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Abstract
Summary—Symporters are membrane proteins that couple energy stored in electrochemical
potential gradients to drive the cotransport of molecules and ions into cells. Traditionally, proteins
are classified into gene families based on sequence homology and functional properties, e.g. the
sodium glucose (SLC5 or Sodium Solute Symporter Family, SSS or SSF) and GABA (SLC6 or
Neurotransmitter Sodium Symporter Family, NSS or SNF) symporter families [1-4]. Recently, it
has been established that four Na+-symporter proteins with unrelated sequences have a common
structural core containing an inverted repeat of 5 transmembrane (TM) helices [5-8]. Analysis of
these four structures reveals that they reside in different conformations along the transport cycle
providing atomic insight into the mechanism of sodium solute cotransport.

Introduction
While membrane proteins account for about a quarter of the genes in organisms, they
constitute less than 1% of the structures in the protein databases (http://
blanco.biomol.uci.edu/Membrane_proteins_xtal.html). An important class of membrane
proteins is the secondary active transporters which utilize electrochemical potential
gradients to drive a diverse group of substrates into cells. Na+-symporters are a subclass
responsible for the accumulation of sugars, amino acids and other ions and molecules in
cells. Many hundreds of the Na+-symporters in both prokaryotes and eukaryotes have been
identified and classified into ten major families, including the Na+-glucose (SGLTs, SSS,
T.C.2.21) and Na+-amino acid (NSS, T.C.2.A.22) symporters (Transporter classification
database, http://www.tcdb.org/tcdb/ and PFam, http://pfam.sanger.ac.uk). In humans the
SSS and NSS transporters play critical roles in the physiology of the brain, intestine,
kidneys, and thyroid, where mutations in their genes are responsible for severe congenital
diseases, and furthermore are the designated targets for drugs in the treatment of depression,
diabetes and obesity [4,9-12]. Elucidating the structural basis for symport will greatly
facilitate our understanding of these diseases and aid in the development of novel drugs.

A central concept in membrane transport is the alternating access mechanism proposed by
Jardetzky in 1966 [13]. This model states that substrate binds to one face of the membrane
protein and an energy input (e.g. Δμs, ΔV, Δ-μx 

+/-) then drives a conformational change to
expose the substrate to the opposite face of the membrane where it is released. In the case of
Na+-symporters, the sodium motive force (Δ-μNa, the Na+ electrochemical potential
gradient) drives the conformational changes [9,10,14]. For almost 40 years alternating
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access has been the model of secondary active transport, but the structural basis has not yet
been established. Recently, we solved the crystal structure of a prokaryotic member of the
SSS family, the Na+-galactose symporter, vSGLT [6], and were surprised to find that the
architecture of the core domain closely resembles that of the Na+-leucine symporter from the
NSS family, LeuT [5]. More recently, it has been revealed that the crystal structures of the
nucleobase (Mhp1 [7]) and the glycine-betaine/proline-betaine (BetP [8]) symporters from
two different gene families (NSS1, T.C.2.A.39, and BCCT, T.C.2.A.15) have the same core
architecture.

In this review, we will discuss this highly conserved protein fold in terms of the common
features of the structures of vSGLT, LeuT, Mhp1 and BetP. In particular, we will address
the binding of various substrates and the driver ion, sodium. We will further highlight the
conformational differences between these structures and identify rearrangements required to
achieve the binding and release of substrate and sodium.

