
Exact theory of kinkable elastic polymers

Paul A. Wiggins*,
Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena,
California 91125, USA

Rob Phillips†, and
Division of Engineering and Applied Science and the Kavli Nanoscience Institute, California
Institute of Technology, Pasadena, California 91125, USA

Philip C. Nelson‡

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
19146, USA

Abstract
The importance of nonlinearities in material constitutive relations has long been appreciated in the
continuum mechanics of macroscopic rods. Although the moment (torque) response to bending is
almost universally linear for small deflection angles, many rod systems exhibit a high-curvature
softening. The signature behavior of these rod systems is a kinking transition in which the bending
is localized. Recent DNA cyclization experiments by Cloutier and Widom have offered evidence
that the linear-elastic bending theory fails to describe the high-curvature mechanics of DNA.
Motivated by this recent experimental work, we develop a simple and exact theory of the
statistical mechanics of linear-elastic polymer chains that can undergo a kinking transition. We
characterize the kinking behavior with a single parameter and show that the resulting theory
reproduces both the low-curvature linear-elastic behavior which is already well described by the
wormlike chain model, as well as the high-curvature softening observed in recent cyclization
experiments.

I. INTRODUCTION
The behavior of many semiflexible polymers is captured by the wormlike chain model [1,
2]. This model amounts to the statistical mechanics of linearly elastic rods [3], where the
elastic energy is microscopically a combination of both energetic and entropic contributions
[4]. The mechanics of DNA, a polymer of particular biological interest, has been studied
extensively experimentally and theoretically and its mechanical properties have been very
well approximated by the wormlike chain model (WLC) [5] and its successors such as the
helical wormlike chain model [2]. For example, accurate force-extension experiments have
shown that DNA is surprisingly well described by WLC [4–6], at least until the effects of
DNA stretching become important at tensions of order 50 pN.

Despite the success of the WLC in describing DNA mechanics, recent DNA cyclization
experiments by Cloutier and Widom [7] have shown a dramatic departure from theoretical
predictions for highly curved DNA. These experiments suggest that the effective bending
energy of small, cyclized sequences of DNA is significantly smaller than predicted by
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existing theoretical models based upon linear-elastic constitutive relations, in which the
bending energy is quadratic in curvature. Similar anomalies have been revealed in
transcriptional regulation where DNA looping by regulatory proteins remains active down to
60 basepair (bp) separations between the binding sites [8–13].

From a continuum-mechanics perspective, this failure of the model at high curvature is
hardly surprising; the importance of material nonlinearities has been appreciated for many
years. In fact, anyone who has ever tried to bend a drinking straw has observed that the
straw will at first distribute the bending, as predicted by the linear theory, but as the
curvature increases, the straw will eventually kink, localizing the bending. This kinking
behavior is the signature of nonlinear constitutive softening at high curvature. Nonlinearities
are certainly important in microscopic physical systems, such as polymers, because the
effective bending free energy, a combination of interaction potentials and entropic effects, is
only approximately harmonic. The possibility of kinking in DNA was realized long ago by
Crick and Klug, who proposed a specific atomistic structure for the kink state [14]. Many
authors have since found kinked states of DNA in protein-DNA complexes (see for example
[15]), but less attention has been given to spontaneous kinking of free DNA in solution, even
though Crick and Klug pointed out this possibility.

Our goal in this paper is to develop a simple, generic extension of the WLC model,
introducing only one additional parameter: the average number of kinks per unit length for
the unconstrained chain. The “kinks” are taken to be freely-bending hinge elements in the
chain. This model is an extension of the well known wormlike chain (WLC); we refer to it
as the kinkable wormlike chain (KWLC). Although our model is not a detailed microscopic
picture for DNA, it does capture the key consequences of any more detailed picture of kink
formation. As such, it serves as a useful coarse-grained model to describe high-curvature
phenomena in many stiff biopolymers, not just DNA [16]. Our main results are summarized
in Figs. 5, 6, 10, and 11.

