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Prostate cancer is the second most frequently diagnosed
cancer and the sixth leading cause of death from cancer in
men. Epithelial-mesenchymal transition (EMT) is a process by
which cancer cells invade and migrate, and is characterized by
loss of cell-cell adhesion molecules such as E-cadherin and
increased expression of mesenchymal proteins such as
vimentin; EMT is also associated with resistance to therapy.
Snail, a master regulator of EMT, has been extensively studied
and reported in cancers such as breast and colon; however, its
role in prostate cancer is not as widely reported. The purpose
of this review is to put together recent facts that summarize
Snail signaling in human prostate cancer. Snail is over-
expressed in prostate cancer and its expression and activity
is controlled via phosphorylation and growth factor signaling.
Snail is involved in its canonical role of inducing EMT in
prostate cancer cells; however, it plays a role in non-canonical
pathways that do not involve EMT such regulation of bone
turnover and neuroendocrine differentiation. Thus, studies
indicate that Snail signaling contributes to prostate cancer
progression and metastasis and therapeutic targeting of Snail
in prostate cancer holds promise in future.

Introduction

Prostate cancer incidence and mortality worldwide. Prostate
cancer is the second most frequently diagnosed cancer in men
worldwide, the sixth leading cause of cancer death in men and the
fifth most common cancer overall.1 The majority of registered
cases (three-quarters) occur in developed nations with the highest
rates reported in Australia/New Zealand, Western and Northern
Europe and Northern America.1 It is believed that part of the

reason prostate cancer is so widespread in developed countries is
due to increased practice of prostate specific antigen (PSA) testing
and subsequent biopsies.1 Relative high rates of prostate cancer
has also been found in developing areas such as the Caribbean,
South America and sub-Saharan Africa, while the lowest rates are
found in South-Central Asia.1 Prostate cancer is the leading cause
of cancer and the second leading cause of morbidity in men in
North America.2 African American men have the highest
incidence and mortality rates as compared with Caucasian men
and present with more aggressive disease at the time of diagnosis.2

Epithelial-mesenchymal transition (EMT). The epithelial-
mesenchymal transition (EMT), first described by developmental
biologists, is the morphological change that epithelial cells
undergo at specific sites during embryonic development, which
results in more migratory cells. EMT can be induced by growth
factors such as transforming growth factor β (TGF-β), epidermal
growth factor (EGF) and transcription factors such as Snail, twist
and slug.3 EMT has also been characterized in epithelial cancers,
where tumor cells at the invasive front undergo this transition to
promote invasion, migration and subsequent metastasis.4,5 Studies
have shown that during EMT epithelial cells expressing keratin
intermediate filaments (such as cytokeratin), desmosomes (such as
desmoplakin) and adherens junction proteins (such as E-cadherin
and occludin) repress genes encoding these cell adhesion proteins
and modify the type of intermediate filaments expressed
(Fig. 1).4,5 This is accompanied by acquisition of mesenchymal
markers that includes vimentin and N-cadherin, synthesis of
extracellular matrix molecules such as fibronectin and a flattened
phenotype (Fig. 1).4,5 These cells subsequently become more
migratory, express gelatinases to become more invasive and
traverse underlying basement membrane.4,5 Following EMT, the
cells may differentiate into other cell types or revert back to an
epithelial cell.3,4,6

There has been much debate as to whether EMT is an in vitro
artifact or whether it really occurs in vivo. In support of EMT
in vivo, circulating tumor cells from patients with castration-
resistant prostate cancer (CRPC) have been found to co-express
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both epithelial markers such as epithelial cell adhesion molecule
(EpCAM) and mesenchymal markers such as vimentin,
N-cadherin and O-cadherin, suggesting the presence of EMT
intermediate phenotype in vivo.7 A separate study has shown that
metastatic tissue from prostate and breast cancer patients co-
expresses E-cadherin epithelial marker and mesenchymal markers
such as vimentin.8 These studies suggest that there is plasticity
between EMT and mesenchymal-epithelial transition (MET) in
vivo.