vSGLT, LeuT, Mhp1 and BetP share the same core domain
All four symporters belong to different gene families but maintain a common core structure
of 10 transmembrane helices (TM1-10) (RMSDs 3.8-4.5 Ǻ, Figure 3A) formed through the
association of an unanticipated internal structural repeat of a 5 TM helical bundle (Red
TM1-TM5 and Blue TM6-TM10, Figures 1-2). Although there is no sequence similarity
between the internal repeats, they have a high degree of structural conservation permitting
superimposition with each other (RMSD 3.9Ǻ). They have an inverted topology where
TM1-TM5 is related to TM6-TM10 by an apparent two-fold symmetry around an axis
through the center of the membrane plane. The transmembrane helices are intertwined
giving rise to a group of seven central helices (TM1, TM2, TM3, TM6, TM7, TM8 and
TM10) which house the substrate as well as ion binding sites. Although additional helices on
the N- and/or C-termini may be present and be important for function (Figure 1), it would
appear that the core domain represents a structural hallmark for many sodium driven
transporters and thus an alternative classification scheme not solely based on primary
sequence alignment is required. Along these lines, Lolkema and Slotbloom used
hydrophathy profile alignments [15] to identify a structural similarity between the vSGLT
and LeuT. They further predict that amino acid uniporters, symporters and antiporters in the
APC (Amino acid-Polyamine-Organocation) superfamily (T.C. 2.A 3) share the inverted
repeat core structure. It is interesting that the APC family includes both Na+ and H+

symporters. In the Pfam classification the APC superfamily (Pfam Clan CL0062) contains
14 families including those with transporters for sugars and amino acids, e.g. T.C. 2.A.3,
T.C.2.A.18, T.C.A.21, T.C.A.25, T.C.2.A.26, but not those for the LeuT, Mph1 or BetP
families. As more structures of transporters are resolved, there is a greater probability for
being able to identify these signature motifs and develop better classification tools.

Substrate binding site
The substrates in the crystal structures (PDB's: 2A65, 3DH4, 2JLO and 2W8A) have a
common location, Site-1, approximately halfway across the membrane bilayer in the center
of the core domain (Figure 3B). In LeuT and Mhp1, a vestibule from the extracellular
surface to the substrate binding site is formed from TM1, TM3, TM6, TM8 and TM10. The
exit pathway from the substrate binding site into the intracellular compartment was
identified in the vSGLT structure formed from TM1, TM2, TM3, TM6, TM8 and TM10. A
pronounced feature of the 5×5 inverted repeat motif is the position of two discontinuous
helices, TM1 and the symmetrically related TM6 located roughly halfway across the
membrane bilayer at the interface of the internal repeats. These unwound segments are
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thought to generate a local polar environment for the binding of substrates and ions,
providing a possible link for coupled transport in these and other transport proteins [16,17].

Contrary to what was observed in the structure of the secondary active transporter lactose
permease [18], the bound substrates are occluded from both the extracellular and
intracellular environment (for vSGLT see Figure 3B). In general, large hydrophobic residues
enclose the substrate within the binding pocket preventing access from the surrounding
solutes. Thus, a prerequisite for the binding and release of substrate is a conformational
change that opens the substrate-binding site to either the extracellular or intracellular milieu.

Although the relative location of the substrate-binding sites may be shared amongst
transporters (Figure 3C), the specific interactions vary in order to accommodate the diverse
range of substrates. As seen for vSGLT, all OH-moieties of galactose are coordinated by
hydrogen bonds from polar side chains in the central helices (TM1, TM6, TM7 and TM10).
BetP maintains its substrate, betaine, within a tryptophan box defined by three tryptophan
and one tyrosine residues (TM2 and TM6). For Mhp1, benzyl-hydantoin is placed between
two tryptophan residues (TM3 and TM6) and coordinated by conserved glutamine and
asparagine residues (TM1 and TM8). Finally, LeuT coordinates its substrate, leucine,
primarily through main chain atoms in the unwound segments of TM1 and TM6. Thus, the
5×5 inverted repeat topology appears to act as a common scaffold and it is capable of
accommodating a wide range of substrates by substituting key amino acids. Mutation of
residues coordinating the substrates markedly reduces transport [6-8].

Structures of LeuT, co-crystallized in the presence of antidepressants, revealed the position
of an inhibitory binding site (Site-2) located near the extracellular surface, ~11 Å above the
Site-1 [19-21]. These noncompetitive inhibitors appear to lock the extracellular gate
preventing substrate translocation. Subsequently, steered molecular dynamics simulations in
conjunction with binding and flux assays revealed Site-2 to be a secondary binding site
whereupon substrate binding induces release of sodium and substrate from Site-1 [22]. To
date, there have been no crystal structures showing two substrates bound simultaneously
indicating, at least in the occluded conformation, a secondary site has a significantly lower
affinity. However, Quick and colleagues have shown that octyl glucoside (the detergent used
for crystallization) is a potent inhibitor of LeuT and may prevent the binding of substrate to
Site-2 [23]. So far, only single substrate binding sites have been found in the other
symporter structures. However, functional data suggests a similar architecture for the
inhibitor binding sites in human SGLT1 (SSS) and GAT1 (NSS) [24]. The large
hydrophobic domains of competitive inhibitors bind at sites are within 8 Ǻ of the substrate
binding site.

