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Abstract
We present a model for the automated segmentation of cells from confocal microscopy volumes of
biological samples. The segmentation task for these images is exceptionally challenging due to
weak boundaries and varying intensity during the imaging process. To tackle this, a two step
pruning process based on the Fast Marching Method is first applied to obtain an over-segmented
image. This is followed by a merging step based on an effective feature representation. The
algorithm is applied on two different datasets: one from the ascidian Ciona and the other from the
plant Arabidopsis. The presented 3D segmentation algorithm shows promising results on these
datasets.
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1. INTRODUCTION
We consider the problem of segmenting 3D confocal microscopy cell images. The images of
samples labeled for cell periphery pose many challenges for traditional image segmentation
methods. For instance, the intensity of the cell boundaries in the images has a wide dynamic
range. Furthermore, the imaging resolution along the z axis is lower than the resolution in
the x-y plane, and thus, the thickness of cell boundaries varies in different planes. Moreover,
the presence of other organelles (e.g, the nuclei of the cells) may cause false edges to be
present in the cell boundary images. Our preliminary experiments with state-of-the-art
segmentation methods, as described below, confirm the difficulty of this type of dataset. To
address this problem, we propose an effective algorithm based on the Fast Marching Method
(FMM) [1, 2]. The proposed solution first obtains an over-segmented volume with an
automatic initialization. The resulting volume is then corrected based on a trained model.
We present results on two diverse datasets to demonstrate the effectiveness of the proposed
approach.

Examples of membrane (Ciona) or cell wall (Arabidopsis) tagged images can be seen in Fig.
5(a), 7(a), and 7(c). To highlight some typical problems of the existing level-set based

©2011 IEEE

Arabidopsis thaliana images are contributed by the Elliot Meyerowitz Lab (Division of Biology, California Institute of Technology,
Pasadena, USA).

NIH Public Access
Author Manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2012 November
13.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2011 ; : 199–203.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



methods, we consider two variants of the well known Chan-Vese algorithm (CV) [3]. The
first variant is a single level-set function that is initialized with a sphere inside every cell.
Fig. 1(a) shows that this method separates the regions with similar characteristics. Therefore,
the boundaries of all the cells are extracted as one object, and the joined interiors are
recognized as a second object. To obtain an individual segmentation of the cells, another
variant of the CV-algorithm [4] is considered. For this variant, a separate level-set function
is initialized inside each cell in the image, making the total number of level-set functions
equal to the number of the cells. However, because the interiors of the cells have similar
characteristics, the level-set functions leak into neighboring cells and produce undesired
results. Therefore, Chan-Vese methods are not suitable for membrane images, because they
rely on region characteristics, while these images consist mostly of edges. Fig. 1(b) shows
an example of the multiple level-sets approach, applied to a cell wall tagged image.

More recently, a modified version of the subjective surface method [5] was shown to be
successful in segmenting cell boundary images. The subjective surface method minimizes
the volume of a 3D manifold embedded in a 4-D Riemannian space with a metric that is
constructed from the image. Fig. 2 shows the result of this algorithm for two different
initializations1. The segmentation contour misses the true boundary in the first example, and
attaches to the false boundary in the second case. Again, this can be attributed to the
characteristics of membrane tagged images in general.

In summary, the state-of-the-art contour based approaches are highly sensitive to the
initialization and do not scale well for 3D confocal images. Another approach to image
segmentation consists of the correction of an over-segmented image, as discussed in [6, 7].
The method in [7] minimizes the cost of merging segments across the image, in a linear
program formulation. However this method works on consecutive 2D slices instead of
approaching the segmentation problem in 3D. The method in [6] uses a trained classifier for
the decision whether to merge segments or not, however this method is tailored to images
which have nuclei tagging.

In this paper, we propose an efficient yet effective solution for the segmentation of cell
boundary images, based on the correction of over-segmentation. The proposed method
requires little or no manual interaction in terms of initialization. One of the main advantages
of this method is that, due to the automated initialization, there is no need for imaging cell
nuclei along with cell membranes. The model requires a training stage for every type of
data. This one-time training stage is considerably less work than the manual initialization of
every volume. The preliminary results of our experiments are very encouraging in the cell
segmentation of confocal microscopy volumes.

The rest of this paper is organized as follows: In Section 2, we explain the FMM based
method for obtaining a reasonable over segmentation of a 3D volume, which starts from
automatic seed initialization. Section 2.2 describes the feature based merging of the over
segmented region, for obtaining the final segmentation of the 3D volume. Section 3 presents
the experimental results of this paper. We conclude in Section 4.