Apart from the role of EMT in promoting invasion and
migration, a role for EMT has been found in promoting resistance
to therapy. EMT has been associated with resistance to
chemotherapy in pancreatic cancer,9,10 while EMT inducers,
Snail and Slug, can mediate resistance to radiotherapy and
chemotherapy in ovarian cancer cells.11 In addition, Twist,
another transcription factor that can induce EMT, mediates
resistance to chemotherapy (paclitaxel) in breast cancer cells via
upregulation of AKT-2.12 With respect to prostate cancer, Snail
has been associated with resistance to cisplatin chemotherapeutic
drug and tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL), as Snail knockdown in DU145 prostate cancer cells
sensitizes the cells to cisplatin- and TRAIL-mediated apoptosis.13

Snail transcription factor, a well-known regulator of EMT, is not
as well studied in prostate cancer as in other cancers. Therefore,
our goal is to summarize recent findings on Snail signaling in
human prostate cancer which has not been previously reported.

Snail Expression and Regulation

Snail transcription factor, a member of the Snail superfamily, is a
zinc finger protein that can mediate EMT through down-
regulation of cell adhesion molecules such as E-cadherin by
binding several E-boxes located in the promotor region.14 Snail
can also lead to repression of tight junction proteins like claudin,
occludin and zona occludin-1 (ZO-1).15,16 In addition, Snail

regulates other epithelial genes such as cytokeratin 18 and Mucin
1.17 Snail can mediate increase in expression of mesenchymal
markers such as vimentin, fibronectin, matrix metalloproteinases
(MMPs) and RhoA.14,18-20 Snail can also induce other E-cadherin
repressors such as Zeb-1 and Zeb-2.21 The overall effect of Snail is
that it leads to increased migration and invasion.18,19 Snail has also
been shown to confer survival properties either concomitantly
with induction of EMT or independent of EMT.22-24 Snail is
overexpressed in several cancers; for example, one study has
revealed that Snail is sufficient for induction of EMT and
promotion of mammary tumor recurrence in vivo, and that Snail
expression correlates with a decreased relapse-free survival in
women with breast cancer.25 Nuclear Snail has also been
associated with tumor progression in ovarian cancer, while
remarkably, it was nuclear Snail within stroma that was associated
with colon cancer progression.26,27 The various known down-
stream targets of Snail are depicted in Figure 2.

Snail expression in prostate cancer. Examination of gene
expression profile by microarray has revealed that Snail expression
is increased from normal to localized to metastatic prostate
cancer.28,29 Another study has determined from immunohisto-
chemical staining of tissue microarray specimens that Snail
staining is significantly associated with Gleason grade.30 However,
in their study, Snail expression was not correlated with T stage,
metastasis at the time of diagnosis, risk of or time to recurrence.30

We have previously shown by immunohistochemistry that Snail
expression increases with prostate cancer progression from benign
to bone metastatic clinical specimens.31 With respect to mouse
models, Snail protein levels increases with tumor progression in
PTEN knockout mice that spontaneously developed prostate
cancer.32 Snail overexpression in ARCaP prostate cancer cells also
resulted in increased tumorigenicity in vivo.33 Therefore, Snail
expression appears to increase with prostate cancer progression.

Factors that regulate Snail localization through
phosphorylation. Snail expression and activity can be regulated

Figure 1. Overview of EMT. (A) EMT is a multi-step process, normally occurring during embryogenesis when Snail expression is high. (B) In normal adult
cells, polarized epithelial cells express epithelial markers to maintain an adherent phenotype. (C) During cancer progression, colocalization of epithelial
and mesenchymal markers indicates an intermediate EMT phenotype due to progressive loss of epithelial markers and gain of mesenchymal markers.
(D) Cells that have undergone EMT exhibit a mesenchymal phenotype and high levels of Snail expression.
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by various factors. The activity of Snail is controlled by its
phosphorylation which also regulates its subcellular local-
ization.34-37 Glycogen synthase kinase-3β (GSK-3β) has been
reported to phosphorylate Snail, thus promoting its export from
the nucleus and subsequent degradation by the proteosome in the
cytosol.35,36 GSK-3β negatively regulates Snail by phosphorylation
of Snail at two consensus motifs resulting in β-TRCP-mediated
ubiquitination, localization of Snail in the cytosol and its
proteasomal degradation.38 Alternatively, Snail phosphorylation
by p21-activated kinase 1 (PAK1) on Ser246 leads to its activation
by promoting accumulation of Snail in the nucleus and thus its
repressor functions.39 Protein kinase D1 (PKD1) phosphorylates
Snail on Ser11 which leads to its nuclear export via 14-3-3s
binding and thus inhibition of EMT.40 Therefore, Snail

localization and activity can be regulated by various kinases as
shown in Figure 2.

