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Enteroaggregative Escherichia coli
(EAEC) is an important cause of

endemic and epidemic diarrheal disease
worldwide. Although not classically con-
sidered an inflammatory pathogen in the
style of Shigella and Salmonella species,
clinical data from patients suggests that
inflammatory responses may play an
important role during EAEC disease.
However, the specific role of inflam-
mation during EAEC pathogenesis has
not been investigated in detail. To better
understand how EAEC may induce
inflammation, we have focused our
attention on the intimate interactions
between EAEC and the host epithelium
and the subsequent induction of host cell
signaling events leading to innate
immune responses. Here, we discuss our
recent findings on the signaling pathway
by which EAEC promotes transepithelial
migration of polymorphonuclear leuko-
cytes (PMNs), the role of aggregative
adherence fimbriae in triggering this
event and the implementation of human
intestinal xenografts in immunodeficient
mice for studying EAEC pathogenesis in
vivo. Our findings suggest that EAEC
shares conserved mechanisms of inducing
PMN recruitment with other intestinal
pathogens, providing new insight into the
potential pathological consequences of
EAEC-induced inflammation.

Introduction

Enteroaggregative Escherichia coli (EAEC)
is an enteric pathogen increasingly recog-
nized for causing acute and persistent
diarrheal illness in developing countries,

as well as worldwide foodborne outbreaks.1

While EAEC may in fact be one of the
most common bacterial causes of diarrhea,
the lack of global routine surveillance
systems for detecting EAEC has likely
rendered it underreported.2 In the past
year, however, focus on EAEC has
increased following a major outbreak in
Germany in 2011.3

EAEC pathogenesis results from col-
onization of the intestinal mucosa via a
stepwise process of adherence and sub-
sequent biofilm formation, which is fol-
lowed by toxin release leading to secretion
of intestinal fluids.1

Several enteric pathogens, including
E. coli pathotypes, are agents of inflam-
matory diarrhea, the histopathologic hall-
mark of which is infiltration of poly-
morphonuclear leukocytes (PMNs).4-7 The
role of inflammation during EAEC patho-
genesis has only recently been considered,
and increasing evidence suggests that
inflammatory responses may play a sub-
stantial role in EAEC pathology. Clinical
studies have documented elevated levels of
pro-inflammatory markers, including
interleukin (IL)-8, IL-1β and fecal lacto-
ferrin and leukocytes, in EAEC-infected
individuals.8-10 Therefore, unraveling the
mechanisms underlying EAEC-induced
inflammation and dissecting the role of
these events in disease are important steps
toward advancing the understanding of
this emerging pathogen.

Induction of Host Cell
Inflammatory Signals by EAEC

Accumulation of PMNs at inflamed sites is
a common outcome of colonization of
mucosal surfaces by pathogenic bacteria.
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Intestinal epithelial cells respond by
releasing cytokines and distinctive
PMN-specific chemoattractants that—in
combination with numerous adhesion
molecules—recruit PMNs from the blood
stream and direct their movement through
endothelial and epithelial barriers to the
luminal surface. Recruitment of PMNs is
the first line of response of the host
immune system to bacterial infection,
geared toward destruction of invading
pathogens. However, the nonspecific
neutrophil effectors can cause collateral
damage, thus potentially contributing to
disease pathology. Moreover, several
pathogens have evolved strategies to resist
neutrophil killing or even benefit from
eliciting inflammation.

In line with other enteric pathogens,
previous studies have shown that EAEC
infection of polarized intestinal epithelial

cells triggers mitogen-activated protein
kinase signaling cascades that lead to
nuclear factor kappa-B (NFkB) activation,
which in turn stimulates the release of an
array of pro-inflammatory cytokines,
including the potent PMN chemokine
interleukin (IL)-8.11,12 Thus, basolaterally
released IL-8 likely plays a major role in
recruiting PMNs to the subepithelial space
in response to EAEC infection.

A recent study from our group shows
that EAEC-induced migration of PMNs
across the epithelium requires apical
secretion of a second, lipid-based PMN
chemoattractant (Fig. 1). Specifically,
EAEC infection of polarized T84 colonic
epithelial cells triggers calcium-independ-
ent phospholipase A2 (iPLA2)-mediated
release of arachidonic acid from the cell
membrane. Through enzymatic action of
12-lipoxygenase (12-LOX), arachidonic

acid is then metabolized into hepoxilin
A3 (HXA3), a member of the eicosanoid
class of lipids with potent PMN chemoat-
tractant properties. EAEC infection also
triggers an increase in expression of the
apically located membrane ATP-binding
cassette (ABC) transporter multidrug
resistance-associated protein 2 (MRP2),
which subsequently functions as an efflux
pump for the vectoral release of HXA3 to
the apical surface. Secreted HXA3 then
forms a chemotactic gradiant through the
tight junctional complex, thus directing
paracellular transit of PMNs across the
epithelial monolayer to the luminal sur-
face13 (Fig. 1).