2. PROPOSED METHOD
The block diagram of the proposed method is shown in Fig. 3. Our method consists of the
following stages: (1) The volume is densely initialized with seed points. These seed points
are pruned using a two-step process based on the Fast Marching Method (FMM). This stage
automatically reduces the number of seed points, with no human input or any additional

1Refer to the [5] for a detailed explanation of this method with different initializations.
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nuclei information, and results in an over-segmented volume. (2) The over-segmentation is
corrected based on features that capture both edge and region information. The main
objective of this stage is to decide whether two neighboring segments of the over-segmented
volume belong to the same cell or not. A 3D example of a corrected cell can be seen in Fig.
4. Below, we provide the details of these two stages.

2.1. A two-step pruning process based on FMM
The Fast Marching Method (FMM) is generally used to effectively compute geodesic
distances in the discrete image domain, by solving an eikonal equation:

(1)

where the 6-neighbors of a voxel (3D pixel) are used to estimate the actual distances. Here,
F (x, y, z) encodes the relation between neighboring voxels. Thus, the solution T (x, y, z) is
simply the Euclidean distance, if F (x, y, z) is constant over the domain. Similarly, if F (x, y,
z) is an edge-strength function, then T (x, y, z) provides the geodesic distances based on
image gradients.

In the following, we explain the two-step iterative pruning process, and we use a two
dimensional implementation of the algorithm for demonstration purposes, as shown in Fig.
5. Note that the algorithm is designed to run over 3D volumes and is evaluated over these
volumes in Section 3. The dense initialization with seeds is performed by splitting the given
3D volume into small non-overlapping cubes. The size of the cube is determined by the size
of the smallest possible cell in the volume. A seed is then selected within each cube at the
minimum intensity voxel location. The dense initialization of the sample image in Fig. 5(a)
is shown in Fig. 5(b). Next, FMM is run on the whole volume with these seed points. The
result of running FMM with the dense initialization is a highly over segmented image, as
shown in Fig. 5(c). To improve upon this, we cluster the initial seed points that are below a
selected threshold of the piecewise linear function T (x, y, z), returned by the FMM. This is
equivalent to re-assigning one seed point to every valley of T (x, y, z). The reduced number
of seed points after the pruning process is shown in the two dimensional example of Fig.
5(d). Finally, a second pass of the fast marching algorithm is run on the volume with the
reduced number of seed points. This results in a much less over segmented image, as shown
in Fig. 5(e). The pruning process greatly reduces the number of seed points, and thus the
total number of segments2.

The Fast Marching Method (FMM) is computationally expensive when processing large 3D
volumes. Thus, in a practical setting, the volume can be partitioned into smaller overlapping
cuboids. The overlapping region should be large enough to include at least one seed point in
each of the x, y and z directions. This way, a smooth and consistent output can be derived
for the entire volume from the output of running FMM on the partitions.

2.2. Correction of the Over-Segmentations
To correct the over-segmented output of the first stage, we adopt a method that examines the
features of the neighboring segments. We use a classifier to make the decision of wether or
not to merge two neighboring segments (called pairs). The classifier is trained with
examples of the pairs of segments that belong to the same cell (decision = merge), and pairs
with a real separating cell boundary (decision = not merge). The two classes are represented
in a two dimensional feature space as described below.

2The extension of this argument to more than two iterations is possible, with the limitation that depending on the image characteristics
and the parameters of the algorithm, some of the smaller cells may lose their initialization seed. The choice of a 2-iteration system
reflects this trade-off. The over-segmented image is corrected by algorithm presented in Section 2.2.
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2.2.1. Features—Two different features are used to capture both region and boundary
properties of neighboring segments. Let Si and Sj be two arbitrary neighboring segments and
Bij be the corresponding boundary interface.

We compute the difference between the average intensity of the boundary interface and the
minimum of the average intensity values inside each of the two segments. This can be
written as:

(2)

where f1 and  denote the first feature, and the average of the corresponding population,
respectively. It is inferred from the above equation that f1 uses the relative information to
discriminate between good and bad boundary candidates. This is meaningful because the
membrane intensity covers a wide dynamic range. Note that this feature ensures that cell
pairs for which one cell has a brighter interior than the other remain separate. This happens
for cells such as the peripheral cells in Fig. 7(a), where the membrane staining is stronger
than the rest of the image.

The second feature uses an information theoretic measure:

(3)

where H(.) denotes the entropy of the corresponding quantity. This measures the change in
entropy between the boundary region and the two segments as a whole. Intuitively, for the
false boundaries, the distribution of intensities is more uniform than for real boundaries.
Thus, f2 is expected to be negative if the boundary interface Bij is a true one, or stay close to
zero otherwise.

Therefore, a two dimensional feature vector Fij = [f1, f2], is computed for each of the
extracted edges after the over-segmentation step. The two dimensional feature space of a
sample training set is illustrated in Fig. 6(a).

3. EXPERIMENTAL RESULTS
To show the effectiveness and robustness of the presented approach, we performed our
experiments with two different datasets, one from Ascidian Ciona3 and the other form the
plant Arabidopsis4. First, we aply the two step fast marching method on the raw volumes to
obtain the over-segmentation. Then, the possible boundary interfaces Bij are extracted for
the volume and their two dimensional features are computed. These features are then fed to
the classifier to obtain the final result. A 3D example of a cell before and after the classifier
are shown in Fig. 4(a) and Fig. 4(b), respectively.

