)dt1

)

≤
( |EL|

τL,k

+ i+

Ck

)(∫ t

τk(t,ω)

varm
[
�k(t1, t, ·)

]
dt1 +

∫ τk(t,ω
′)

τk(t,ω)

e
− t−t1

τL,k dt1

)


( |EL|

τL,k

+ i+

Ck

)(
2τ 2

L,k

Ck

N∑
j ′=1

Gkj ′Pd

(
m

τkj ′

)
e
− m

τ
kj ′ + τL,ke

− m
τL,k

)
,

where, in the last inequality, we have used that the supremum in the variation is
attained for τk(t,ω) < t − m and τk(t,ω

′) < t − m. Finally:

varm
[

V (ext)
k

(
τk(t, ·), t, ·

)] 
N∑

j=1

A
(ext)
kj Pd

(
m

τkj

)
e
− m

τkj + B
(ext)
k e

− m
τL,k , (43)

where,

A
(ext)
kj = 2

Gkj

gL,k

B
(ext)
k , (44)

B
(ext)
k = |EL| + i+

gL,k

, (45)

and V (ext)
k (τk(t, ·), t, ·) is continuous.

As a conclusion, V (det)
k (τk(t, ·), t, ·) is continuous as the sum of two continuous

functions. �

6.4 Continuity of the variance of V (noise)
k (τk(t, ·), t, ·)

Using the same type of arguments, one can also prove that

Proposition 6 The variance σk(τk(t,ω), t,ω) is continuous in ω, for all t , for all
k = 1, . . . ,N .

Proof We have, from (27)∣∣σ 2
k

(
τk(t,ω), t,ω

) − σ 2
k

(
τk

(
t,ω′), t,ω′)∣∣

≤ σ 2
R varm

[
�2

k

(
τk(t, ·), t, ·

)]
+

(
σB

Ck

)2∣∣∣∣
∫ t

τk(t,ω)

�2
k (t1, t,ω)dt1 −

∫ t

τk(t,ω
′)

�2
k

(
t1, t,ω

′)dt1

∣∣∣∣.
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For the first term, we have that the sup in varm[�2
k (τk(t, ·), t, ·)] is attained for

τk(t,ω), τk(t,ω
′) < t − m and:

varm
[
�2

k

(
τk(t, ·), t, ·

)] ≤ 2 sup
{
�2

k

(
τk(t,ω), t,ω

);ω s.t. τk(t,ω) < t −m
} ≤ 2e

− 2m
τL,k .

For the second term, we have:∣∣∣∣
∫ t

τk(t,ω)

�2
k (t1, t,ω)dt1 −

∫ t

τk(t,ω
′)

�2
k

(
t1, t,ω

′)dt1

∣∣∣∣
≤

∫ t

τk(t,ω)

∣∣�2
k (t1, t,ω) − �2

k

(
t1, t,ω

′)∣∣dt1 +
∫ τk(t,ω

′)

τk(t,ω)

�2
k

(
t1, t,ω

′)dt1

≤
∫ t

τk(t,ω)

varm
[
�2

k (t1, t, ·)
]

dt1 +
∫ τk(t,ω

′)

τk(t,ω)

e
− 2(t−t1)

τL,k dt1

≤
∫ t

−∞
e
− 2(t−t1)

τL,k

(
e

2 varm[gk(t,·)(t−t1)]
Ck − 1

)
dt1 + τL,k

2
e
− 2m

τL,k

 τ 2
L,k

2Ck

varm
[
gk(t, ·)

] + τL,k

2
e
− 2m

τL,k ,

so that finally,

varm
[
σ 2

k (t, ·)] 
N∑

j=1

A
(σ)
kj Pd

(
m

τkj

)
e
− m

τkj + C
(σ)
k e

− 2m
τL,k , (46)

with

A
(σ)
kj = Gkj

gL,k

(
σB

√
τL,k

Ck

)2

,

C
(σ)
k = 1

2

(
σB

√
τL,k

Ck

)2

+ 2σ 2
R,

and continuity follows. �

6.5 Remark

Note that the variation in all quantities considered here is exponentially decaying
with a time constant given by max(τkj , τL,k). This is physically satisfactory: the loss
of memory in the system is controlled by the leak time and the decay of the post-
synaptic potential.

7 Statistics of raster plots

7.1 Conditional probability distribution of Vk(t)

Recall that P is the joint distribution of the noise and E[] the expectation under P .
Under P , the membrane potential V is a stochastic process whose evolution, below
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the threshold, is given Equations (24), (25) and above by (4). It follows from the
previous analysis that:

Proposition 7 Conditionally to ω
[t]
−∞, V (t) is Gaussian with mean:

E
[
Vk(t)|ω[t]

−∞
] = V (det)

k

(
τk(t,ω), t,ω

)
, k = 1, . . . ,N,

and covariance:

Cov
[
Vk(t),Vl(t)|ω[t]

−∞
] = σ 2

k

(
τk(t,ω), t,ω

)
δkl, k, l = 1, . . . ,N

where σ 2
k (τk(t,ω), t,ω) is given by (27).