Growth factors that regulate Snail in prostate cancer. Snail
activity can be regulated by several growth factors. TGF-β1, EGF
and vascular endothelial growth factor-A (VEGF-A) have all been
shown to activate EMT and Snail in prostate cancer cells.31,41-43

Two separate studies have shown that VEGF-A and TGF-β can
promote Snail nuclear localization in PC3 prostate cancer cells,
while TGF-β and EGF cooperate to induce EMT in ARCaP
prostate cancer cells leading to increased migratory poten-
tial.31,41,43 The mechanism by which VEGF-A mediates EMT is
by binding to its receptor neuropilin-1 (NRP1), which
subsequently promotes nuclear localization of Snail.43 A separate
study has shown that EGF promotes Snail expression and EMT

Figure 2. Summary of Snail signaling in prostate cancer. Snail can be activated by growth factors such as TGF-b, EGF, VEGF-A and GDF-9; extracellular
matrix proteins such as collagen and periostin; hormones such as DHT; kinases such as PI3-K and PAK1; lipid molecules such as PGE(2); enzymes such as
aldehyde dehydrogenase 7A1 and LIV-1 zinc finger protein. On the other hand, factors that can negatively regulate Snail include hormones such as 3b-
Adiol, which inhibits Snail through ER-b, GSK-3b, PKD1 and miR-29b micro-RNA. Activated Snail can subsequently upregulate or downregulate various
genes to increase migratory and invasive potential.
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via the AKT pathway in DU145 and PC3 prostate cancer cells.42

Growth and differentiation factor 9 (GDF-9), a member of the
bone morphogenetic protein (BMP) family, induces an activin-
like kinase-5 (ALK-5)-mediated EMT in PC3 prostate cancer cells
which is associated with increased Snail and N-cadherin, and
decreased E-cadherin.44 Thus, several growth factors can mediate
EMT through upregulation and/or activation of Snail in prostate
cancer cells (Fig. 2).

Other factors that regulate Snail in prostate cancer.
Interestingly, hypoxia can influence EMT by regulating VEGF-
A. Through a cascade of events, hypoxia has been shown to
promote hypoxia inducible factor 1 a (HIF-1a) which then leads
to transcriptional upregulation of VEGF-A expression and
stimulation of the VEGF-A/NRP1 pathway resulting in Snail
nuclear localization and EMT in PC3 prostate cancer cells.43 This
hypoxia-mediated EMT can be negatively-regulated by estrogen

receptor β-1 (ERβ1) repression, as knockdown of ERβ1 stabilized
HIF-1a and promoted EMT.43 Within prostate cancer tissue,
ERβ expression is diminished in higher gleason grade prostate
cancer which supports the notion that ERβ expression is inversely
related with tumor progression.45-47 Moreover, it has been shown
that 5a-androstane-3β, 17β-diol (3β-Adiol), an ERβ1 specific
ligand, can inhibit hypoxia-mediated EMT by destabilizing HIF-
1a and repressing VEGF-A.43 Interestingly, TGF-β and hypoxia
can diminish ERβ expression and thereby induce EMT.43

Extracellular matrices can also regulate Snail expression. Type
1 collagen extracellular matrix can upregulate Snail, Slug and
PI3KCA and reduce E-cadherin in SKOV3 ovarian cancer cells
and PC3 prostate cancer cells.48 Periostin, a secreted extracellular
matrix protein, upregulates Snail, decreases E-cadherin and
increases invasiveness in prostate cancer cells via AKT
activation.49

Figure 3. Effects of Snail signaling in prostate cancer and promising therapeutic targets. Snail gene is involved in canonical pathways that induce EMT
associated with a transition from an epithelial to mesenchymal morphology, decreased cell adhesion and increased invasion and migration. Snail is also
involved in non-canonical pathways such as bone turnover in which cancer cells produce RANKL that stimulates osteoclast maturation and increased
bone resorption and NED in which cancer cells acquire long neurite processes and produce factors that promote paracrine cell proliferation. Several
promising therapies that can antagonize Snail are shown.
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A positive correlation between prostaglandin E(2) [PGE(2)]
and Snail has been reported in prostate cancer cells, as
antagonizing its receptor PGE(2)-induced E-prostanoid-4 recep-
tor (EP4) decreases migration and Snail levels and increases E-
cadherin.32 Androgens, specifically dihydrotestosterone (DHT),
can activate Snail and EMT in PC3 and LNCaP prostate cancer
cells.50 High levels and activity of aldehyde dehydrogenase enzyme
7A1 has been associated with bone metastasis, and knockdown of
this enzyme resulted in decreased Snail, Slug and twist and
decreased bone metastasis while intra-prostatic growth was not
affected.51