The KWLC is the simplest example of a class of theories that have been proposed and
studied by Storm and Nelson [17] and more recently by Levine [18]. It is simple enough that
many results are exact or nearly so. The method by which we obtain our exact results is
analogous to the Dyson expansion for time-dependent quantum perturbation theory. For the
KWLC, the perturbation series can be resummed exactly.

For small values of our kinking parameter the KWLC model predicts nearly identical
behavior to the WLC—except when the rod is constrained to be highly curved. Such
constraints induce kinking, even when the kinking parameter is small. We will show in
detail how the energy relief caused by this alternative bending conformation can account for
the observed anomalously high cyclization rate of short loops of DNA [7] and anomalously
high levels of gene expression [10, 11]. A generalization of KWLC specifically applicable to
DNA will appear elsewhere [19]. Yan and Marko, and Vologodskii, have independently
obtained results related to ours [20, 21]. Also, Sucato et al. have performed Monte Carlo
simulations of kinkable chains to obtain information about their structural and
thermodynamic properties [22].

The outline of the paper is as follows. In Sec. II, we introduce the KWLC model in a
discrete form. In Sec. III, we compute the unconstrained partition function for the theory and
show that there is a sensible continuum limit. In Sec. IV, we give an exact computation of
the tangent partition function of the continuum theory as well the moment-bend constitutive
relation and the kink number for bent polymer chains. We show that kinking causes an exact
renormalization of the tangent persistence length and we write exact expressions for the
average squared end distance and the radius of gyration. In Sec. V, we exactly compute the
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Fourier-Laplace transform of the spatial propagator and discuss various limits of these
results. We also compute the exact force-extension relation and the structure factor for
KWLC. In Sec. VI, we compute the KWLC correction to the Jacobson-Stockmayer J factor
and the partition function for cyclized chains. We show that the topological constraint of
cyclization induces kinking and we compute the kink number distribution explicitly. In Sec.
VII, we discuss the limitations of KWLC. In the Appendix, we present a summary of the
Faltung theorem which is required for computations and develop the small and large contour
length limits of the KWLC J factor.

II. KINKABLE WORMLIKE CHAIN MODEL
Although the wormlike chain model was originally proposed to describe a purely entropic
chain without a bending energy [1], it is often interpreted as the statistical mechanics of rods
with bending energies quadratic in curvature [3, 23]. From a mechanical perspective, the
success of the WLC model is not surprising since the small amplitude bending of rods
universally induces a linear moment response. For WLC, the bending energy for a polymer
in configuration Γ is

(1)

where t ⃗(s) is the unit tangent at arc length s, L is the contour length, and ξ is the bending
modulus. Throughout this paper we will express energies in units of the room-temperature
thermal energy kBT = 4.1×10−21 J. For WLC it is well known that the bending modulus and
persistence length (the length scale over which tangent are thermally correlated) are equal in
these units [4].

It is most intuitive to define our new model in terms of the discretized definition of WLC.
Accordingly, we divide a chain of arc length L into L/ℓ segments of length ℓ. There are then
N=(L/ℓ)−1 interior vertices, plus two end points [Fig. 1(a)]. Next we replace the arc length
derivative with the finite difference over the segment length ℓ, replace the integral with a
sum, and introduce the spring constant κ≡ξ/ℓ. The resulting energy is

(2)

where t ⃗ i is the vector joining vertices i and i+1.

We introduce a similar discretized energy for the kinkable wormlike chain model (KWLC).
In addition to the bending angle, there is now a degree of freedom at each vertex describing
whether the vertex is kinklike or wormlike. To describe this degree of freedom, we
introduce a state variable σi at each vertex. When σi = 1, we say that the vertex is wormlike
and the energy is given by the discrete WLC energy at that vertex. When σi = 0, the vertex is
kink like and the energy is independent of the bend angle at that vertex, but there is an
energy penalty ε to realize the kink state. This model is depicted schematically in Fig. 1. The
energy for the model we have just described can be concisely written as

(3)

where the * denotes that this is the energy of the KWLC theory and ε is the energetic cost of
introducing a kink in the chain. Note that in general we denote KWLC results or equations
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with a *. We will recover the WLC results when we take the kinking energy ε to infinity.
While Storm and Nelson [24] and others [18, 24–28] have considered more general theories
where the kink energy is not assumed to be independent of the kink angle, much of the
important physics can already be studied in the simpler KWLC theory. Moreover, this
theory has the significant advantage of being analytically exact to a much greater extent than
more general theories; it applies in the limit where the kinks are only weakly elastic
compared to the elastic rod.