We evaluate the performance of our method on forty cells of the Ciona dataset. The
comparison metric is the F-measure, which is a volume based error metric and is defined as:

(4)

3Ciona embryos were fixed, stained with Bodipy-FL phallicidin to label the cortical actin cytoskeleton, cleared in Murray’s Clear
(BABB), and imaged on an Olympus FV1000 LSCM using a 40x 1.3NA oil immersion objective.
4Arabidopsis thaliana was imaged using a Zeiss 510 Meta laser scanning confocal microscope. Propidium iodide for staining root
cells was applied to samples and the lipophilic dye FM4-64 was used to demarcate cell membranes.
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where P and R are the precision and the recall for a given groundtruth volume.

The presented method is tested using five different classifiers. These classifiers are trained
with 300 examples of true boundaries, and 150 examples of false boundaries. The average
performance of the method employing different classifiers is shown in Table 1. These results
are compared with the F-measure scored by the FMM when manually initialized inside each
of these cells, and with the method described in [5]. The best performing classifier, SVM
with Linear Kernel, obtains an average F-measure similar to that of the manual initialization,
while the other classifiers come close to this value. Also, all the classifiers performed better
than the method from [5]. This shows that the feature space specified above, separates the
two classes sufficiently to obtain consistent results with various classifiers. Fig. 6(b)
illustrates the F-measure of the cells in this experiment for different classifiers. It can be
inferred from this figure that the F-measure is lower for certain cells because these cells
remained partially over-segmented.

To better observe the effectiveness of our method, we present two illustrative slices of the
Ciona and the Arabidopsis datasets in Fig. 7. The segmentation method is run over the 3D
images and a slice of the volume is displayed in this figure. Fig. 7(b) shows the
corresponding segmentation of the slice of the Ciona in Fig. 7(a). We note that, the small
peripheral epidermal cells are particularly challenging. However, the presented method
accurately segments many of these cells. The large cells were also correctly segmented, with
a few exceptions.

Finally, Fig. 7(c) illustrates a slice of the segmentation of the Arabidopsis, whose
corresponding slice in the original volume is shown in Fig. 7(d). This image poses additional
difficulty, because the cell walls are very thick. Furthermore, intensity varies within the
same cell and there are cell wall portions with many discontinuities. As can be seen in Fig.
7(d), the proposed method performs reasonably well over this dataset. However, sometimes
the thick boundaries are mistaken for uniform regions.

4. CONCLUSION
In this work, we develop a general purpose segmentation algorithm which is applicable to
3D confocal microscopy membrane images. The proposed approach first generates an over-
segmented version of the desired output, using a two-step pruning process based on the fast
marching method. The over-segmentation is then corrected by a merging step using a
learned model. In this regard, we propose a two-feature representation that is effective for
membrane images. We confirmed the high performance of the presented method through
experiments on the Ciona and the Arabidopsis datasets. We showed that the presented
method works as well as the manually initialized method, and is potentially generalizable to
other 3D images of membrane staining. Future work includes the study of additional
features as well as including the thickness of the boundary as a parameter.
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Fig. 1.
The performance of two different variants of the CV algorithm: (a) single level set (b)
multiple level set, where each color represents one level set.
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Fig. 2.
The performance of the subjective surface method with two different initializations.
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Fig. 3.
Block diagram of the proposed method
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Fig. 4.
(a) An example of an over-segmented cell, and (b) the corrected segmentation.
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Fig. 5.
Two-step pruning method based on FMM. (a) An example of a cell boundary image slice,
(b) dense seed initialization, (c) highly over segmented image, (d) reduced number of seed
points, and (e) reduced over segmentation.
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Fig. 6.
(a) Training examples in the feature space; (b) Comparison of the proposed method using
different classifiers, with the manually initialized FMM, and the subjective surface based
method from [5] (for 40 Ciona cells).

Delibaltov et al. Page 12

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2012 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 7.
(a) Slice of 3D Ciona volume, and (b) the corresponding slice in the 3D segmentation result;
(c) Slice of 3D Arabidopsis volume, and (d) the corresponding slice in the 3D segmentation
result. Every region is represented by a different color. The segmentation is performed in
3D.
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Table 1

Accuracy of the proposed method using various classifiers. Note that the automatic methods perform as well
as the manual initialized FMM and better than the method in [5]

Variations of proposed method Average F-measure

Gentle-Boost 0.8588

SVM-Linear kernel 0.8625

SVM-Quadratic kernel 0.7853

SVM-Polynomial kernel 0.8598

SVM-RBF kernel 0.8582

Other methods Average F-measure

Manually Initialized FMM 0.8558

Method from [5] 0.7787
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