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Abstract

Proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication, DNA repair, cell cycle regulation,
chromatin remodeling, and epigenetics. Many proteins interact with PCNA through the PCNA interacting peptide (PIP)-box
or the newly identified AlkB homolog 2 PCNA interacting motif (APIM). The xeroderma pigmentosum group A (XPA) protein,
with a central but somewhat elusive role in nucleotide excision repair (NER), contains the APIM sequence suggesting an
interaction with PCNA. With an in vivo based approach, using modern techniques in live human cells, we show that APIM in
XPA is a functional PCNA interacting motif and that efficient NER of UV lesions is dependent on an intact APIM sequence in
XPA. We show that XPA2/2 cells complemented with XPA containing a mutated APIM sequence have increased UV
sensitivity, reduced repair of cyclobutane pyrimidine dimers and (6–4) photoproducts, and are consequently more arrested
in S phase as compared to XPA2/2 cells complemented with wild type XPA. Notably, XPA colocalizes with PCNA in
replication foci and is loaded on newly synthesized DNA in undamaged cells. In addition, the TFIIH subunit XPD, as well as
XPF are loaded on DNA together with XPA, and XPC and XPG colocalize with PCNA in replication foci. Altogether, our results
suggest a presence of the NER complex in the vicinity of the replisome and a novel role of NER in post-replicative repair.
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Introduction

Proper repair of DNA is vital in order to avoid mutations that

may cause cancer and other diseases. Cells have therefore evolved

numerous pathways to deal with a variety of DNA damage, many

of which are associated with the replication machinery [1–3].

Xeroderma pigmentosum group A (XPA) is a protein in the

Nucleotide excision repair (NER) pathway responsible for removal

of a wide range of lesions leading to distortions of the DNA helix,

most frequently caused by UV radiation (UVR) from the sun.

UVR-induced DNA damage inhibits DNA transcription and

replication, leading to S phase delay and, if the damage is left

unrepaired, may induce DNA double strand breaks (DSBs) [4,5].

However, NER has not been directly coupled to the replicative

process.

The historically scientific interest in NER has partly been due to

the severe clinical phenotype seen in patients with inherited

deficiency in this pathway. The NER pathway involves more than

30 proteins and defects in any of the central NER proteins may

result in premature aging, neurodegenerative diseases and/or

hypersensitivity to UVR. The skin cancer disease xeroderma

pigmentosum (XP) is a result of deficiency in any of the seven XP-

genes coding for proteins involved in NER. XP patients exhibit

more than a 1,000-fold increase in the incidence of sun-induced

skin cancer and an increased incidence of internal cancers,

primarily in the lung or gastro-intestinal tract [6,7]. Moreover,

30% of XP patients suffer from neurological diseases in addition to

the increased incidents of cancer [8].

Solar UV-B and UV-C radiation generate pyrimidine cross-

links, both cyclobutane pyrimidine dimers (CPDs) and 6-4 photo

products (6-4 PPs). Particularly the 6-4 PPs are rapidly recognized

by NER [9,10]. CPDs, however, are less efficiently recognized by

NER, but are easily bypassed by the translesion synthesis (TLS)

polymerase POLg [11]. These bypassed CPDs are believed to be

repaired by NER prior to next round of replication. DNA damage

in the actively transcribed strand is recognized by the stalling of

the RNA polymerase in a process called transcription coupled

(TC) NER, while damage recognized and repaired independent of

transcription is called global genome (GG) NER. After damage

recognition, TC-NER and GG-NER have similar mechanisms

involving dual incision, removal of a 25–30 nucleotide fragment

and re-synthesis of the gap. Of the many proteins involved in

NER, XPA is indispensable due to its central role in the core

incision complex where it is suggested to be the rate limiting factor

[12]. XPA is believed to be important for damage verification and

the tethering of the NER components to DNA, although its exact

role is still unclear [10]. Nonetheless, it is the only NER protein

that is present in all the steps from damage verification to the

repair synthesis [13]. Among XPAs many interaction partners are

replication protein A (RPA), XPA-binding protein 1 and 2 (XAB1
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and XAB2), transcription factor II H (TFIIH), XPC, excision

repair cross-complementation group 1 protein (ERCC1), and the

checkpoint kinase ATR [14–23]. In addition XPA interacts with

both DNA and itself, forming homodimers [24–26].

Interestingly, we found XPA to contain the new proliferating

cell nuclear antigen (PCNA) interaction motif called AlkB

homolog 2 PCNA interacting motif (APIM) (K/R-F/Y/W-[L/I/

V/A]62-K/R) [27], suggesting a previously unidentified direct

interaction between XPA and PCNA. PCNA is essential for

numerous cellular processes including DNA replication and repair

[28]. PCNA is also an essential component of NER where it plays

a role in mediating repair synthesis after dual incision [29,30].