MicroRNA-29b (miR-29b) is lower in prostate cancer cells and
tissue as compared with normal epithelial cells, and its over-
expression in PC3 prostate cancer cells decreased Snail, Twist and
N-cadherin levels, while E-cadherin levels was increased.52

LIV-1, a zinc transporter protein has been shown to induce
EMT by increasing Snail, MMP-2 and -9 activation which results
in shedding of heparin binding-epidermal growth factor (HB-
EGF).53 This leads to constitutive phosphorylation of epidermal
growth factor receptor (EGFR) and subsequent ERK signaling
leading to increased prostate cancer metastasis to bone and soft
tissue.53 Therefore, Snail can also be regulated by other
transcription factors like HIF-1a, extracellular matrix molecules
such as collagen, lipid compounds such as PGE(2), hormones
such as androgen, microRNA and the zinc transporter protein,
LIV-1 (Fig. 2).

Canonical Pathways of Snail in Prostate Cancer

Snail, cell migration and invasion pathways in prostate cancer.
Snail-mediated EMT has been associated with cell migration in
prostate cancer. Several of the factors already mentioned that
regulate Snail expression also regulates EMT and cell migration in
prostate cancer, including TGF-β1, EGF, VEGF-A, GDF-9 and
DHT.31,41-44 A direct role for Snail in EMT-associated cell
migration has been shown by overexpression of Snail in ARCaP
and LNCaP prostate cancer cells which resulted in an EMT
associated with decreased/relocalization of E-cadherin, increased
vimentin and increased cell migration on collagen.31,54 The
signaling pathway by which Snail promotes cell migration in
ARCaP cells is probably via MAPK pathway which was activated
upon Snail overexpression, since inhibition of the pathway with
MAPK inhibitor leads to a partial reversion of EMT.33,55 Snail has
also been linked to increased cell invasion in prostate cancer.
TGF-β1 has been shown to induce the expression of Snail and cell
invasion in prostate cancer cells.56 Thus, Snail can induce EMT
which leads to increased migration and invasion in prostate cancer
cells.

Snail and reactive oxygen species (ROS) signaling. Human
cancer development has been associated with chronic inflam-
mation, and ROS released by inflammatory cells may result in
DNA damage.57,58 It has also been reported that spontaneous
generation of ROS in tumor tissue was positively correlated with
clinical stage in small cell lung cancer and squamous cell
carcinoma patients.59 In prostate cancer patient tissue, manganese
superoxide dismutase antioxidant enzyme levels have been

reported to be lower while nuclear oxidative damage products
are higher in metastatic tissue as compared with primary tissue,
suggesting that increased ROS due to repression of antioxidants
may contribute to DNA damage and prostate cancer.60 ROS has
also been suggested to mediate EMT. TGF-β treatment of
proximal tubular epithelial cells induced EMT indicated by
upregulation of hydrogen peroxide and MAPK/extracellular
signal-regulated kinase (ERK) signaling in proximal tubular
epithelial cells,61 while MMP-3-transfected mammary epithelial
cells underwent EMT associated with increased ROS and Snail;
moreover, abrogation of ROS with ROS scavenger, N-acetyl
cysteine (NAC), could inhibit EMT.62 This suggests that ROS
can mediate induction of EMT by growth factors or MMPs. With
respect to prostate cancer, we have published that an ARCaP
human prostate cancer EMT cell model established by over-
expression of Snail transcription factor displayed increased ROS
(both hydrogen peroxide and superoxide species) in vitro and in
vivo in mouse xenograft models.31,33,54 This EMT could be
partially reverted by hydrogen peroxide scavenger, NAC and
MEK inhibitor, UO126. Furthermore, NAC could inhibit
MAPK activity suggesting that Snail can signal through ROS
and MAPK in part to induce EMT.33 So although ROS has been
shown to induce Snail expression in breast cancer cells and
thereby induce EMT, we have shown for the first time that Snail
can also induce ROS and subsequently EMT in prostate cancer
cells and this may be possible through regulation of oxidative
stress enzymes such as aldehyde oxidase 1 (AOX1).33 Thus, Snail
can induce EMT through upregulation of ROS.