Moreover, the Vk(t)’s, k = 1, . . . ,N are conditionally independent.

Proof Essentially, the proof is a direct consequence of Equations (24), (25) and the
Gaussian nature of the noise V (noise)

k (τk(t,ω), t,ω). The conditional independence
results from the fact that:

Cov
[
Vk(t),Vl(t)|ω[t]

−∞
]

= σ 2
B

CkCl

E

[∫ t

τk(t,ω)

�k(t1, t,ω)dBk(t1)

∫ t

τl (t,ω)

�l(t2, t,ω)dBl(t2)

∣∣∣ω]

+ Cov
[
�k

(
τk(t,ω), t,ω

)
Vreset,�l

(
τl(t,ω), t,ω

)
Vreset

]
= σ 2

B

CkCl

∫ t

τk(t,ω)

∫ t

τl (t,ω)

�k(t1, t,ω)�l(t2, t,ω)E
[
dBk(t1)dBl(t2)

]
+ σ 2

R�2
k

(
τk(t,ω), t,ω

)
δkl

= δkl

[(
σB

Ck

)2 ∫ t

τk(t,ω)

∫ t

τk(t,ω)

�k(t1, t,ω)�k(t2, t,ω)δ(t1 − t2)dt1 dt2

+ σ 2
R�2

k

(
τk(t,ω), t,ω

)]

= σ 2
k

(
τk(t,ω), t,ω

)
δkl . �

7.2 The transition probability

We now compute the probability of a spiking pattern at time n = [t], ω(n), given the
past sequence ωn−1−∞ .

Proposition 8 The probability of ω(n) conditionally to ωn−1−∞ is given by:

P
[
ω(n)|ωn−1−∞

] =
N∏

k=1

P
[
ωk(n)|ωn−1−∞

]
, (47)
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with

P
[
ωk(n)|ωn−1−∞

] = ωk(n)π
(
Xk(n − 1,ω)

)
+ (

1 − ωk(n)
)(

1 − π
(
Xk(n − 1,ω)

))
, (48)

where

Xk(n − 1,ω) = θ − V (det)
k (τk(n − 1,ω),n − 1,ω)

σk(τk(n − 1,ω),n − 1,ω)
, (49)

and

π(x) = 1√
2π

∫ +∞

x

e− u2
2 du. (50)

Proof We have, using the conditional independence of the Vk(n)’s:

P
[
ω(n)|ωn−1−∞

]
=

N∏
k=1

(
ωk(n)P

[
Vk(n − 1) ≥ θ |ωn−1−∞

] + (
1 − ωk(n)

)
P

[
Vk(n − 1) < θ |ωn−1−∞

])
.

Since the Vk(n − 1)’s are conditionally Gaussian, with mean V (det)
k (τk(n − 1,ω),

n − 1,ω) and variance σ 2
k (τk(n − 1,ω),n − 1,ω), we directly obtain (47), (48).

Note that since σk(τk(n − 1,ω),n − 1,ω) is bounded from below by a positive

quantity (see (37)), the ratio
θ−V (det)

k (τk(n−1,ω),n−1,ω)

σk(τk(n−1,ω),n−1,ω)
in (48) is defined for all ω ∈

X. �

7.3 Chains with complete connections

The transition probabilities (47) define a stochastic process on the set of raster
plots where the underlying membrane potential dynamics is summarized in the
terms V (det)

k (τk(n − 1,ω),n − 1,ω) and σk(τk(n − 1,ω),n − 1,ω). While the inte-
gral defining these terms extends from τk(n − 1,ω) to n − 1 where τk(n − 1,ω)

can go arbitrary far in the past, the integrand involves the conductance gk(n − 1,ω)

that summarizes an history dating back to s = −∞. As a consequence, the proba-
bility transitions generate a stochastic process with unbounded memory, thus non-
Markovian. One may argue that this property is a result of our procedure of taking
the initial condition in a infinite past s → −∞, to remove the unresolved dependency
on gk(s) (Section 3.4). So the alternative is either to keep s finite in order to have a
Markovian process; then, we have to fix arbitrarily gk(s) and the probability distri-
bution of Vk(s). Or we take s → −∞, removing the initial condition, to the price of
considering a non-Markovian process. Actually, such processes are widely studied in
the literature under the name of “chains with complete connections” [43, 46–49] and
several important results can be used here. So we adopt the second approach of the
alternative. As a by-product, the knowledge of the Gibbs measure provided by this
analysis allows a posteriori to fix the probability distribution of Vk(s).
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For the sake of completeness, we give here the definition of a chain with complete
connections (see [43] for more details). For n ∈ Z, we note An−1−∞ the set of sequences
ωn−1−∞ and F≤n−1 the related σ -algebra, while F is the σ -algebra related with X =
AZ. P (X, F ) is the set of probability measures on (X, F ).