Numerous proteins contain conserved sequences that fit with the

PCNA interacting peptide (PIP)-box (QxxL/I/MxxHF/DF/Y)

[31] or the APIM consensus sequence [27,32] (http://tare.

medisin.ntnu.no/pcna/index.php). However, experimentally, only

few of the APIM sequences in the long list of proteins are proven

to be functional. In this study we show for the first time that XPA

directly interacts with PCNA via its APIM sequence, an

interaction required for optimal NER. We detect the interaction

in replication foci and identify XPA, XPF and XPD on nascent

DNA at replication forks in untreated, cycling cells. The presence

of NER proteins close to replication forks suggests a novel function

of NER in post-replicative repair.

Results and Discussion

XPA Interacts with PCNA in Replication Foci
APIM in XPA (amino acid (aa) 163–167) is found within the

suggested DNA binding domain of XPA (aa 138–209) between

loop 1 and 2, two regions reported to be highly mobile in solution

[27,33]. We first co-expressed XPA with its potential interaction

partner PCNA in untreated HeLa cells and found that YFP-tagged

XPA (YFP-XPA) colocalized with CFP-tagged PCNA (CFP-

PCNA) in foci resembling replication foci (Figure 1A). Localization

of XPA in replication foci was somewhat surprising because an

association between the NER pathway and the replication

machinery has hitherto not been discussed in the literature. In

order to examine whether this observation was an artifact of

overexpression, we performed immunofluorescent labeling and

iPOND: isolation of proteins on nascent DNA [34], on cells

expressing only endogenous proteins. Immunofluorescence indi-

cated, although with lower resolution than in live cell imaging,

colocalization between XPA and PCNA in foci likely representing

replication foci as judged by the PCNA pattern (Figure 1B). The

graph in Figure 1B illustrates the intensity of endogenous XPA and

PCNA along the line visualized in the merged picture. Numbers 1

to 4 represent replication foci where a clear colocalization between

XPA and PCNA was observed (yellow foci in the inserts).

Additionally, many foci showed presence of both XPA and

PCNA, but at different fluorescent intensities. No increase in

colocalization between XPA and PCNA was seen after UVR

(unpublished data). The specificity of the XPA antibody was

verified in XPA deficient (XPA2/2) fibroblast cells (unpublished

data). The new high resolution technique iPOND was employed

to further verify the localization of endogenous XPA to the

replisome in absence of DNA damage. This method detects

proteins in the proximity of newly incorporated 5-ethynyl-29-

deoxyuridine (EdU), hence proteins binding to active replication

forks as elegantly showed by Sirbu and colleagues [34,35]. Cells

were treated for 0 to 15 min with EdU (pulse) including one

sample where 15 min EdU pulse was followed by thymidine

(chase) prior to fixation (Figure 1C). We found that, similar to

PCNA (positive control for replication fork proteins), XPA was

detected after only 5 min EdU pulse, and more XPA was pulled

down in the pulse than in the pulse-chase sample (Figure 1C,

upper panel). Similar patterns were observed for XPF and XPD,

other proteins in the core incision NER complex. The upper and

lower panels show western analysis from individual iPOND

experiments where, based on the recruitment pattern of PCNA

and XPA, the replication rate at the experiment visualized in the

lower panel appears to be lower. Nevertheless, the intensity of

XPF and XPD follows the intensity of XPA and PCNA, suggesting

that the NER complex, and not only XPA, is associated with the

replisome in undamaged freely cycling cells. As a control for the

biotin capture, we also stained for Histone H3 known to load to

nascent DNA at later time points [35]. We did not detect XPC on

the same membrane, neither in input nor capture, suggesting low

sensitivity of the antibody used in this study. However, we did

detect clear colocalization of both YFP-XPC and YFP-XPG with

CFP-PCNA in foci resembling replication foci (Figure S1).

Together, these results strongly suggest a presence of NER

proteins in the replisome in undamaged cells. This presence would

enable NER to execute rapid post-replicative repair following

bypass of DNA lesions. ZRANB3, a translocase important for

restart of arrested replication forks containing a functional APIM

sequence, was also recently found to be in replication foci in

absence of DNA damage [32].

Next we examined whether, and from which cell fraction,

endogenous XPA could be pulled down with PCNA. Similarly to

what was found for human AlkB homolog 2 (hABH2) [27], more

XPA could be pulled down by co-immunoprecipitation (IP) from

the chromatin-enriched fraction (CF) than from the soluble

fraction (SF) (Figure 1D and E), although both PCNA and XPA

were abundant in SF (Input, Figure 1E). We obtained the same

results in HeLa cells overexpressing PCNA (Figure 1D) as in cells

only expressing endogenous PCNA (Figure 1E), and no increase in

the amounts of XPA pulled down after UVR was detected

(unpublished data). Proteins associated with the replication

machinery are likely to be in the CF; hence the co-IP data fits

well with the colocalization and iPOND data. The HeLa cell

extracts used in these experiments were excessively treated with

DNAses and RNAses to abolish any potential binding through

DNA.

To examine whether XPA directly interacts, and not only

colocalizes, with PCNA, we measured the fluorescence resonance

energy transfer (FRET) between the proteins. FRET can only

occur when the fluorescent tags are less than 10 nm apart [36],

thus the tagged proteins are in close proximity suggesting a direct

interaction. The FRET level between YFP-XPA and CFP-PCNA

was similar to that detected between YFP-PCNA and CFP-PCNA

suggesting that XPA and PCNA are as close as two PCNA

monomers within a PCNA trimer (Figure 1F).