Non-Canonical Pathways of Snail in Prostate Cancer

Although the role of Snail in canonical pathways involving EMT
has been well studied in cancer, there are also some non-canonical
pathways that may not involve EMT. Snail may also have a role in
a variety of pathways that may not be directly linked to EMT and
these will be discussed below.

Role of Snail in cell adhesion to extracellular matrix (ECM).
The role of Snail in cell adhesion is not well studied. Haraguchi
et al. have reported that Snail enhanced attachment to the
extracellular matrix fibronectin in Mardin-Darby canine kidney
(MDCK) epithelial cells.63 However, in prostate cancer cells, our
data suggest that Snail represses cell adhesion to both fibronectin
and collagen.55 Androgen-independent C4-2 prostate cancer cells,
a more aggressive subline of the androgen-dependent LNCaP
prostate cancer cells exhibits decreased cell adhesion and increased
cell migration to collagen I and fibronectin as compared with
LNCaP cells. Stable knockdown of Snail in C4-2 cells increased
adhesion and decreased migration, indicating that Snail controls
these processes. However, the LNCaP-C4-2 progression model
does not represent an EMT model in our hands; C4-2 cells
express higher levels of Snail than LNCaP cells, similar high levels
of E-cadherin and undetectable vimentin, and Snail knockdown
in C4-2 cells did not affect EMT markers55 (data not shown).
This would suggest that Snail regulation of adhesion and
migration in these cells is independent of EMT. We have also
found that ARCaP prostate cancer cells stably transfected with
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Snail undergoes EMT and displays decreased cell adhesion to
fibronectin and collagen I, concomitant with decreased a5 (for
fibronectin), a2 (for collagen) and β1 integrin expression.55 ERK
phosphorylated form was increased in ARCaP Snail-transfected
cells compared with control cells and inhibition of the MAPK
pathway with UO126 MEK inhibitor abrogated Snail-mediated
decrease in cell adhesion and reinduced a5, a2 and β1 integrin
expression.55 Thus Snail regulates cell adhesion via the MAPK
signaling pathway in prostate cancer cells. It would also appear
that Snail can decrease cell adhesion and increase cell migration
through EMT-dependent and -independent pathways.

Regulation of bone turnover by Snail. Snail may be important
in bone development as developing mouse limb was shown to
express high levels of Snail, specifically in the hypertrophic
chondrocytes, and this was important for regulation of chon-
drocyte differentiation.64 We have shown that receptor activator
of NFkB ligand (RANKL), a member of the TNF family that is
normally expressed on the cell surface of stromal cells and
osteoblasts and mediates osteoclast differentiation and osteolysis
or bone resorption,65,66 can be upregulated by Snail overexpression
in ARCaP and LNCaP prostate cancer cells.31 We have further
published that Snail overexpression is associated with increased
osteoclastogenesis in vitro and in vivo.31 Therefore, Snail may be
important either for prostate cancer cells to home to the bone or
to colonize the bone microenvironment.

Snail and neuroendocrine differentiation. Neuroendocrine
differentiation (NED) plays a role in both normal and pathological
conditions of the prostate. The human prostate epithelial cells is
made up of secretory, basal and neuroendocrine (NE) cells.67 The
NE cells release several secretory products such as serotonin,
calcitonin, bombesin, neuron specific enolase (NSE) and chromo-
granin A (CgA) that may act in an endocrine, paracrine, or
autocrine manner in both normal and disease state which includes
induction of tumor cell proliferation.68,69 Clinical studies have
suggested that NED increases with tumor progression and the
development of androgen refractoriness.70,71 We found that LNCaP
prostate cancer cells transfected with Snail displayed increase in the
neuroendocrine markers, NSE and CgA, while LNCaP C-33 cells
that have been previously published as a neuroendocrine
differentiation (NED) model exhibited increased expression levels
of Snail protein as compared with LNCaP parental cells.54

Functionally, Snail-mediated NED was associated with increased
paracrine cell proliferation.54 Moreover, in these same cells, Snail
also promoted EMT.54 Therefore, Snail may promote tumor
aggressiveness in the LNCaP cells through multiple processes;
induction of EMT may be required to promote migration, while
NED may promote tumor proliferation by a paracrine mechanism.