Increasing evidence suggests that 12-
LOX-mediated apical release of HXA3 to
promote PMN transepithelial migration is
a conserved mechanism by which the
intestinal epithelium responds to intruding
inflammatory pathogens, including
Salmonella enterica serovar Typhimurium
(S. Typhimurium), Shigella flexneri,
Campylobacter species and EAEC.13-15

Yet, the upstream events by which these
pathogens elicit inflammation are very
much distinct, reflecting their discrete
strategies for promoting infection. As an
example, S. Typhimurium and S. flexneri
rely on effector proteins, translocated into
the host cells by type III secretion systems
(T3SS), to interact with host cells, leading
to invasion of the epithelium and trigger-
ing and manipulation of innate immune
responses.16,17 While E. coli pathotypes
such as enteropathogenic E. coli and
enterohemorrhagic E. coli also employ
T3SS-dependent infection strategies, this
does not appear to be the case for
EAEC. Moreover, unlike S. flexneri and
S. Typhimurium, EAEC strains generally
do not invade the epithelium, and instead
remain anchored in the intestinal
mucosa.18 Our recent work shows that
EAEC-induced PMN transmigration
requires only binding of the bacteria to
the apical epithelial surface, an event
facilitated by aggregative adherence fim-
briae (AAF), the principal adhesins of
EAEC.19

The pro-inflammatory properties appear
to be conserved among different variants
of these adhesins as all four AAF subtypes
identified thus far promote PMN transe-
pithelial migration.19 The AAF subunits

Figure 1. Model of EAEC-induced PMN transepithelial migration. AAF-mediated binding of EAEC to
the surface of the intestinal epithelium triggers basolateral release of pro-inflammatory cytokines,
e.g., IL-8, thus recruiting PMNs to the subepithelial space. Moreover, AAF binding also induces
iPLA2-mediated release of arachidonic acid from the host cell membranes. Through 12-LOX activity,
arachidonic acid is then metabolized into HXA3, which is then transported across the apical
membrane by MRP2, thus generating a chemotactic gradient of the lipid across the tight junctional
complex driving transepithelial migration of PMNs to the apical surface. PKC-d also plays a key role
in these inflammatory events, presumably by activating ezrin which in turn aids in facilitating
transport of MRP2 to the apical membrane. Solid lines represent events supported by published
results. Hashed lines represent speculations from our group. Modified from Boll et al.13
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are phylogenetically related to those of the
Afa/Dr family of E. coli adhesins, all of
which employ the chaperone-usher path-
way for fimbrial assembly.20 Notably,
other members of this family, such as the
F1845 adhesin and Dr hemagglutinin of
diffusely adhering E. coli (DAEC), have
also been shown to promote PMN
transepithelial migration,6 thus inferring a
common strategy of F1845/Dr/AAF-
mediated inflammatory responses among
these two E. coli pathotypes.

How Does EAEC Activate the
12-LOX Pathway to Trigger

Inflammation?

How AAF-facilitated adherence of EAEC
to the epithelium is linked to activation of
the 12-LOX pathway is yet to be
determined. However, binding of AAF to
the extracellular matrix (ECM) proteins
fibronectin, laminin and type IV collagen
has been demonstrated. It is possible that
AAF trigger host signal transduction
indirectly by binding to ECM proteins
that then interact with host cell receptors
such as integrin a5β1.21

ECM protein-mediated integrin signal
transduction in epithelial cells has been
shown to involve phosphorylation of
protein kinase C delta (PKC-d).22

Notably, EAEC infection of T84 cell
monolayers triggers phosphorylation and
translocation of PKC-d to the cell mem-
brane, and blocking of PKC-d activity
strongly attenuates EAEC-induced PMN
transmigration.13 The exact role of PKC-d
in EAEC-induced inflammation warrants
further investigation. However, a different
PKC isoform, PKC-a, has been shown to
play a central role in S. Typhimurium-
induced PMN transmigration by phos-
phorylating ezrin which then associates
with MRP2 and mediates localization of
the membrane transporter to the apical
surface.23 We speculate that PKC-d plays a
similar role in the event of EAEC-induced
HXA3 secretion, as PKC-d has been
shown to be involved in facilitating
translocation of MRP2 to the plasma
membrane in rat hepatocytes.24 In addi-
tion, PKC-d activity has been shown to
cause disruption of tight junctions of
intestinal Caco-2 cells through oxidative
injury,25 whereas inhibition of PKC-d

appears to confer enhanced barrier func-
tion to the cells by promoting expression
and assembly of the tight junction proteins
occludin and claudin-1.26 Conversely,
EAEC has been shown to cause epithelial
barrier disruption in T84 cell monolayers
through delocalization of occludin and
claudin-1.27 Based on these findings, it is
evident that PKC-d activity may play a
role in several aspects of EAEC-induced
inflammation.