In summary, XPA and PCNA interact and at least a sub-

fraction of XPA is localized close to active replication forks.

Notably, this interaction takes place in untreated cells and there

are no detectable differences in colocalization or co-IP after UVR,

suggesting that the NER proteins are normal constituents of the

replisome.

The APIM Sequence in XPA is Sufficient and Necessary for
a Direct PCNA Interaction

APIM in XPA is phylogenetically conserved (Figure 2A).

Notably, in mouse XPA the APIM sequence is identical to the

hABH2 APIM sequence. A dot blot with the XPA APIM-peptide

was compared with the hABH2 APIM-peptide (positive control)

and a peptide in which an A was substituted for the conserved F in

the second APIM position (negative control) [27]. We found that

A Functional Interaction between XPA and PCNA
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binding of the XPA APIM-peptide to PCNA was equal to binding

of the hABH2 APIM-peptide to PCNA (Figure 2B). Subsequent

in vivo studies similarly showed that when a peptide containing

the XPA APIM-sequence was fused to the YFP protein

(XPA1612167-YFP), the fusion protein colocalized and generated

positive FRET with CFP-PCNA (Figure 2C and D, respectively),

indicating a direct interaction between APIM in XPA and PCNA.

Figure 1. XPA colocalizes and directly interacts with PCNA in replication foci. (A) Overexpressed tagged proteins in live cycling HeLa cells.
(B) Immunostained HeLa cells. The intensity of a-XPA and a-PCNA along the line in the merged picture is illustrated in the graph. The inserts show an
enlargement of the area close to foci 3 and 4. (A and B) Bar: 5 mm. (C) iPOND from cells labeled with EdU (pulse) before fixation. One sample was
additionally followed by a chase in thymidine-containing medium (pulse-chase). The WB shows proteins captured due to EdU proximity. The upper
and lower panels are from individual iPOND experiments. All bands within one panel (black frame) are from the same WB, lanes and rows are
separated by grey lines (also in D and E). (D) Co-IP of endogenous XPA from HeLa cells stably expressing YFP-PCNA using a-YFP beads. SF: soluble
fraction, CF: chromatin-enriched fraction, Y: YFP (negative control), Y-P: YFP-PCNA. (E) Co-IP of endogenous XPA from untransfected HeLa cells using
a-PCNA beads (pulling down endogenous PCNA). IP with a-YFP was used as control for unspecific binding to the beads. (F) Normalized FRET (NFRET)
measurements in HeLa cells. CFP/YFP (vectors only) and CFP-PCNA/YFP-PCNA were used as negative and positive controls, respectively. Detector
gain: 800 (YFP), 700 (CFP), 700 (FRET). The P-value is derived by unpaired t-test. Data presented is from three independent experiments (mean 6 SEM,
n = 55–75).
doi:10.1371/journal.pone.0049199.g001
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We previously found that mutation in the completely conserved

F residue in APIM reduced colocalization and/or FRET with

PCNA [27]. However, there was no detectable difference in

colocalization or FRET between XPA wt and XPA where F164 in

APIM was mutated to A in HeLa cells (unpublished data). This

could be caused by XPAs reported ability to form dimers [24],

enabling untagged endogenous XPA to bridge the overexpressed

mutated XPA to PCNA. Dimerization of XPA was confirmed by

FRET analysis (Figure 2E), thus next we co-expressed YFP-tagged

wt or mutant XPA with CFP-PCNA in XPA2/2 cells to avoid this

problem and performed FRET analysis. XPA F164A still

colocalized with PCNA (Figure 2F); nevertheless, we found a

significant reduction in FRET between XPA F164A and PCNA

compared to between XPA wt and PCNA in these cells

Figure 2. The APIM sequence in XPA is sufficient and necessary for interaction with PCNA. (A) Sequence alignment of the APIM sequence
in XPA (aa 161–170 in human XPA) from different species compared with the APIM sequence in hABH2. The colors are given by Clustal X. (B) Dot blot
with the human XPA APIM-peptide. The hABH2 APIM-peptide and its mutant are included as positive and negative controls, respectively (also used in
[27]). Grey lines: dots from the same blot. (C) Images of YFP-tagged XPA1612167 co-expressed with CFP-tagged PCNA in live cycling HeLa cells. Yellow
dots in the merged picture illustrate colocalization. Bar: 5 mM. (D and E) NFRET measurements in HeLa cells. Detector gain: 800 (YFP), 700 (CFP), 700
(FRET) (D) and 700 (YFP), 800 (CFP), 700 (FRET) (E). CFP/YFP (vectors only) and CFP-PCNA/YFP-PCNA were used as negative and positive controls,
respectively (mean 6 SEM, n = 24–53 in D and n = 10–34 in E). (F) Overexpressed tagged proteins in live cycling XPA2/2 cells. Yellow dots in the
merged picture illustrate colocalization. Bar: 5 mM. (G). NFRET measurements in XPA2/2 cells. Detector gain: 800 (YFP), 700 (CFP), 700 (FRET) (mean 6
SEM, n = 25–66). The P-values (D, E and G) are derived by unpaired t-test.
doi:10.1371/journal.pone.0049199.g002
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(Figure 2G). This strongly indicates that XPA binds directly to

PCNA through its APIM sequence, and that the persistent

colocalization in XPA2/2 cells is due to indirect binding via other

proteins than XPA.