Definition 3 A system of transition probabilities is a family {Pn}n∈Z of functions

Pn[|] : A × An−1−∞ → [0,1],
such that the following conditions hold for every n ∈ Z:

• For every ω(n) ∈ A, the function Pn[ω(n)|.] is measurable with respect to F≤n−1.
• For every ωn−1−∞ ∈ An−1−∞ , ∑

ω(n)∈A
Pn

[
ω(n)|ωn−1−∞

] = 1.

A probability measure μ in P (X, F ) is consistent with a system of transition prob-
abilities {Pn}n∈Z if for all n ∈ Z and all F≤n-measurable functions f :∫

f
(
ωn−∞

)
μ(dω) =

∫ ∑
ω(n)∈A

f
(
ωn−1−∞ω(n)

)
Pn

[
ω(n)|ωn−1−∞

]
μ(dω).

Such a measure μ is called a “chain with complete connections consistent with
the system of transition probabilities {Pn}n∈Z”.

The transitions probabilities (47) constitute such a system of transitions probabili-
ties: the summation to 1 is obvious while the measurability follows from the continu-
ity of Pn[ω(n)|ωn−1−∞] proved below. To simplify notations, we write p(n,ω) instead
of Pn[ω(n)|ωn−1−∞] whenever it makes no confusion.

7.4 Existence of a consistent probability measure μ

In the definition above, the measure μ summarizes the statistics of spike trains from
−∞ to +∞. Its marginals allow the characterization of finite spike blocks. So, μ

provides the characterization of spike train statistics in gIF models. Its existence
is established by a standard result in the frame of chains with complete connec-
tions stating that a system of continuous transition probabilities on a compact space
has at least one probability measure consistent with it [43]. Since π is a continu-
ous function the continuity of p(n,ω) with respect to ω follows from the continu-
ity of V (det)

k (τk(n − 1,ω),n − 1,ω) and the continuity of σk(τk(n − 1,ω),n − 1,ω),
proved in Section 6.

Therefore, there is at least one probability measure consistent with (47).

7.4.1 The Gibbs distribution

A system of transition probabilities is non-null if for all n ∈ Z and all ωn−1−∞ ∈ An−1−∞ ,
P [ω(n)|ωn−1−∞] > 0. Following [50], a chain with complete connection μ is a Gibbs
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measure consistent with the system of transition probabilities p(n, ·) if this system
is continuous and non-null. Gibbs distributions play an important role in statistical
physics, as well as ergodic theory and stochastic processes. In statistical physics,
they are usually derived from the maximal entropy principle [14]. Here, we use them
in a more general context affording to consider non-stationary processes. It turns
out that the spike train statistics in gIF model is given by such a Gibbs measure. In
this section, we prove the main mathematical result of this paper (uniqueness of the
Gibbs measure). The consequences for spike trains characterizations are discussed in
the next section.

Theorem 1 For each choice of parameters γ ∈ H, the gIF model (16) has a unique
Gibbs distribution.

The proof of uniqueness is based on the following criteria due to Fernandez and
Maillard [50].

Proposition 9 Let:2

m(p) = inf
n∈Z

inf
ω∈An−∞

p(n,ω),

and

v(p) = sup
m′∈Z

∑
n≥m′

varn−m′
[
p(n, ·)].

If m(p) > 0 and v(p) < ∞, then there exists at most one Gibbs measure consistent
with it.

So, to prove the uniqueness, we only have to establish that

m(p) > 0, (51)

v(p) < +∞. (52)

Proof m(p) > 0.
Recall that:

p(n,ω) =
N∏

k=1

[
ωk(n)π

(
Xk(n − 1,ω)

) + (
1 − ωk(n)

)(
1 − π

(
Xk(n − 1,ω)

))]
.

From (35), (37), we have:

−∞ <
θ − V +

k

σ+
k

< Xk(n − 1,ω) <
θ − V −

k

σ−
k

< +∞. (53)

2In [50], the authors use the following definition for the n, m variation, which reads in our notations:

var′m
[
p(n, ·)] = sup

{∣∣p(n,ω) − p
(
n,ω′)∣∣;ω,ω′ ∈ An−∞,ωn

m = ωn
m

}
, m ≤ n.