III. PARTITION FUNCTIONS
For a summary of notation used in this article, see Appendix D.

We have defined the KWLC model in terms of a discrete set of degrees of freedom. In the
next section, however, we shall wish to take advantage of the continuum WLC machinery.
To this end, this section formulates the continuum limit of the KWLC model. Beyond the
computational advantage, there is also an additional reason to go to the continuum limit.
Figure 1 describes the kinking with two parameters, a density ℓ−1 of kinkable sites and the
kink energy ε. We wish to describe the kinking in terms of a single parameter, to be called ζ
[see Eq. (7)]. ζ essentially sets the average number of kinks per contour length for a long,
unstressed chain. In the continuum limit of WLC, we take ℓ→0 while holding the persistence
length ξ and chain length L constant. To take the corresponding continuum limit for KWLC,
we will also hold ζ constant as ℓ→0.

We begin by computing the partition functions for the WLC and KWLC and demonstrating
that there is a continuum limit of the KWLC. These unconstrained partition functions are
required for later computations. For this case, the partition function factors into independent
contributions from each interior vertex. In the continuum limit (κ→∞), the partition
function for each vertex in the WLC model is

(4)

where θi is the polar angle of t⃗i defined using t ⃗i−1 as the polar axis, that is, cosθi ≡t⃗i · t⃗i−1.
The measure d2t⃗i=d(cos θi)dφi denotes solid angle on the unit sphere. The total discretized
partition function for the chain of N+1 segments is then

(5)

The factor of 4π reflects one overall orientation integral, for example the integral over t⃗0.

Similarly, the partition function for a single vertex of the KWLC theory is

(6)

which we have written in terms of the corresponding WLC quantity Q. The total partition

function for the chain of N+1 segments is .

In the small segment length limit, Eq. (6) shows that the probability of a vertex being kink-
like is 2κe−ε. Therefore the probability of kinking per unit length (for this unconstrained
situation) is

(7)
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where we have eliminated the bending spring constant, κ, in favor of the persistence length,
ξ =κℓ. In order to recover a sensible continuum limit, we will hold the parameter ζ constant
as we take the segment length to zero. Note that we recover the WLC theory when we set
ζ→0. In later sections we will discuss a formal “zero temperature” limit, in which simple
mechanics (no thermal fluctuations) describes the physics. This limit is a useful intuitive
tool, not an experimental prediction of the behavior of polymers frozen in solution. The
“zero temperature” limit is taken treating ζ as temperature independent, which is equivalent
to either the short rod limit or the large persistence length limit which we shall use
interchangeably.

In the continuum limit, we must remove a divergent constant in the partition functions as
N→∞. Thus we define the path integral measure

(8)

where Q is defined by Eq. (4). Note that unlike the discrete case, in this measure the starting
tangent vector t⃗0 is not integrated, but is instead fixed to some given t⃗i. The continuum
partition function corresponding to Ƶdiscrete(L) is then

(9)

With our choice of integration measure, ƵL) just equals one, independent of L.

The continuum KWLC partition function is now

(10)

The convergence of the partition function assures us that the continuum limit is well defined.
As a consistency check, we now compute the average kink number for the unconstrained
chain

(11)

which confirms that ζ is indeed density of kinks. The expansion of the partition function in a
power series shows that the kink number distribution is also correct. We will repeat the
average kink number calculation several times in the course of this paper for different
constraints to show that constraining the chain will affect the kink number.

IV. TANGENT PARTITION FUNCTION AND PROPAGATOR
In this section we compute the tangent partition function and propagator by using a method
symbolized in Fig. 2(a). By tangent partition function Ƶ(t ⃗f, t⃗i, L) we mean the partition
function with the initial and final tangents constrained [Eq. (12) below]. Dividing the
tangent partition function by the unconstrained partition function Ƶ(L) gives the probability
density H(t⃗f, t⃗i, L) for the final tangent vector, given the initial tangent. We will refer to H as
the normalized tangent partition function, or propagator.