Complete Reconstitution of XPA2/2 Cells Requires XPA
with an Intact APIM Sequence

To study the functionality of the XPA-PCNA interaction, we

next examined whether a reduced interaction between XPA and

PCNA affected the UVR sensitivity. We applied low doses of UV-

B that do not induce DSBs, but specifically induce 6-4 PPs and

CPDs (see below and Figure S3).

Cell survival assay (MTT) showed that XPA2/2 cells reconsti-

tuted with XPA wt or XPA F164A fused to YFP displayed similar

growth rates in absence of UVR. However, after UVR, cells

expressing XPA F164A displayed a reduced growth rate compared

to XPA wt, indicating a reduced tolerance to UVR when APIM is

mutated (Figure 3A). Quantification by in-cell western demon-

strated that the difference in UVR tolerance was not caused by

lower expression levels of XPA F164A as the expression level of

XPA F164A was slightly higher than for XPA wt (Figure 3B).

These results indicate that although XPA colocalizes with PCNA

in replication foci also in absence of DNA damage (Figure 1), the

functionality of the interaction is only obvious after exposure to

UVR.

We next exposed these cell lines to UVR and examined their

repair capacities for 6-4 PP and CPD lesions and possible changes

in cell phase distributions. Cells were harvested at various times

after UVR exposure (allowing time for repair), stained with

antibodies against 6-4 PPs and CPDs and analyzed by FACS. Our

results show that cells reconstituted with XPA F164A repaired 6-4

PPs slower than cells reconstituted with XPA wt (50% versus 37%

of the cells contain unrepaired 6-4 PPs 4 h after UVR,

respectively), although not as slow as the XPA2/2 cells (91%)

(Figure 3C). The graph in the right panel of Figure 3C compares

the repair rates of 6-4 PPs for the different cell lines. The repair of

6-4 PPs was reduced in all phases of the cell cycle (Figure S2A),

suggesting that the XPA-PCNA interaction is important for

‘‘overall’’ NER and not only for post-replicative NER in S phase.

Likewise, removal of CPDs was also reduced in cells reconstituted

with XPA F164A compared to cells reconstituted with XPA wt,

i.e. contained more CPDs 24 h after UVR (83% versus 73%,

respectively, Figure 3D, left panel). Moreover, more CPD positive

cells expressing XPA F164A were arrested in S phase 24 h after

UVR than cells expressing XPA wt (70% versus 43%, respectively,

Figure 3D, right panel). In contrast, more CPD positive cells

expressing XPA wt were arrested in G2. This difference in cell

cycle arrest was most pronounced 24 h after UVR, but could also

be detected after 48 h (Figure S2B). Difference in repair rates of

CPDs between the cell lines cannot exactly be determined due to a

combination of i) slow repair of CPDs, ii) proliferation, hence

dilution of CPDs, and iii) because the proliferation rate at this UV-

dose is lower for the cells expressing XPA F164A compared to cells

expressing XPA wt (Figure 3A, mid panel). Nevertheless, the

significant initial S phase accumulation of CPD positive cells

expressing mutant XPA supports a reduced NER in cells lacking

the direct XPA-PCNA interaction. In summary, these results show

that the direct interaction between XPA and PCNA via the APIM

motif is required for efficient repair of UVR-induced DNA lesions.

Cells Lacking a Functional XPA-PCNA Interaction
Accumulate Stalled Replication Forks after UVR Exposure

To elucidate whether the impaired progression through S phase

of the XPA F164A expressing cells was caused by stalled

replication forks or DSBs, we next fixed the cells 24 h after

UVR and stained for phosphorylated histone gamma H2AX

(cH2AX), a marker for DSBs and stalled replication forks [37]. In-

cell western (Figure 4A) shows that, 24 h after UVR, cells without

a functional XPA-PCNA interaction (XPA2/2 and XPA F164A

expressing cells) were stained for cH2AX at lower UV-doses than

cells expressing XPA wt in agreement with reduced repair.

Confocal analysis of cells stained for PCNA and cH2AX showed

that XPA2/2 and XPA F164A expressing cells had higher levels

of PCNA foci colocalizing with cH2AX than cells expressing XPA

wt, ,90% and ,50% for XPA2/2 and XPA F164A expressing

cells respectively, versus ,20% for the XPA wt expressing cells

(Figure 4B and C). Next, to elucidate whether these cH2AX foci

were stalled replication forks or DSBs, we stained for RAD51

previously shown to localize at DSBs at collapsed replication forks

[38]. Our cells treated with hydroxy urea overnight stained

positively for RAD51 at replication foci (Figure S3A). However,

we found that, unlike the cH2AX foci, the number of RAD51 foci

did not increased upon radiation with these UV-doses and that the

few RAD51 foci identified did not colocalize with replication foci

(unpublished data and Figure S3B). Thus, the cH2AX foci

colocalizing with PCNA most likely represent stalled replication

forks, not DSBs.