It differs therefore slightly from our definition (5), (38). The correspondence is var′m[p(n, ·)] =
varn−m[p(n, ·)]. The definition of v(p) takes this correspondence into account.
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Since π , given by (50), is monotonously decreasing, we have:

0 < π−
k

def= π

(
θ − V −

k

σ−
k

)
< π

(
Xk(n − 1,ω)

)
< π+

k

def= π

(
θ − V +

k

σ+
k

)
< 1,

so that:

0 < �−
k

def= min
(
π−

k ,1 − π+
k

)
< ωk(n)π−

k + (
1 − ωk(n)

)(
1 − π+

k

)
< pk(n,ω)

< ωk(n)π+
k + (

1 − ωk(n)
)(

1 − π−
k

)
< �+

k

def= max
(
π+

k ,1 − π−
k

)
< 1. (54)

Finally,

m(p) >

N∏
k=1

�−
k > 0,

which proves (51). This also proves the non-nullness of the system of transition prob-
abilities.

v(p) < ∞.
The proof, which is rather long, is given in the appendix. �

8 Consequences

8.1 The probability that neuron k does not fire in the time interval [s, t]

In Section 4.2, we argued that this probability vanishes exponentially fast with t − s.
This probability is μ[⋂[t]

n=[s]+1{ωk(n) = 0}]. We now prove this result.

Proposition 10 The probability that neuron k does not fire within the time interval
[s, t], t − s > 1 has the following bounds:

0 < �
[t]−[s]
− < μ

[ [t]⋂
n=[s]+1

{
ωk(n) = 0

}]
< �

[t]−[s]
+ < 1,

for some constants 0 < �− < �+ < 1 depending on the system parameters γ ∈ H.

Proof We have:

μ

[ [t]⋂
n=[s]+1

{
ωk(n) = 0

}] =
∫

A[s]
−∞

μ

[ [t]⋂
n=[s]+1

{
ωk(n) = 0

}∣∣∣ω[s]
−∞

]
dμ(ω)

=
∫

A[s]
−∞

[t]∏
n=[s]+1

μ
[{

ωk(n) = 0
}|ωn−1−∞

]
dμ(ω)
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=
∫

A[s]
−∞

[t]∏
n=[s]+1

P
[
ωk(n) = 0|ωn−1−∞

]
dμ(ω),

where P [ωk(n) = 0|ωn−1−∞] is given by (47) and obeys the bounds (54). Therefore,
setting �− = ∏N

k=1 �−
k and �+ = ∏N

k=1 �+
k , we have

�
[t]−[s]
−

∫
A[s]

−∞
dμ(ω) = �

[t]−[s]
− ≤ μ

[
τk(t,ω) ≤ s

] ≤ �
[t]−[s]
+

∫
A[s]

−∞
dμ(ω)

= �
[t]−[s]
+ . �

8.2 Back to spike trains analysis with the maximal entropy principle

Here, we shortly develop the consequences of our results in relation with the statis-
tical model estimation discussed in the introduction. A more detailed discussion will
be published elsewhere (in preparation and [51]). Set:

φ(n,ω)
def= logp(n,ω) =

N∑
k=1

φk(n,ω), (55)

with,

φk(n,ω)
def= ωk(n) logπ

(
Xk(n − 1,ω)

)
+ (

1 − ωk(n)
)

log
(
1 − π

(
Xk(n − 1,ω)

))
. (56)

The function φ is a Gibbs potential [52]. Indeed, we have ∀m < n, ∀ωn−∞:

μ
[
ωn

m|ωm−1−∞
] = exp

n∑
l=m

φ(l,ω).

This equation emphasizes the connection with Gibbs distributions in statistical
physics that considers probability distributions on multidimensional lattices with
specified boundary conditions and their behavior under space translations [52]. The
correspondence with our case is that “time” is represented by a mono-dimensional
space and where the “boundary conditions” are the past ωm−1−∞ . Note that in our case,
the partition function is equal to 1.

For simplicity, assume stationarity (this is equivalent to assuming a time-
independent external current). In this case, it is sufficient to consider the potential
at time n = 0.

Thanks to the bounds (53), one can make a series expansion of the functions
log(π) and log(1 − π) and rewrite the potential under the form of the expansion:

φ(0,ω) =
+∞∑
R=1

R∑
r=1

∑
{(k1,n1),...,(kr ,nr )∈P (N,R)}

λ(k1,n1),...,(kr ,nr )ωk1(n1) · · ·ωkr (nr) (57)
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where P (N,R) is the set of non-repeated pairs of integers (k,N) with k ∈ {1, . . . ,N}
and n ∈ {−R, . . . ,0}. We call the product ωk1(n1) · · ·ωkr (nr) a monomial. It is 1 if
and only if neuron k1 fires at time n1, . . . , kr fires at time nr . The λ(k1,n1),...,(kr ,nr )’s
are explicit functions of the parameters γ . Due to the causal form of the potential,
where the time-0 spike, ωk(0), is multiplied by a function of the past ω−1−∞, the poly-
nomial expansion does not contain monomials of the form ωk1(0) · · ·ωkr (0), r > 1
(the corresponding coefficient λ vanishes).