The findings described above point to a
role for ECM proteins and integrins in
EAEC adherence and possibly in the
elicitation of inflammatory responses.
However, as ECM proteins are generally
localized to the epithelial basement mem-
brane, other receptors are likely to be
involved in at least the early stages of
infection, at which point the bacteria are
restricted from gaining access to the ECM
proteins. Additional unknown AAF recep-
tors may therefore likely play a role in
activating the 12-LOX pathway and
triggering inflammation.

Eliciting Inflammation as a
Pathogenic Strategy to Circumvent

and Exploit the Host Immune
Response

While host inflammatory responses are
intended as a first line of defense, several
pathogens have evolved sophisticated ways
of subverting these events to promote
infection and cause disease. For instance,
S. Typhimurium utilizes an electron
acceptor generated by the host respiratory
burst during inflammation to gain a
growth advantage over the intestinal
microbiota.28 In another example,
S. flexneri benefits from the opening of
tight junctions—a direct effect of PMN
transmigration—to invade the intestinal
epithelium from the basolateral surface.29

Moreover, antimicrobial proteins released
from neutrophil granules have been shown
to enhance adherence of S. flexneri to
epithelial cells during the initial steps of
infection.30 In a third example, PMN
transmigration induced by Afa/Dr-expres-
sing DAEC has been shown to trigger
synthesis of tumor necrosis factor a and
IL-1β. This, in turn, upregulates apical
surface expression of decay-accelerating
factor, the receptor for Afa/Dr adhesins,

thus promoting enhanced bacterial col-
onization.31

Similar to DAEC, our studies show that
PMN transepithelial migration enhances
subsequent adherence of EAEC to T84
cell monolayers, suggesting that EAEC
may also benefit from eliciting inflam-
mation. This enhanced adherence is not
due to loss of barrier integrity but rather a
direct consequence of post-transmigratory
PMN-mediated events that alter host cell
signaling.13 Distinguishing them from Afa/
Dr adhesins, AAF do not appear to bind to
decay-accelerating factor.21 However,
adenosine derived from neutrophils that
infiltrate the lumen during active intestinal
inflammation has been shown to trigger
apical secretion of fibronectin from T84
cells.32 Moreover, adenosine facilitates
enhanced adherence of EAEC to T84 cell
monolayers, likely through AAF-fibronec-
tin binding.21 Thus, enhanced EAEC
adherence following PMN transmigration
could be mediated by increased availability
of ECM proteins on the apical surface. In
addition, adenosine secretion stimulates
fluid secretion from the epithelium.33

Triggering of inflammation may therefore
both enhance colonization of EAEC on
mucosal surfaces as well as aid in the
diarrheal spreading of the bacteria.

Apart from AAF, at least one other
EAEC virulence factor has been identified
as a contributing factor in causing or
modulating host immune responses.
Pic, a serine protease autotransporter of
Enterobacteriaceae (SPATE) found in
EAEC, S. flexneri and uropathogenic
E. coli, cleaves mucin, induces mucus
release and confers a growth advantage in
a mouse model of mucosal colonization.34,35

More intriguingly, Pic was recently shown
to target several Sialyl Lewis-X-modified
glycoproteins on the immune cell surface,
including CD43 and CD45. The effects of
Pic activity on these leukocytes included
impaired chemotaxis and migration of
PMNs, activation of the PMN oxidative
burst, and activation and apoptosis in
T-cells. Moreover, a Pic mutant S. flexneri
strain was found to induce a greater
inflammatory response than the wild-type
strain in a guinea pig keratoconjunctivitis
model, implying that the overall effects of
Pic are predominantly anti-inflammatory.36

Thus, it is tempting to speculate a dual role
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for Pic in EAEC pathogenesis in which Pic
mediates penetration of the mucosal layers
by the bacteria as well as counteracts the
inflammatory response induced by AAF-
mediated adherence. However, Pic may
also act to enhance inflammatory responses
by facilitating premature activation of
PMNs and subsequent tissue damage or
by causing mislocalization of adherent
PMNs.36 Thus, whether Pic-mediated
immune modulation by EAEC contributes
to pro- and/or anti-inflammatory effects in
the human intestine remains to be deter-
mined.

Human Intestinal Xenografts
as a Model for Studying EAEC

Pathogenesis

Animal models provide useful means to
study aspects of bacterial pathogenesis that
cannot be addressed using cell culture-
based studies such as the roles of mucus or
the commensal flora in intestinal coloniza-
tion, or how the complex interplay
between different host cell types affect
immune responses. However, imple-
mentation of suitable small animal models
for studying EAEC disease has long been
hampered by the fact that EAEC appears
to be pathogenic only in the human
intestinal tract.34,37 This may result from
the inability of AAF adhesins to bind to
different versions of receptors present on
the mucosal surfaces of tested animal
species as compared with humans.