Sodium binding site(s)
Sodium is the ion driving substrate translocation in LeuT, vSGLT, Mhp1 and BetP, however
the sodium to substrate stoichiometry may differ amongst these sodium dependent
transporters: LeuT and BetP have a 2:1 stoichiometry [8,22,23]; and vSGLT and Mhp1 have
a 1:1 stoichiometry [7,25] [7]. In the founding structure of LeuT (at 1.65Å), two likely
sodium sites (Na1 and Na2) were identified [5]. The positions of both bound ions are in the
vicinity of the unwound segments of TM1 and TM6 [26]. In both LeuT and BetP the sodium
ion at the Na1 site is directly coupled to the carboxy oxygen of their corresponding
substrates. For both vSGLT and Mhp1, there is no Na1 site; however, members of the SSS
and NSS families with a 2:1 stoichiometry [27,28] may harbor a sodium ion at position Na1.

The Na2 sodium site appears to be present in all four structures and plays an essential role
for substrate translocation (Figure 3D). For LeuT, vSGLT and Mhp1, the site is located at
the intersection of TM1 and TM8 ~8Å away from the substrate binding site. There appears
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to be a conserved coordination pattern made by carbonyl oxygens in the unwound segment
of TM1 and hydroxyl groups from serine and/or threonine residues in TM8 [26]. A slightly
different conformation is suggested in BetP where TM5 fulfills the role of TM8. However,
Thr467 and Ser468 in TM8 of BetP correspond to the proposed Na2 coordinating residues
from vSGLT, LeuT and Mhp1. Functional evidence for Na2 in vSGLT is provided by the
finding that mutation of S365 abolishes transport [6].

A closer inspection of the Na2 site reveals some distinct alterations in TM8 that appear to be
dependent on the conformation of the transporter. In LeuT and Mhp1, which reside in the
outward and/or the outward-occluded conformations (C2 or C3, Figure 4), TM1 and TM8
align nicely with one another. Conversely, BetP and vSGLT, which reside in an intermediate
(C4) and the inward-occluded conformations (C5), TM1 and TM8 align well with one
another but are shifted ~3 Å away from those in LeuT and Mhp1. This can further be
observed by a comparison of the sodium coordinating distances, where both LeuT (2.2 to 2.5
Å) and Mhp1 (2.1 to 2.7 Å) are tighter than those for vSGLT (3.1 to 3.8 Å). The more open
environment around the vSGLT Na2 site raises the possibility that sodium is not bound in
the vSGLT crystal. Molecular Dynamic simulations on the Na2 site in LeuT indicate a
tightly bound sodium [29], whereas in vSGLT sodium escapes from Na2 site into the inner
aqueous vestibule and, after a transient interaction with D186, into the cytoplasm (E
Tajkhorshid, personal communication). The conserved aspartate has been shown to be
involved in cation selectivity in human SGLT1 [30].

Alternating access
According to kinetic models for members of the SSS and NSS families [14,27,31-34] the
rate and direction of symport is a function of the ligand concentrations on each side of the
membrane and the voltage.The transport cycle occurs through at least 6 states (see Figure 4).
The common core structure of the four symporters and the fact that the crystal structures
reside in distinct conformations, provides insight into the structural basis for sodium/solute
symport.