Since the potential has infinite range, the expansion (57) contains infinitely many
terms. One can nevertheless consider truncations to a range R = D+1 corresponding
to truncating the memory of the process to some memory depth D. Note that although
truncations with a memory depth D are approximations, the distance with the exact
potential converges exponentially fast to 0 as D → +∞ thanks to the continuity of
the potential, with a decay rate controlled by synaptic responses and leak rate.

The truncated Gibbs potential has the form:

φ(D)
(
ω0−D

) =
∑

l

λlφl

(
ω0−D

); (58)

where l stands for (k1, n1), . . . , (kr , nr) and is an enumeration of the elements in
P (N,D + 1) and where φl is the corresponding monomial. Due to the truncation,
(58), contrarily to (55), is not normalized. Its partition function3 is not equal to 1, and
its computation becomes rapidly intractable as soon as the number of neurons and
memory depth increases.

Clearly, (58) is precisely the form of potential which is obtained under the maximal
entropy principle, where the φl’s are constraints of type “neuron k1 is firing at time
n1, neuron k2 is firing at time n2, . . .” and the λl’s the conjugated Lagrange multipli-
ers. Thus, using the maximal entropy principle to characterize spike statistics in the
gIF model by expressing constraints in terms of spike events (monomials), one can
at best find an approximation which can be rather bad, especially if those constraints
focus on instantaneous spike patterns (D = 0) or short memory patterns. Moreover,
increasing the memory depth to approach better the right statistics leads to an ex-
ponential increase in the number of monomials which becomes rapidly intractable.
Finally, the Lagrange multipliers λl are rather difficult to interpret.

On the opposite, the analytic form (55) depends only on a finite numbers of pa-
rameters (γ ) constraining the neural network dynamics, which have a straightforward
interpretations being physical quantities. This shows that, at least in gIF model, the
linear Gibbs potential (58) obtained from the maximal entropy principle is not re-
ally appropriate, even for empirical/numerical purposes, and that a form (55) where
the infinite memory ω−1−∞ is replaced by ω−1

−D could be more efficient although non-
linear.

3For D > 0, this is Z(ω−1
−D

) = ∑
ω(0) eφ(D)(ω0−D

) , ensuring that e
φ(D)(ω0−D

)

Z(ω−1
−D

)
is a conditional probability

P [ω(0)|ω−1
−D

]. Hence, it is not a constant but a function of the past ω−1
−D

, in a similar way to statistical
physics on lattices where the partition function depends on the boundary conditions. Only in the case
D = 0 (memory less) is this a constant.
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To finish this section, let us discuss the link with Ising model in light of the
present work. Ising model corresponds to a memory-less case, hence to D = 0.
Since the causal structure of the Gibbs potential forbids monomials of the form
ωk1(0) · · ·ωkr (0), the D = 0 expansion of the gIF-Gibbs potential corresponds to a
Bernoulli distribution where neurons are independent φ(0)(0,ω) = ∑N

k=1 λkωk(0).
The Ising model is therefore irrelevant to approximate the exact potential of gIF
model, if one wants to reproduce spike statistics at the minimal discretization time
scale δ without considering memory effects.

However, in real data analysis, people are usually binning data, with a time win-
dows of width w ∼ 10-20 ms. Binning consists of recoding the raster plot with
spikes amalgamation. The binned raster b consists of “spikes” bk(n) ∈ {0,1} where
bk(n) = 1 if neuron k fired at least once in the time window [nw, (n + 1)w[. In
the expansion (57), this corresponds to collecting all monomials corresponding to
bk(n) = 1 in a unique monomial. In this way, the binned potential contains indeed
an Ising term. . . that mixes all spike events occurring within the time interval w.
These events appear simultaneous because of binning, leading to the Ising pairwise
term bk1(0)bk2(0) while events occurring on smaller time scales are scrambled by this
procedure.

The binning effect on Gibbs potential requires, however, a more detailed descrip-
tion. This will be discussed elsewhere.

9 Discussion

To conclude this paper, we would like to discuss several consequences and possible
extensions of this work.

9.1 The spike time discretization

In gIF model, membrane potential evolves continuously while conductance is up-
dated with spike occurrence considered as discrete events. Here, we discuss this time
discretization. Actually, there are two distinct questions.