To overcome this hurdle, we have
recently employed human intestinal xeno-
grafts in severe-combined immunodefi-
cient (SCID-HU-INT) mice as a novel
model for studying EAEC disease and
innate immune responses in vivo. These
transplanted xenografts become extensively
vascularized, secrete mucus and develop
into morphologically normal human
intestine.38 The use of SCID-HU-INT
mice as an infection model has previously
been demonstrated for other enteric
pathogens adapted to humans such as
enterohemorrhagic E. coli and Shigella
species.39,40 We have shown that EAEC
induces extensive tissue damage and
inflammation in the human intestinal
tissues in this model as marked by
PMN infiltration, goblet cell depletion
and edema formation. Moreover, these

pathological markers—particularly inflam-
matory infiltrates—were strongly corre-
lated with expression of AAF.19 The
SCID-HU-INT mouse model offers an
exciting opportunity to study other aspects
of EAEC pathogenesis as well.

EAEC as an Emerging
and Adaptable Pathogen:

The 2011 German Outbreak

The need for an increased understanding
of EAEC pathogenesis is emphasized by
the major recent outbreak that took place
in Germany in May–June 2011, which
was caused by a highly virulent Shiga-toxin
(Stx)-producing EAEC O104:H4 strain.
Over 4,000 cases of diarrhea were reported
during this outbreak, of which 22% of
patients developed hemolytic-uremic syn-
drome (HUS), and 54 patients succumbed
to the infection.3 This strain exhibited
unusually high proportions of adults
affected and ratio of HUS cases, as
compared with previous outbreaks of Stx-
producing enterohemorrhagic E. coli that
typically caused more severe disease in
children and the elderly and with an
average rate of HUS of about 4%.41 In
contrast to enterohemorrhagic E. coli, the
2011 German outbreak strain possesses
EAEC-specific virulence factors, including
AAF, as wells as the three SPATE
proteases Pic, SepA and SigA. Thus, the
severity of clinical outcomes following
infection during this outbreak suggests
that the EAEC background conferred
enhanced virulence to this strain.3,42

Stx-induced systemic complications
require transit of the toxin across the
intestinal epithelium upon release from its
bacterial host. Epithelial barrier disrup-
tion—caused either by the pathogen itself
or by infiltrating PMNs responding to
infection—is a potential route of para-
cellular Stx uptake.43 Indeed, PMN migra-
tion induced by Stx-producing E. coli has
been shown to enhance apical-to-basolat-
eral translocation of Stx across polarized
T84 monolayers.44 Adding to the potential
impact of inflammation on HUS devel-
opment, H2O2 production by recruited
PMNs has been shown to activate stress
responses leading to induction of Stx
prophages and thus Stx production.45

Moreover, based on findings from clinical

studies, Exeni et al. have suggested that the
intensity of PMN activation during infec-
tion with Stx-producing E. coli and the
speed of onset of PMN impairment is
proportionate to the severity of systemic
disease.46

Given the ability of EAEC prototype
strains to induce both epithelial barrier
disruption and PMN transmigration, host
inflammation mediated by EAEC viru-
lence factors is likely to play a key role in
conferring enhanced virulence to the Stx-
producing O104:H4 outbreak strain.

Concluding Remarks

Many enteric pathogens have evolved the
ability to engage host cells in complex
interactions that trigger inflammatory
responses. Our recent work shows that
intestinal cells respond to EAEC infection
by releasing an arachidonic acid-derived
eicosanoid generated through 12-LOX
activity that causes PMN transepithelial
migration. Distinguishing it from other
inflammatory pathogens, EAEC-induced
12-LOX activation requires only binding
of the EAEC-defining AAF adhesins. This
emphasizes the concept of 12-LOX-
mediated signaling as a conserved mech-
anism by which the intestinal epithelium
instigates PMN recruitment to battle
enteric pathogens. Reflecting co-evolution,
several pathogens have in turn developed
sophisticated ways to evade innate
immune responses or even benefit from
them. Recent studies by ours and other
groups suggest that this is also the case for
EAEC.

While our studies here provide import-
ant new insight into the role of inflam-
mation in EAEC pathogenesis, there is still
a lot to be learned. For example, we have
yet to determine the “missing link”
between AAF-mediated adherence to host
cells and induction of the 12-LOX
pathway. Moreover, the overall implica-
tions of inflammation in EAEC pathology
requires further investigation.

Advances in understanding the interplay
between EAEC and host cells contributes
to our overall understanding of its patho-
genesis and provides useful information
that may ultimately help in preventing
and/or treating disease caused by this
emerging pathogen.
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