In these kinetic models, sodium in the extracellular compartment binds first and facilitates
substrate binding [14,27,31-34]. In the sodium bound open-out conformation (C2) of Mhp1
(PDB: 2JLN) a clear pathway leading to the substrate binding site is observed between the
extracellular halves of TM1, TM3, TM6, TM8 and TM10. A similar pathway is evident in
the C3 conformation of LeuT (PDB: 2A65) and this becomes more apparent in the structure
with the bound competitive inhibitor tryptophan (PDB: 3F3A, [19]). Upon substrate binding,
the external gates close to occlude substrate from the extracellular environment (C3). LeuT
achieves this through stacking of large bulky residues F253 and Y108 directly above the
substrate-binding site (toward extracellular side) yet the pathway above this obstruction
facing the extracellular milieu remains intact. For Mhp1 and human SGLT1 [35], the
extracellular portion of TM10 (residues 355 to 370) kinks in toward the extracellular facing
cavity preventing accessibility to the substrate binding site. Although the mechanism by
which the occlusion occurs differs between LeuT and Mhp1 these structures demonstrate an
outward facing occluded conformation (C3, Figure 4).

The corresponding conversion from the outward- to inward-facing conformation appears to
transition through an intermediate state (C4, Figure 4)) where the transporter, in complex
with substrate and sodium, has neither a clear extracellular nor intracellular-facing cavity.
BetP (PDB: 2W8A) shows the makings of an intracellular pathway formed from TM1, TM5,
TM6 and TM8, but there is insufficient space to facilitate substrate release into the
intracellular compartment. The transporters proceed through the cycle where an inward
occluded conformation is formed (C5, Figure 4), as represented by the structure of vSGLT
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(PDB: 3DH4), where galactose is sandwiched between hydrophobic residues (intracellular
side Y263; extracellular side M73, Y87 and F424) and is inaccessible to the extracellular
and intracellular compartments. The intracellular exit pathway has a large hydrophilic cavity
formed from portions of TM1, TM2, TM3, TM6, TM8 and TM10. To date, there are no
structures of an inward-facing conformation (IC) devoid of substrate, but based on the
structure of vSGLT it would require the rotation of the intracellular gating residue Y263.

How then does the transition from the outward- to inward facing conformation occur? With
multiple structures in hand, movements of isolated segments- of the core structure become
apparent as the transporters proceed from substrate uptake to release. The Gouaux group
suggested [5] a conformation change in the unwound segments TM1 and TM6, where the
extracellular portions would flip `out' and the intracellular portions would flip `in' forming
the C3 conformation and the reverse would occur to achieve the C5 conformation. With the
vSGLT structure, we were able to capitalize on the C3 (LeuT) and the C5 (vSGLT) states to
reveal large conformational changes in TM2, TM6 and TM10 with additional displacements
TM3, TM7, and TM8. Concurrently, Forrest and colleagues suggested that a 4TM bundle
composed of TM1, TM2, TM6 and TM7 can `rock' between the C3 and C5 conformations
by simply switching the tilt angle of the bundle [36]. The Iwata group [7] also compared
their structures of Mhp1 in the C2 (PDB: 2JLN) and the C3 (PDB: 2JLO) conformations
with that for vSGLT in the C5 conformation to develop a simpler rocker bundle model
composed of TM3 and TM8. Similarly, Ressl and colleagues [8] combined their BetP
structure in the C4 conformation and the other structural data to postulate an iris type
mechanism composed primarily of TM1, TM2, TM6 and TM7. Finally, it should be noted
that in confronting kinetic models with these four structures it is difficult to predict the dwell
time of any given structure during the transport cycle.

Conclusions
The structures obtained for the four sodium symporters from different gene families provide
new perspective on the classification of membrane proteins based on gene sequences: First,
it is difficult to predict internal structural repeats in a given membrane protein from the
primary and/or secondary structures alone; Second, members of different genes families
with similar functions may have homologous 3D structures; and Third, a common structural
architecture implies a common transport mechanism. In addition, differences in
conformation of different transporters with the same core structure provide a tantalizing
view of the structural basis of the conformational changes underlying the transport
mechanism. Nevertheless, the goal now is to solve the structure of a single transporter in
each step of the transport cycle. Finally, we anticipate that other sodium and proton
symporters will have the same core structure. Proton symporters are kinetically
indistinguishable from the sodium symporters, and in some transport can be driven by either
proton or sodium electrochemical potential gradients [37].