Most of the kink-related physics of the KWLC theory can be understood qualitatively from
the tangent partition function. Furthermore, the computation of the tangent partition function
is more transparent than the analogous spatial computation in which the end-to-end distance
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is constrained along with the initial and final tangents. The tangent partition function for
WLC is defined as

(12)

where the path integral is regularized as described above [Eq. (8)]. Due to the tangent
constraint, the partition function no longer factors into independent vertex contributions. The
lower limit on the integration denotes that the initial tangent t⃗0 is held equal t⃗i; the final
tangent t⃗Nis set to t⃗f by the delta function. We integrate (or sum) over the infinite set of
intervening tangents in order to generate the partition function. In this regularization
scheme, the tangent partition function and tangent propagator are identical

(13)

since with our conventions the unconstrained WLC partition function is one. However, we
will see that this convenient identity does not hold for the KWLC: H*≠Ƶ*.

While the direct evaluation of the path integral in Eq. (12) is difficult, it is well known that
this calculation is equivalent to finding the quantum-mechanical propagator for a particle on
the unit sphere [29,30]. The tangents correspond to position, arc length corresponds to
imaginary time, and persistence length corresponds to mass. Thus the tangent partition
function is

(14)

where the Hamiltonian operator is defined as

(15)

where p⃗2 is minus the Laplace operator on the unit sphere. The Hamiltonian is diagonal in
the angular momentum representation so the tangent partition function for WLC can be
expressed as

(16)

In this expression, the  are the Spherical Harmonics and the coefficients Cl are

(17)

It can easily be shown that this partition function has the required normalization by
summing over the final tangent to recover Ƶ(L)=1.

To compute the tangent partition function for KWLC, we proceed with the path integral in
exactly the same fashion, setting the initial tangent, integrating over an infinite set of
intervening tangents, and summing over the state vectors:
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(18)

It is now convenient to collect the terms in contributions with a fixed number m of kinks and
then express the result in the continuum limit.

The first step in going from the definition of the discrete KWLC tangent partition function to
the continuum limit is to reorganize the sum over {σn} as a sum over the number of kinks
m. Each term of this sum is in turn a sum over the positions ni of the kinks, for i=1, …, m.
The only subtlety here is introducing the correct limits on the sum to avoid over counting the
kink states. The last kink can be chosen at any arc-length location, but additional kinks must
always be chosen with smaller arc-length values than the following kink. This method is
more convenient than introducing “time ordering” and a factor of 1/m! to explicitly remove
the over-counting as is commonly done in the Dyson expansion for time-dependent quantum
perturbation theory [31].

The next step is to replace the kink position sums with integrals over the position of the
kinks as

(19)

where Li≡niℓ and we take Lm+1=L. The structure of the arc length integrals is that of a series
of convolutions [32], which we write symbolically as ⊗. For example, if F(L) and G(L) are
two functions, then

(20)

In the intervals between kinks, the chain is described by the WLC energy function. We can
therefore replace each partial path integral with a WLC propagator.

For every kink, there is one factor of Q−1 that has been introduced by the path integral
normalization [Eq. (8)] but is not absorbed by the definition of the WLC propagator [Eqs.
(18) and (13)]. The m factors of ℓ−1, e−ε, and Q−1 can now be written as (ζ/4π)m see Eq.
(7)]. Defining , the terms in the kink-number expansion can thus be written
(compare Fig. 2)

(21)

The 2m angular integrations are over the incoming (u⃗i) and outgoing (v⃗i) tangents of the m
kinks.

Equation (21) has a very simple interpretation. The probability of creating a kink between L
and L + dL is just ζdL. We then sum over all possible configurations being careful to choose
the integration limits so as not to over count the kink states. At each kink, all orientational
information is lost, so that only tangent independent terms of the propagator contribute
(those with angular quantum number l=0).