9.1.1 The limit of time-bin tending to 0

This limit would correspond to a case where spike is instantaneous and modeled by a
Dirac distribution. As discussed in [32], this limit raises serious difficulties. To sum-
marize, in real neurons, firing occurs within a finite time δ corresponding to the time
of raise and fall for the membrane potential. This involves physicochemical processes
that cannot be instantaneous. The time curse of the membrane potential during the
spike is described by differential equations, like Hodgkin-Huxley’s [35]. Although,
the time scale dt appearing in the differential equations has the mathematical mean-
ing of being arbitrary small, on biophysical grounds, this time scale cannot be arbi-
trary small, otherwise the Hodgkin-Huxley equations loose their meaning. Indeed,
they correspond to an average over microscopic phenomena such as ionic channels
dynamics. In particular, their time scale must be sufficiently large to ensure that the



Page 34 of 42 Cessac

description of ionic channels dynamics (opening and closing) in terms of probabil-
ities is valid so dt must be larger than the characteristic time of opening-closing of
ionic channels τP . Additionally, Hodgkin-Huxley’s equations use a Markovian ap-
proach (master equation) for the dynamics of h, m, n gates. This requires that the
characteristic time dt is quite a bit larger than the characteristic time of decay for
the time correlations between gates activity τC . Summarizing, we must have 0 < τC ,
τP < dt < δ. Thus, on biophysical grounds, δ cannot be arbitrary small.

In our case, the δ → 0 limit is armless, however, provided we keep a non-zero re-
fractory period, ensuring that only finitely many spikes occur in a finite time interval.
Taking the limit δ → 0 without considering a refractory period raises mathematical
problems. One can in principle have uncountably many spikes in a finite time interval
leading to the divergence of physical quantities like energy. Also, one can generate
nice causal paradoxes [37]. Take a loop with two neurons one excitatory and one in-
hibitory and assume instantaneous propagation (the α profile is then represented by
a Dirac distribution). Then, depending on the synaptic weights value, one can have
a situation where neuron 1 fires instantaneously and make instantaneously 2 firing
which prevents instantaneously 1 from firing and so on. So taking the limit δ → 0 as
well as τrefr → 0 induces pathologies not inherent to our approach but to IF models.

9.1.2 Synchronization for distinct neurons

There is a more subtle issue pointed out in [53]. We do not only discretize time for
each neuron’ spikes, we align the spikes emitted by distinct neurons on a discrete-
time grid, as an experimental raster does. As shown in [32] this induces, in gIF mod-
els with a purely deterministic dynamics (no noise and reset to a constant value), an
artificial synchronization. As a consequence, the deterministic dynamics of gIF mod-
els has generically only stable periodic orbits, although periods can be larger than any
accessible computational time in a specific region of the parameters space. Addition-
ally, these periods increase as δ decreases. The addition of noise on dynamics and on
the reset value, as we propose in this paper, removes this synchronization effect.

9.2 Refractory period

In the definition of the model, we have assumed that the refractory period τref was
smaller than 1. The consequence for raster plots is that one can have two consecu-
tive 1’s in the spike sequence of a neuron. The extension to the case where τref > 1
is straightforward for spike statistics. Having such a refractory period forbids some
sequences. For example, if 1 < τref ≤ 2, then all sequences containing two consec-
utive 1’s for one neuron (1,1) are forbidden. If 2 < τref ≤ 3 sequences containing
1,∗,1 for a given neuron, where ∗ = 0,1, are forbidden, and so on. More generally,
the procedure consisting of forbidding specific (finite) spike blocks is equivalent to
introducing a grammar in the spike generation. This grammar can be implemented in
the Gibbs potential: forbidden sequences have a potential equal to −∞ (resp. a zero
probability). In this case, X = AZ, the set of all possible rasters, becomes a subset
where forbidden sequences have been removed.
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9.3 Beyond IF models

Let us now discuss the extension of the present work to more general models of
neurons. First, one characteristic feature of integrate and fire models is the reset,
which has the consequence that the memory of activity preceding the spike is lost
after reset. Although in the deterministic (noiseless) case, this is a simplifying feature
allowing for example to fully characterize the asymptotic dynamics of (discrete time)
IF models [32, 54], here, it somewhat renders more complex the analysis. Indeed,
it led us to introduce the notion of “last reset” time and, at some point in the proof
(see, e.g., Equation (39)), obliged us to consider several situations (e.g., τk(t,ω) ≥
t − m or τk(t,ω

′) ≥ t − m versus τk(t,ω) < t − m and τk(t,ω
′) < t − m in the

proof of continuity, Section 6). On the opposite, considering a model where no such
reset occur would simply lead us to consider a model where τk(t,ω) → −∞, ∀ω,
∀k. This case is already considered in our formalism, and actually, considering that
τk(t,ω) → −∞, ∀ω, ∀k simplifies the proofs (for example it eliminates the second
term in Equation (39)).

As a matter of fact, the theorems established in this paper should therefore also
hold without reset. But this requires to replace the firing condition (4) by another
condition stating what the membrane potential does during the spike. Although it
could be possible to propose an ad hoc form for the spike, it would certainly be more
interesting to extend the results here to models where neurons activity depends on
additional variables such as adaptation currents, as in the FitzHugh-Nagumo model
[39–42], or activation-inactivation variables as in the Hodgkin-Huxley model [35].