Therapies Targeting Snail

Current treatments for prostate cancer. The second line of
treatment for patients who have androgen-independent aggressive
prostate cancer is with chemotherapy drugs such as paclitaxel
(Taxol), docetaxel (Taxotere), mitoxantrone (Novantrone) or
estramustine.72 Estramustine can potently inhibit cell proliferation
by targeting the microtubules.73 However, research has shown that

these drugs cannot totally control metastatic prostate cancer
progression leading to newer therapies in combination with
chemotherapy. As newer therapies are being developed for cancer,
it is becoming more important to develop approaches that increase
the effectiveness of chemotherapy, while decreasing its side effects.
Several antioxidants in combination with chemotherapy may not
increase its effectiveness in prostate cancer, in fact, some may
decrease chemotherapeutic response. For example, epigallocate-
chin-3-gallate (EGCG) and other polyphenols with 1,2-benzene-
diol moieties, effectively prevented tumor cell death induced by
bortezomib (BZM) in vitro and in vivo in multiple myeloma and
glioblastoma.74 However, several antioxidants appear to potentiate
the effect of chemotherapy. For example, ellagic acid polyphenol
reduced chemotherapy induced toxicity in a phase II trial in
hormone refractory prostate cancer.75 Vitamin E enhanced the
chemotherapeutic effect of adriamycin in prostate cancer cells.76

Antagonists/therapies that target Snail signaling. Some
therapies that have been developed for prostate cancer appear to
target Snail signaling. Proteosome inhibitors have been developed
to target the proteosome and induce cancer cell death.77 A novel
member of the proteosome inhibitor NPI-0052 (salinosporamide
A) isolated from the marine actinomycete Salinispora tropica, is a
nonpeptide inhibitor of all the three enzymatic activities of the 20S
proteasome.78 It can inhibit Snail mRNA and protein and thereby
promote sensitivity to cisplatin- and TRAIL-mediated apoptosis in
DU145 prostate cancer cells.13 It has been further shown that Snail
inhibition by NPI-0052 allowed for re-expression of the metastasis
suppressor, Raf-1 kinase inhibitory protein (RKIP).13 Interestingly,
DETANONOate, an agent that increases nitric oxide (NO) levels,
decreased Snail expression, increased RKIP levels, inhibited EMT
and increased sensitivity to cisplatin- and TRAIL-mediated
apoptosis in DU145 and PC3 prostate cancer cells.13

Natural products have also shown some promise toward
targeting Snail signaling in prostate cancer. Gambogic acid (GA),
a xanthonoid resin from Garcinia hurburyi tree, was able to
inhibit tumor necrosis factor a (TNF-a)-induced invasion of PC3
cells in part via downregulation of Snail expression.79 Another
study has reported that the nontoxic phytochemical, silibilin,
found in herbs such as milk thistle, decreased the levels of Snail
and Slug, inhibited EMT and decreased migratory and invasive
potential in PC3 and C4-2B prostate cancer cells.80 Genistein, an
isoflavonoid derived from soy products, when fed to transgenic
adenocarcinoma mouse prostate model (TRAMP/FVB) mice,
decreased the incidence of poorly differentiated cancer at the
prostatic intra-epithelial neoplasia (PIN) stage.81 This was
associated with inhibition of Akt activation, restoration of GSK-
3β and downregulation of Snail.81 EGCG, a polyphenol flavonoid
isolated from green tea, inhibited Snail, EMT, migration and
invasion in CD44+, CD133+ cancer stem cell population isolated
from PC3 and LNCaP prostate cancer cells.82 It also increased
apoptosis, and its effects on cancer stem cells could be potentiated
by co-treatment with quercetin, another dietary bioflavonoid.82

Sesquiterpene lactone parthenolide (PTL), an extract from the
plant feverfew (Tanacetum parthenium), was cytotoxic to cancer
stem cells isolated from prostate cancer cell lines (DU145, PC3,
VCAP and LAPC4) as well as primary prostate cancer stem cells.83
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PTL affected several signaling pathways such as focal adhesion
kinase (FAK) and MAPK and also altered binding of transcription
factors such as Snail, signal transducer and activator of
transcription 3 (STAT3) and p53.83 Therefore, targeting Snail
may effectively prevent prostate cancer progression and improve
sensitivity to chemotherapy.

Conclusions

Although Snail signaling is not as well studied in prostate cancer
as in other cancers, several studies are emerging that shows that

it plays a prominent role in tumor progression through
induction of EMT and other processes such as NED and bone
turnover (Fig. 3). A number of therapy modalities that affect
Snail signaling have also been reported (Fig. 3). As more studies
emerge, it will become clear that Snail may be an attractive
therapeutic target both in primary and metastatic prostate
cancer.
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