Our results show that XPA interacts with PCNA close to the

replication fork also in absence of UVR, however, the conse-

quence of impaired direct interaction is only detected after

damage. Recently, the ZRANB3 translocase was shown to interact

with PCNA via both APIM and PIP at sites of replication in

undamaged cells, but that the interaction was enhanced after

DNA damage resulting in polyubiquitination of PCNA [32]. An

APIM-YFP fusion protein pulled down PCNAs enriched in a

subset of posttranslationally modified forms [27]. Therefore, it is

tempting to speculate that the high affinity interaction between

XPA and PCNA is found mainly between a posttranslationally

modified PCNA and XPA. This remains to be elucidated,

however, no obvious ubiquitination (mono or poly), or SUMOyla-

tion interaction domains could be identified in XPA by sequence

analysis (data not shown).

A working model explaining our findings is shown in Figure 5.

Because our experiments detect the functionality of the XPA-

PCNA interaction only after UVR, the model illustrates the

importance of direct XPA-PCNA interaction for efficient NER of

UVR induced DNA damage. XPA and PCNA interact in

complexes including the hitherto unidentified post-replicative

NER complex (Figure 5A). This direct interaction is necessary

for optimal NER throughout the cell cycle. Under normal

conditions, e.g. after solar UVR, bypass of UV lesions is found

to be important as illustrated by the severe phenotype of XP-

Variant (XPV) patients [39]. However, after bypass the DNA

lesions persist; hence repair systems for rapid removal of these

frequent DNA lesions likely exist. Based on our data showing that

XPA, XPF, XPD, XPC, and XPG are in the close proximity of

newly replicated DNA and/or colocalize with PCNA in replica-

tion foci and that impaired XPA-PCNA interaction results in

reduced NER also in S phase, we suggest that this is a mechanism

for efficient postreplicative NER in S phase repairing lesions

bypassed by TLS polymerases. If the DNA damage load is high,

an initial pause in S phase will normally be followed by a late S/

G2 arrest in order to repair all the bypassed lesions. This is

observed for the XPA wt expressing cells 24 hours after UVR

A Functional Interaction between XPA and PCNA
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exposure (Figure 3D). Mutation in the APIM sequence in XPA

impairs the direct interaction with PCNA; however, XPA still

colocalizes with PCNA. This is likely due to indirect binding via

RPA or other proteins in the NER complex for example XPA

binding protein 2 (XAB2) which also contains APIM (Figure 5B).

Nevertheless, an impaired direct APIM-mediated interaction

between XPA and PCNA results in decreased NER efficiency.

This leads to excessive levels of UVR induced DNA lesions that

must be bypassed by TLS, resulting in an enhanced S phase and

replication arrest as shown in Figure 3D and 4A-C. Reduced post-

replicative NER efficiency likely also leads to higher levels of

unrepaired DNA lesions in the subsequent replication. This is

supported by our results showing that, even 48 h after UVR, the

level of CPDs and cells stalled in S phase is enhanced in cells

expressing the mutant XPA (Figure S2B). The reason for the lack

of detectable G2 arrest in these cells is unknown and beyond the

scope of this paper, but a connection between XPA and the

checkpoint proteins ATR and Chk1 has previously been described

[40].

Conclusions
We have identified a functional direct interaction between XPA

and PCNA mediated through the newly discovered APIM

sequence. XPA with disrupted APIM sequence fails to fully rescue

XPA2/2 cells after UVR; here we show reduced cell growth,

reduced NER efficiency and an increased S phase arrest. We

detect a direct interaction between XPA and PCNA and presence

of XPA, XPF, and XPD in the replisome. These results suggest an

important function of NER in post-replicative repair.

Materials and Methods

Expression Constructs
Cloning of the fluorescently tagged expression construct pCFP-

PCNA is described [41]. The pYFP- and pCFP-XPA constructs

were made by switching YFP and CFP tags with the His9-HA-

GFP tag (NheI/BsrGI fragment) in pHis9-HA-GFP-XPA [42], a

kind gift from Dr. Wim Vermeulen (Department of Cell Biology

and Genetics, Rotterdam). pYFP-XPA was used as a template to

design YFP-XPA F164A by site-directed mutagenesis according to

the QuickChange II instruction manual (Stratagene). The Met-

XPA1612167-YFP (called XPA1612167-YFP) construct was made by

annealing oligos with NotI overhang, followed by ligation into

pYFP-N1 mutated in the ATG codon. pYFP-XPG was generated

by PCR amplification of XPG from pVL1392-XPG, a kind gift

from Dr. Richard D. Wood, (Department of Molecular Carcino-

genesis, Houston Texas) [43] and cloned into pYFP-C1 (Clone-

tech Laboratories, Inc) (XhoI/XmaI). pYFP-XPC was generated

from pGFP-XPC (a kind gift by Dr. Wim Vermeulen) by switching

tag (AgeI/HpaI and XmaI/HpaI for pYFP N1 and pGFP-XPC

respectively) [44].