The present formalism affords an extension toward such models, where the neuron
fires whenever its membrane potential belongs to a region of the phase space, which
can be delimited by membrane potentials plus additional variables such as adapta-
tion currents or activation-inactivation variables, and where the spike is controlled
by the global dynamics of all these variables. But while here the firing of a neuron
is described by the crossing of a fixed threshold, in the FitzHugh-Nagumo model, it
is given by the crossing of a separatrix in the plane (voltage-adaptation current) and
by a more complex “frontier” in the Hodgkin-Huxley model [2, 55]. One difficulty
is to precisely define this region. To our knowledge, there is no clear agreement for
the Hodgkin-Huxley model (some authors [2] even suggest that the “spike region”
could have a fractal frontier). The extension toward FitzHugh-Nagumo seems more
manageable.

Finally, the most important difficulty toward extending this paper results in more
realistic neural networks is the definition of the synaptic spike response. In IF mod-
els, the spike is thought as a punctual “event” (typically, an “instantaneous” pulse)
while the synaptic response is described by a convolution kernel (the α-profile). This
leads one to consider a somewhat artificial mixed dynamics where membrane poten-
tial evolves continuously while spike are discrete events. In more realistic models,
one would have to consider kinetic equations for neurotransmitter release, receptor
binding and opening of post-synaptic ionic channels [5, 44]. Additionally, the consid-
eration of these mechanics deserves a spatially extended modeling of the neuron, with
time delays. In this case, all variables evolve continuously and the statistics of spike
trains would be characterized by the statistics of return times in the “spike region”.
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This statistics is induced by some probability measure in the phase space; a natural
candidate would be the Sinai-Ruelle-Bowen measure [56–58], for stationary dynam-
ics, or the time-dependent SRB measure for non-stationary cases, as defined, e.g., in
[59]. These measures are Gibbs measures as well [60]. Here, the main mathematical
property ensuring existence and uniqueness of such a measure would be uniform hy-
perbolicity. To our knowledge, conditions ensuring such a property in networks have
not been established yet neither for Hodgkin-Huxley’s nor for FitzHugh-Nagumo’s
models.

9.4 Synaptic plasticity

As the results established in this paper hold for any synaptic weight value in H, they
hold as well for networks underlying synaptic plasticity mechanisms. The effects of
a joint evolution of spikes dynamics, depending on synaptic weights distributions,
and synaptic weights evolution depending on spike dynamics have been studied in
[61]. In particular it has been shown that mechanisms such as Spike-Time-Dependent
Plasticity are related to a variational principle for a quantity, the topological pressure,
derived for the thermodynamic formalism of Gibbs distributions. In the paper [61],
the fact that spike trains statistics were given by a Gibbs distribution was a working
assumption. Therefore, the present work establishes a firm ground for [61].

Appendix

Here, we establish (52). We use the following lemma.

Lemma 1 For a collection 0 ≤ ak, a
′
k ≤ 1, ∀k = 1, . . . ,N , we have∣∣∣∣∣

N∏
k=1

ak −
N∏

k=1

a′
k

∣∣∣∣∣ ≤
N∑

k=1

∣∣ak − a′
k

∣∣. (59)

This lemma is easily proved by recursion.
We have, for n ∈ Z, m ≥ 0

varm
[
p(n, ·)] = sup

{∣∣∣∣∣
N∏

k=1

ak −
N∏

k=1

a′
k

∣∣∣∣∣;ω m,n= ω′
}

,

where:

ak = ωk(n)π
(
Xk(n − 1,ω)

) + (
1 − ωk(n)

)(
1 − π

(
Xk(n − 1,ω)

))
,

a′
k = ω′

k(n)π
(
Xk

(
n − 1,ω′)) + (

1 − ω′
k(n)

)(
1 − π

(
Xk

(
n − 1,ω′))).

Therefore, using inequality (59),

varm
[
p(n, ·)] ≤

N∑
k=1

sup
{∣∣ak − a′

k

∣∣;ω m,n= ω′}.
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The condition ω
m,n= ω′ implies ωk(n) = ω′

k(n) so that:∣∣ak − a′
k

∣∣ = ∣∣π(
Xk(n − 1,ω)

) − π
(
Xk

(
n − 1,ω′))∣∣.

We have∣∣π(
Xk(n − 1,ω)

) − π
(
Xk

(
n − 1,ω′))∣∣ ≤ ∣∣Xk(n − 1,ω) − Xk

(
n − 1,ω′)∣∣∥∥π ′∥∥∞,

with ‖π ′‖∞ = supx∈R |π ′(x)| = 1√
2π

, so that

varm
[
p(n, ·)] ≤ 1√

2π

N∑
k=1

varm
[
Xk(n − 1, ·)].