Update
While the manuscript was under review the prediction made by Lolkema & Slotbloom [15]
transporters in the APC superfamily (T.C. 2.A 3) also share the LeuT structural fold. Two
groups [38,39] have solved the structure of the arginine/agmatine antiporter AdiC and found
that it too has the 5 TM inverted repeat with disrupted TM 1 and 6.and a central cavity
opening to the extracellular surface. In both cases the central cavity, 20 × 10 Å, is substrate
free and no sodium binding sites are identified. Since this antiporter and the sodium
symporters share the same structure this points to a common mechanism of alternating
access. In addition, the Gouaux group [40] has recently published an insightful review of the
structure and function of sodium-coupled transporters.
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Figure 1. 2-D structure of vSGLT
A 2D model of vSGLT highlighting the core domain of 10 TMs composed of inverted
repeats of 5TMs. vSGLT is a 543 amino acid protein containing 14 TMs with N- and C-
termini on the extracellular face of the membrane [41,42]. To avoid confusion, we number
the TMs in the inverted repeats as in LeuT ([5], TM1-TM5 (Blue) and TM6-TM10 (red). As
members of families contain up to 15 TMs, addition N-terminal TMs are numbered TM(-1)
(vSGLT), TM(-1) and TM(-2) (BetP) and additional C-terminal TMs are numbered TM11
and TM12 (LeuT, Mhp1) and TM11, TM12, and TM13 (vSGLT). Note: the N-terminus of
the first repeat is intracellular while that for the inverted repeat is extracellular.
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Figure 2. The 3D structures of the sodium symporters
A) Cylinder representation of vSGLT, BetP, LeuT and Mhp1 structures. All four structures
have a core domain of 10 transmembrane (TM) helices formed from an internal structural
repeat. B) The two structural repeats have an inverted topology where TM1-TM5 is related
to TM6-TM10 by an apparent two-fold symmetry around an axis through the center of the
membrane plane permitting superimposition. A superposition of vSGLT's TM1-TM5 and
inverted TM6-TM10 yields an RMSD of 3.9 Å for 131 Cα atoms. TM1-TM5 and TM6-
TM10 are colored red and blue respectively with additional helices on the N- and C-termini
colored gray.
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Figure 3. The location of substrate and the common sodium binding site
A) Structural alignment of the core domains from vSGLT, BetP, LeuT and Mhp1 yield an
RMSD between 3.8 Å and 4.5 Å. TM1-TM5 and TM6-TM10 are colored red and blue
respectively. B) Side view of vSGLT showing the location of the sugar binding site, the
extracellular (M73, Y87 and F424) and intracellular (Y263) gates. The numbering of the
TMs is according to the convention shown in Figure 1. C) A structural alignment of TM1,
TM6 and the substrate-binding site for vSGLT (red), BetP (blue), LeuT (green) and Mhp1
(cyan). D) A structural alignment of TM1, TM8 and the conserved sodium-binding site for
vSGLT (red), BetP (blue), LeuT (green) and Mhp1 (cyan).
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Figure 4. A Simple 6-state model for sodium-substrate symport
In this model the starting point is state 1 (C1) with no ligands bound. In the presence of
extracellular sodium, one (or two) Na+ ions bind first to open the external gates to the
substrate binding site (C2). External substrate is then able to bind to its binding site and this
in turn closes the external gate (C3). The next step is closure of the external vestibule (C4)
and this is followed by opening of the internal vestibule (C5). Opening of the internal gate
permits substrate and sodium ion(s) to dissociate and exit at the intracellular face of the
membrane (C6). The cycle is completed by closure of the internal vestibule and the return to
C1. The complete cycle results in the transport of sodium and substrate across the membrane
in a fixed stoichiometry (1/1, 2/1). The direction of transport is determined by the ligand
concentrations on each side of the membrane and the membrane potential
[14,25,27,31-33,43]. The crystal structures of Mhp1 appear to correspond to C2 and C3,
LeuT to C3, BetP to C4 and vSGLT to C5. At least in the case of vSGLT the monomer is
completely functional [41].
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