To compute the contour length convolution of propagators, it is convenient to work with the
contour length Laplace transformed propagators H̃ [Eq. (A6)]. We shall denote the contour
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length Laplace transformed functions with a tilde and use the variable p as the arc length
Laplace conjugate variable. Although we could avoid Laplace transforming the partition
function at this juncture, we use this method presently because it is analogous to our later
computation of the spatial propagator. By the well known Faltung theorem [Eq. (A10)], the
convolution of propagators is just the product of Laplace transforms. Therefore, in terms of
the transformed WLC propagators, the kink KWLC Laplace transformed partition function
is

(22)

To derive Eq. (22), note that Eq. (16) gives the WLC tangent propagator summed over the
initial tangent as C0(L), which equals 1 from Eq. (17). The corresponding Laplace transform
is just C ̃0(p) = 1/p.

The m kink contributions to the KWLC transformed tangent partition function can now be
summed exactly (i.e., ) because they form a geometric series, resulting in

(23)

The m>0 kink terms clearly contribute no tangent dependence. The inverse Laplace
transform can now be computed without complications, giving the exact KWLC tangent
partition function

(24)

Alternatively, we could have derived Eq. (24) by noting that the KWLC model is
mathematically equivalent to a quantum mechanical system whose Hamiltonian is diagonal
in the angular momentum representation:

(25)

Here |l, m〉 is the state with angular momentum quantum numbers l and m and ℋ is the
Hamiltonian operator for the WLC. The only change to the theory is a “ground state energy”
shift equal to −ζ.

The KWLC tangent propagator and its Laplace transform can now be evaluated using Eq.
(10):

(26)

(27)

Figure 3(a) compares the KWLC tangent propagator to the WLC theory with an illustrative
value ζ =0.01/ξ. The two theories appear indistinguishable, and in fact we will find that
many, but not all, predictions of the models are essentially the same in this parameter
regime.
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In principle since the propagator is known exactly, everything in the theory can now be
computed. Of course this is an exaggeration since, even though the tangent propagator for
WLC has long been known, only recently have the exact expressions for the transformed
spatial propagator been derived [33, 34]. The free energy of the chains for both theories have
the canonical relation with their respective partition functions:

(28)

where we have explicitly written the free energy in terms of the deflection angle defined by
the dot product of the initial and final tangents: cos θ=t⃗i · t⃗f. Up to this point we have written
the partition function and propagator as explicit functions of both the initial and the final
tangent but the rigid body rotational invariance of the energy implies that these functions
depend only on the deflection angle. To express any quantity in terms of the deflection
angle, we set the initial tangent to be the unit vector in the z direction and the final tangent to
be the unit vector in the radial direction. θ now assumes its canonical definition in spherical
polar coordinates.

Figure 3(b) compares the free energies of WLC and KWLC. Despite the similarity of
propagators [Fig. 3(a)], the free energies are quite different. To understand the significance
of this free energy, we imagine discretizing the chain at some segment length ℓ. The free
energy F(θ; ℓ) gives us the effective constitutive relation for single-state torsional springs in
this new discretized theory. As depicted is Fig. 3(b), the potential energy of these springs is
initially quadratic in deflection, but saturates due to kink formation.

A. Moment bend relation and kink number
To understand the interplay between chain kinking and deflection, it is helpful to explicitly
compute the relation between the deflection angle and the restoring moment (torque), as
well as computing the average kink number. Here we ask the reader to imagine a set of
experiments analogous to force extension but where the moment-bend constitutive relation
is measured. We compute the constitutive relation in the usual way in terms of the deflection
angle θ

(29)

where F(θ;L) is the tangent free energy and θ is the deflection angle. In terms of the WLC
bending moment, Eq. (24) shows that the moment for KWLC has a very simple form:

(30)

where τ is the WLC moment and Ƶ and Ƶ* are the tangent partition functions for WLC and
KWLC, respectively. The moment is plotted as a function of deflection in Fig 4. For short
chains, the small deflection moments of the two theories initially coincide. But as the
deflection increases, there is a transition, corresponding to the onset of kinking, where the
moment is dramatically reduced to nearly zero. In Eq. (30), this transition is clear from the
ratio of the partition functions. Remember that the KWLC partition function is the sum of
the WLC partition function and the m>0 kink partition functions. Before the onset of
kinking, the WLC and KWLC partition functions are equal since the kinked states do not
contribute significantly to the partition function. For large deflection, the KWLC partition
function is kink dominated and therefore the ratio in Eq. (30) tends to zero. Physically, once
the chain is kink dominated, the moment must be zero since the kink energy is independent
of the kink angle. At zero temperature, the moment would be zero, but fluctuations in which
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the chain becomes unkinked cause the moment to be nonzero. We discuss this effect in more
detail below.

To explicitly see that the reduction in the moment corresponds to kinking, we compute the
average kink number as a function of deflection:

(31)

which is depicted in Fig. 4. Note that when we remove the tangent constraint, we again find
that the average kink number is ζL. When the chain is constrained, the enhancement factor
is proportional to (H*)−1. Note that this implies that the kink number will be reduced when
the tangents are constrained to be aligned and enhanced when the chain is significantly bent.
In Fig. 4, the kink-induced reduction in the moment can be seen to correspond to the rise of
the kink number from zero to one kink.

We will now compare these exact results to the mechanical or “zero temperature” limit. This
regime is equivalent to the large persistence length limit, where we can write the partition
function concisely as

(32)

the WLC limit is recovered for ζ =0. In the short length limit, the moment of the WLC chain
is simply linear in deflection: τ=−θξ/L. This moment is also plotted in Fig. 4. Even without
the complication of kinking, there is already one interesting feature of the exact WLC
moment-bend constitutive relation which needs explanation. For large deflection, the linear
relation already fails in the WLC model. This is a thermal effect which is best understood by
going to the extreme example of deflection θ= π. For any configuration, the contribution of
a chain reflected through the axis defined by the initial tangent will make the partition
function symmetric about t⃗f=−t⃗i. This implies that the bending moments from these chains
cancel. Away from θ= π, the cancellation is no longer exact. In the mechanical limit, this
effect is present but localized at θ= π due to the path degeneracy.

In the mechanical limit, kinking is always induced by bending and at most one kink is
nucleated. In this limit, the KWLC bend-moment can be rewritten in terms of the kink
number

(33)

where the kink number is just the Heaviside step function,

(34)

around a critical deflection angle

(35)

For deflection less than the critical deflection, the kink number is zero and the moment is
given by the WLC moment. At the critical deflection angle, there is an abrupt transition to
the kinked state with kink number one and the moment zero. Precisely at the critical angle
the free energy of the kinked state and the elastically bent state are equal. Note that we have
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not discussed dynamics and have assumed that the system is in equilibrium, not kinetically
trapped.

The behavior of the KWLC theory for short contour lengths is nearly what one would expect
from mechanical intuition. Bending of the chain on short length scales induces a moment
which is initially linearly dependent on deflection. When the chain is constrained to a large
deflection angle, kinking is induced and the response of the chain to deflection is
dramatically weakened. In the mechanical limit, once kinking is induced, the moment is zero
but for finite size rods, the ability of the chain to fluctuate between the kinked states and
unkinked states blurs the dramatic zero-temperature transition between the kinked and
unkinked bend response.

Our discussion here has focused principally on developing an intuition for the short chain
limit. From an experimental perspective, it is difficult to measure the moment-bend relation
directly as we have described, especially for short chains. While single molecule AFM
experiments might probe this relation, most of the information about the moment-bend
constitutive relation comes from indirect measurements of thermally-induced bending. For
example, light scattering, force extension, and cyclization experiments are all measures of
thermally induced bending. As we shall explain, only cyclization experiments with short
contour length polymers are sensitive to the high curvature regime of the moment-bend
constitutive relation. For the most part, these thermally driven bending experiments are only
sensitive to the thermally accessible regime of the moment-bend constitutive relation which
corresponds to small curvature and therefore small deflection on short length scales, a
regime that is very well approximated by linear moment-bend constitutive relation. For long
chains, the initial linear response is weaker implying that the kinking transition is less
pronounced. In fact we shall see in the next section that for some of these indirect
measurements of the low curvature regime of the constitutive relation, the effect of the
kinking will be indistinguishable from the linear elastic response.