Cell Lines
HeLa cells (ATCC CCL-2) transiently expressing fluorescently

tagged proteins were prepared and cultured as described [27].

SV40 transformed XP-A fibroblast cells, (XPA deficient, XPA2/2)

(Coriell Institute GM04429) were grown in alpha-MEM with the

same supplements as for HeLa cells. XPA2/2 cells stably

expressing YFP-XPA and YFP-XPA F164A were made by

prolonged culturing in selective medium (G418) followed by cell

sorting as described [27]. HEK293 cells (ATCC CRL-15B) were

cultured as HeLa cells, except for 20% (instead of 10%) FBS to

ensure that the cells were actively replicating at the time of

iPOND.

Immunofluoresence Staining
Cells were fixed with 2% paraformaldehyde and permeabilized

with cold methanol. The cells were washed/blocked with 2% FCS

in PBS prior to incubation with antibody against (a) PCNA

(Abcam (ab)18197 or Santa Cruz biotechnology Inc., PC10), a-

XPA (ab2352), a-cH2AX phospho S131 (ab2893), and a-RAD51

(Santa Cruz, H92) for 120 min at 37uC or overnight at 4uC. The

cells were washed and incubated with Alexa fluor 532 goat a-

mouse and Alexa fluor 647 goat a-rabbit (Invitrogen) for 45 min at

37uC, followed by confocal imaging.

Confocal Imaging
Live HeLa and XPA2/2 cells were examined 16–24 h after

transient transfection (by Fugene 6 or Fugene HD (Roche Inc.)

according to the manufacturer’s recommendations) with the CFP/

YFP fusion constructs or after immunofluorescence staining. The

fluorescent images were acquired using a Zeiss LSM 510 Meta

laser scanning microscope equipped with a Plan-Apochromate

636/1.4 oil immersion objective. The images were acquired in the

growth medium of the cell, with the stage heated to 37uC, using

the Zeiss LSM 510 software. CFP was excited at l= 458 nm and

detected at l= 470–500 nm and YFP was excited at l= 514 nm

and detected at l= 530–600 nm as in [27]. The immunostained

cells were excited at l= 543 nm and 633 nm laser lines and

detected at l= 560–615 nm and l.650 nm for Alexa fluor 532

and 647, respectively. When YFP-XPA was imaged together with

immunostained proteins, YFP was excited at l= 488 nm and

detected at l= 505–570 nm to limit bleed through. The thickness

of the slice was 1 mm. All images were acquired with consecutive

scans to avoid bleed though. No image processing, except contrast

and intensity adjustments, were performed.

Fluorescence Resonance Energy Transfer (FRET) Analysis
FRET occurs if tags with spectral overlap (here: YFP and CFP)

are less than 100 Å (10 nm) apart [36]. We detected FRET using

the sensitized emission method, measuring acceptor (YFP)

emission upon donor (CFP) excitation as in [27]. FRET was

scored when the intensity of emitted light from YFP after

excitation of the CFP fluorochrome was stronger than the light

emitted by CFP or YFP-tagged proteins alone, after excitation

Figure 3. Complete reconstitution of XPA2/2 cells requires XPA with intact APIM. (A) Cell proliferation after UV-B treatment measured by
MTT assay. The data is normalized against untreated day 1. One representative out of three experiments is presented. Data presented is the average
of 6 wells 6 SD. (B) Normalized XPA intensity measured by in-cell western (LI-COR Bioscience) (mean 6 SD, n = 6). The XPA intensity is normalized
against the DNA content using Draq5. (C) Left panel: Histograms of 6-4 PP positive cells, untreated, and 0, 2 and 4 h after UV-B. The cells with
fluorescent intensity above the dashed line are defined as 6-4 PP positive. The numbers in the bottom row indicate % 6-4 PP positive cells 4 h after
UVR. Right panel: Graphic presentation of data in left panel showing reduction of 6-4 PP positive cells as a function of time. (D) Left panel: Histograms
illustrating cell cycle distribution of CPD positive and negative cells, untreated, 0 and 24 h after UV-B. Lower UVR-dose was applied for the XPA2/2

cells to avoid excessive apoptosis. The dashed lines separate the cell cycle phases. % CPD positive cells are given in bottom row. Right panel: Bars
illustrating the relative cell-phase distribution of the CPD positive cells.
doi:10.1371/journal.pone.0049199.g003
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with CFP lasers (false FRET), given by the equation: FRET = I2–

I1 (ID2/ID1) - I3 (IA2/IA3). FRET .0 was normalized for

expression levels using the equation: NFRET = FRET/(I16I3)1/

2 [45,46]. NFRET was calculated from mean intensities (I) within a

region of interest (ROI) containing more than 25 pixels where all

pixels had intensities below 250. Channel 1 (CFP) and 3 (YFP)

were measured as described for confocal imaging, and channel 2

(FRET) was excited with l= 458 nm and detected at l= 530–

600 nm. ID1, D2, and IA2, A3 were determined for cells

transfected with CFP and YFP constructs only, with same settings

and same fluorescence intensities as co-transfected cells (I1 and I3).