We have now to upper bound varm[Xk(n − 1, ·)] = sup{|Xk(n − 1,ω) − Xk(n − 1,

ω′)|;ω m,n−1= ω′}. We have

varm
[
Xk(n − 1, ·)]

≤ varm
[
θ − V (det)

k

(
τk(n − 1, ·), n − 1, ·)] sup

ω∈X

1

σk(τk(n − 1,ω),n − 1,ω)

+ sup
ω∈X

∣∣θ − V (det)
k

(
τk(n − 1,ω),n − 1,ω

)∣∣varm

[
1

σk(τk(n − 1, ·), n − 1, ·)
]
,

with,

varm
[
θ − V (det)

k

(
τk(n − 1, ·), n − 1, ·)] = varm

[
V (det)

k

(
τk(n − 1, ·), n − 1, ·)]

≤ varm
[

V (syn)

k

(
τk(n − 1, ·), n − 1, ·)] + varm

[
V (ext)

k

(
τk(n − 1, ·), n − 1, ·)]

so that, from (40), (43):

varm
[
θ − V (det)

k

(
τk(n − 1, ·), n − 1, ·)]


N∑

j=1

A
(det)
kj Pd

(
m

τkj

)
e
− m

τkj + B
(det)
k e

− m
τL,k

(60)

where:

A
(det)
kj = A

(syn)

kj + A
(ext)
kj ,

(see Equations (41), (44)) and:

B
(det)
k = B

(syn)

k + B
(ext)
k ,

(see Equations (42), (45)).
Moreover, from (37),

sup
ω∈X

1

σk(τk(n − 1,ω),n − 1,ω)
≤ 1

σ−
k

. (61)
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From (35),

sup
ω∈X

∣∣θ − V (det)
k

(
τk(n − 1,ω),n − 1,ω

)∣∣ ≤ max
(∣∣θ − V −

k

∣∣, ∣∣θ − V +
k

∣∣). (62)

Finally,

varm

[
1

σk(τk(n − 1, ·), n − 1, ·)
]

≤ varm
[
σk

(
τk(n − 1, ·), n − 1, ·)] sup

ω∈X

1

σ 2
k (τk(n − 1,ω),n − 1,ω)

≤ 1

(σ−
k )2

varm
[
σk

(
τk(n − 1, ·), n − 1, ·)],

while

varm
[
σ 2

k

(
τk(n − 1, ·), n − 1, ·)] ≥ 2σ−

k varm
[
σk

(
τk(n − 1, ·), n − 1, ·)],

from (37), so that:

varm
[
σk

(
τk(n − 1, ·), n − 1, ·)] ≤ 1

2σ−
k

varm
[
σ 2

k

(
τk(n − 1, ·), n − 1, ·)],

and, from (46),

varm

[
1

σk(τk(n − 1, ·), n − 1, ·)
]

 1

2(σ−
k )3

[
N∑

j ′=1

A
(σ)

kj ′ Pd

(
m

τkj ′

)
e
− m

τ
kj ′ + C

(σ)
k e

− 2m
τL,k

]
. (63)

Summarizing (60), (61), (62), (63)

varm
[
Xk(n − 1, ·)]  1

σ−
k

(
N∑

j=1

A
(det)
kj Pd

(
m

τkj

)
e
− m

τkj + B
(det)
k e

− m
τL,k

)

+ max
[∣∣θ − V −

k

∣∣, ∣∣θ − V +
k

∣∣]
× 1

(2σ−
k )3

[
N∑

j ′=1

A
(σ)

kj ′ Pd

(
m

τkj ′

)
e
− m

τ
kj ′ + C

(σ)
k e

− 2m
τL,k

]
.

Therefore, we have:

varm
[
Xk(n − 1, ·)] 

N∑
j=1

A
(X)
kj Pd

(
m

τkj

)
e
− m

τkj + B
(X)
k e

− m
τL,k + C

(X)
k e

− 2m
τL,k ,

for constants A
(X)
kj , B

(X)
k , C

(X)
k .
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As a consequence,

varm
[
p(n, ·)]  1√

2π

N∑
k=1

[
N∑

j=1

A
(X)
kj Pd

(
m

τkj

)
e
− m

τkj + B
(X)
k e

− m
τL,k + C

(X)
k e

− 2m
τL,k

]
.

Therefore,
∑

n≥m′ varn−m′ [p(n, ·)] is bounded from above by the series

1√
2π

N∑
k=1

[
N∑

j=1

A
(X)
kj

∑
n≥m′

Pd

(
n − m′

τkj

)
e
− n−m′

τkj + B
(X)
k

∑
n≥m′

e
− n−m′

τL,k

+ C
(X)
k

∑
n≥m′

e
− 2(n−m′)

τL,k

]

= 1√
2π

N∑
k=1

[
N∑

j=1

A
(X)
kj

∑
l≥0

Pd

(
l

τkj

)
e
− l

τkj + B
(X)
k

∑
l≥0

e
− l

τL,k

+ C
(X)
k

∑
l≥0

e
− 2l

τL,k

]
,

which converges, uniformly in m′. As a consequence, in (52), v(p) < +∞ and we
are done.
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