FACS Analysis
For measurements of 6-4 PPs and CPDs (modified from [47]),

cells were fixed in ice-cold 100% methanol and treated with 0.5%

Triton-X/2M HCl for 10 min at room temperature followed by

washing with 0.1 M Na2B4O7 (pH 9.0) and PBS. The cell pellets

were then incubated in 300 ml RNAse (100 mg/ml in PBS) at 37uC
for 60 min before incubation with a- 6-4 PP and -CPD (64M-2

and TDM2, Cosmo Bio) at 4uC overnight. The antibodies were

diluted in PBS-TB (1% BSA/0.25% Tween-20/PBS). The cells

were then washed in PBS-TB, followed by incubation with Alexa

fluor 405 goat a-mouse (Invitrogen) for 60 min at room

temperature. Finally, the cells were washed in PBS-TB and

resuspended in PBS with Propidium Iodide (PI, Molecular Probes)

at a final volume of 5 mg/ml. PI was excited at l= 488 nm and

detected at l= 575 nm. Alexa fluor 405 goat a-mouse was excited

at l= 407 nm and detected at l= 450 nm. Cell cycle fractions, 6-

4 PPs and CPDs were determined by using BD FACSAria and the

BD FACSDiva software (BD Biosciences). Data presented is one

representative out of 5 (UV lesions) and 8 (cell cycle) individual

experiments revealing the same trend.

Preparation of Cell Extract and Co-immunoprecipitation
(co-IP)

Fractionated cell extracts from HeLa cells were prepared as

described [27]. Importantly, the sonicated pellets (containing

nuclei) were excessively treated with a DNAse/RNAse cocktail

(2 ml Omnicleave Endonuclease (200 U/ml Epicentre Technolo-

gies, WI), 1 ml DNAse (10 U/ml, Roche Inc.), 1 ml Benzonase

(250 U/ml, Novagene, Ge), 1 ml Micrococcal Nuclease (100–

300 U/mg, Sigma-Aldrich) and 10 ml RNAse (2 mg/ml, Sigma-

Aldrich) per 30 mg cell extract, at 37uC for 1 hour. Monoclonal a-

PCNA (PC10) and an in-house purified polyclonal a-GFP were

covalently linked to protein-A paramagnetic beads (Dynal)

according to a procedure from New England Biolabs Inc (from

now on called a-PCNA and a-YFP beads). 1500 mg of each

fraction was incubated with 20 ml a-PCNA or 10 ml a-YFP beads

during constant rotation at 4uC overnight (IP). For the IP with

endogenous proteins, a-YFP beads were used as a negative control

to rule out unspecific binding to the beads.

Figure 4. After UVR, cells complemented with APIM-mutated
XPA accumulate cH2AX foci at the site of replication. (A)
Normalized cH2AX intensity measured by in-cell western (LI-COR
Bioscience) (mean 6 SD, n = 4) 24 h after exposure to UV-B. The cH2AX

intensity is normalized against the DNA content using Draq5 and the
intensity of untreated cells. (B) Images of immunostained cells. The cells
were exposed to UV-B 24 h prior to fixation. Lower UVR-dose was
applied for the XPA2/2 cells to avoid excessive apoptosis. Bar: 5 mm. (C)
Fractions of replication foci (PCNA) colocalizing with cH2AX. Each dot
represents one cell, on average 35 foci were counted in each cell (mean
6 SEM, n = 5 and 15). The P-value is derived by unpaired t-test. Only
cells resembling S phase cells and expressing comparable levels of the
YFP constructs were included.
doi:10.1371/journal.pone.0049199.g004

A Functional Interaction between XPA and PCNA

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e49199



Isolation of Proteins on Nascent DNA (iPOND)
The iPOND was performed essentially as described in [34].

Shortly, HEK293 cells (26108 cells per sample) were pulsed with

media containing 5-ethynyl-29-deoxyuridine (EdU) (10 mM, In-

vitrogen) for 5 to 15 min (pulse). For the pulse-chase experiment,

the EdU was replaced with media containing thymidine for

30 min (10 mM, Sigma-Aldrich). Media containing DMSO was

used as a negative control (incubated for 15 min, termed 0 min

EdU in the Figure). After pulse and pulse-chase, cells were cross-

linked in formaldehyde/PBS (1%) for 20 min at room tempera-

ture, quenched using 0.125 M glycine, and washed three times in

cold PBS. The cell pellets were frozen at 280uC, and then

resuspended in 0.25% Triton-X/PBS. Pellets were washed once

with 0.5% BSA/PBS and once with PBS. Cells were incubated in

click reaction buffer for 1–2 h at a concentration of 16108 cells

per 5 ml of click reaction buffer (2 mM CuSO4, 10 mM biotin-

azide, 10 mM Sodium ascorbate). Cell pellets were then washed

once with 0.5% BSA/PBS and once with PBS, resuspended in lysis

buffer (1% SDS, 50 mM Tris (pH 8.0), 1 mg/ml leupeptin, and

1 mg/ml aprotinin) and sonicated. Samples were centrifuged,

filtered through an 80-mm nylon mesh, and diluted 1:1 with PBS

containing 1 mg/ml leupeptin and 1 mg/ml aprotinin prior to

purification. Streptavidin–agarose resin (100 ml resin per 26108

cells, Novagen) was washed twice in lysis buffer and once in PBS.

Washed resin was incubated with the samples for 16–20 h at 4uC.

The resin was washed once with lysis buffer, once with 1 M NaCl,

and then twice with lysis buffer. Captured proteins were eluted

and cross-links were reversed in (1:1) SDS Laemmli sample buffer

(0.4 g SDS, 2 ml 100% Glycerol, 1.25 ml 1M Tris pH 6.8, 0.01 g

Bromphenol blue, and 0.2 M DTT in 8 ml H2O) by incubating

for 25 min at 95uC. Proteins were resolved on SDS-PAGE and

detected by western blot.

Figure 5. Model describing the role of direct XPA-PCNA interaction for efficient NER after UVR. To clarify the essence of our hypothesis,
only the XPA dimer, XAB2, and RPA of the NER proteins are specified, and the NER complex (yellow) represents the other NER proteins in the model.
The grey proteins mark proteins containing the PIP-box, the green mark proteins containing APIM, the blue donut marks PCNA and the red hooks
mark 6-4 PPs and CPDs. (A) Optimal NER. (B) Reduced NER due to mutated APIM sequence in XPA.
doi:10.1371/journal.pone.0049199.g005
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Western Blot (WB), in-cell Western and Dot-blot Analysis
For WB a-PCNA (PC10), a-XPA (ab65963), a-XPF (ab17798),

a-XPD (ab54676), and a-Histone H3 (ab1791) were used and the

procedure conducted as described [27]. Expression of YFP-XPA

constructs were measured parallel to the cell survival assay and

accumulation of cH2AX was verified 24 h after UVR, using In-

Cell Western assay by the Odyssey Infrared Imaging System

according to the provider’s protocol (LI-COR Bioscience), and

using a-XPA (ab2352), a-cH2AX (ab2893), DRAQ5 (DNA stain,

Biostatus), and IRDye 800CW Goat Anti-Mouse Secondary

Antibody (LI-COR Bioscience). The cell plates were scanned in

the 700 nm and 800 nm laser channels using the Odyssey Imager.

The fluorescent intensity in the 800 nm channel (XPA or cH2AX

signal) was normalized against the 700 nm channel (DNA stain <
cell number) after background subtraction for each well. The data

presented is an average from 5 wells. A dot blot containing

28 nmol peptides was performed as described [27] using 1 mg/ml

recombinant PCNA and developed with a-PCNA (PC10) as for

WB.

Cell Survival Assay
XPA2/2 cells, untransfected and stably expressing YFP-XPA

and YFP-XPA F164A, were seeded into 96 well plates (4000 cells/

well) and incubated for 4 h. UV-B exposure: medium was

replaced with 50 ml PBS and the plates were exposed to various

doses of UV-B (Vilber Lourmat, Bio Spectra V5, 312 nm). Cells

were harvested every day for the next four days using the MTT (3-

(4.5-Dimethylthiazol-2-yl)-2.5 diphenyl-tetrazolium bromide) as-

say. OD was measured at 570 nm, and the average from at least 4

wells was used to calculate cell survival.
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Supporting Information

Figure S1 XPC and XPG colocalize with PCNA in replication

foci. Confocal fluorescent images of YFP-tagged XPC and XPG

co-expressed with CFP-PCNA in live, freely cycling, untreated

XPA2/2 cells.

(EPS)

Figure S2 Repair of 6–4 PP and CPD. (A) Graph showing the

level of 6–4 PP positive cells as a function of recovery time in all

phases of the cell cycle (G1, S and G2) in XPA2/2 (m) and

XPA2/2 stably expressing YFP-XPA (%) and YFP-XPA F164A

(N). The cells are treated with UVR (300 J/m2 UV-B), and the

data is extracted from the experiment shown in Figure 3C. The 6–

4 PP levels are normalized against the 6–4 PP levels at time 0 h

after UVR. (B) Histograms representing the cell cycle distribution

of CPD negative and positive cells. Cells were analyzed 0, 24, 48,

and 72 h after UVR (100 J/m2 UV-B). Untreated cells are

included as a negative control. CPD negative and positive cells are

shown in dark and light grey, respectively. Histograms for

unexposed cells, and UV-exposed cells at 0 and 24 h are the

same as shown in Fig. 3D.

(EPS)

Figure S3 RAD51 foci in hydroxy urea (HU)- and UV-exposed

cells. (A) Images of XPA2/2 cells stably expressing YFP-XPA

stained for PCNA and RAD51 after HU exposure (10 mM).

Colocalization between PCNA and RAD51 in these cells is

positive control for (B), showing that RAD51 functions as a marker

for collapsed replication forks, i.e. DSBs. (B) Images of XPA2/2

cells stained for PCNA and RAD51 24 h after UVR (50 J/m2

UV-B). Lack of colocalization between PCNA and RAD51

indicate that these cells do not contain DSBs at the site of

replication, i.e. collapsed replication forks.

(EPS)
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