B. Persistence length
Since many polymer characterization experiments are most sensitive to the thermally-
accessible weak-bending regime, it is clearly of interest to determine whether kinking
changes this low-curvature physics. Intuitively, we have already argued that, at least for
small kink densities, many properties of the polymer that do not explicitly probe the highly
bent structure will remain essentially unchanged. In this section, we will derive a number of
exact results that show that the effects of kinking can be described by a renormalization of
the persistence length of WLC theory for some bulk features of the polymer distribution,
regardless of the magnitude of ζ.

The tangent-tangent correlation must be a decreasing exponential due to multiplicativity [4,
30] and therefore we can discuss the decay length. The tangent persistence is

(36)

which can be computed by examining the limit of small Δ and applying the tangent
propagator [Eq. (26)]. Since this result is identical to the WLC result except for the decay
constant, we introduce the effective persistence length

(37)

where the kink length is defined as ξkink≡ζ−1. The form of this effective persistence length
is not surprising since a roughly analogous effect is observed adding two linear springs
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together or from the combination of static and dynamic persistence length [35–37]. This
tangent persistence result immediately implies that an analogous exact renormalization
occurs for both the mean squared end distance

(38)

and the radius of gyration

(39)

since these result are simply integrations of the tangent persistence [3]. In experiments
sensitive only to the radius of gyration (static scattering for small wave number) or the
average square end distance (force extension in the small force limit), the measured
persistence length of the KWLC theory will be the effective persistence length, ξ*,
regardless of the magnitude of ζ. In most systems of physical interest, the kink length is
much larger than the bend persistence length implying that, even if the bend persistence
were independently measurable, the difference between the effective persistence length and
the bend persistence length would be very small. In other words, the loss of tangent
persistence due to kinking is negligible compared with the loss due to thermal bending since
kinks are rare on the length scale of a persistence length.

The tangent persistence corresponds to the first moment of the tangent propagator. Clearly
the renormalization we have discussed fails for higher order moments. At least in principle it
is therefore possible to determine the bend persistence from higher order moments of the
distribution. From an experimental perspective this corresponds to scattering experiments at
large wave number, force extension for large force, or cyclization experiments for short
contour length. To predict the effects of kinking in these experiments, we must compute the
spatial propagator (the spatial distribution function).

V. TANGENT-SPATIAL AND SPATIAL PROPAGATORS
The spatial propagator K(x⃗;L) is defined as the probability density of end displacement x⃗ for
a polymer of contour length L. Similarly, the tangent-spatial propagator G(x⃗; t⃗f,t⃗i;L) is
defined as the probability density of end displacement x⃗ with final tangent t⃗f, given an initial
tangent t⃗i, for a chain of contour length L. Although in principle the theory is solved once
the tangent propagator is known, the moments of the spatial propagator, or spatial
distribution function, are more experimentally accessible than the tangent propagator. In
particular, the J factor measured in cyclization experiments, the force-extension
characteristics, and the structure factor measured in scattering experiments are all more
directly computable from the propagators G and K. In this section, we first compute the
spatial propagator and then discuss its application to experimental observables.

Following our computation of the tangent propagator, we compute the tangent-spatial and
spatial partition functions. Our solution relies on the same Dyson-like expansion of the
partition function in the kink number as was exploited to compute the tangent partition
function. The only added complication is that, in addition to the arc length convolution, we
must also compute convolutions over the 3d spatial positions of the kinks. By going to the
Fourier-Laplace transformed propagator, the convolutions again become products and the m
kink contributions can be summed exactly. Unfortunately the exact results of this
computation will only be found analytically up to a Fourier-Laplace transform, in part
because the WLC theory itself is only known analytically in this form [33, 34].
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We begin by writing the tangent-spatial partition function for the KWLC theory in an form
analogous to the tangent partition function in Eq. (18):

(40)

where t ⃗0 is the initial tangent vector. The additional spatial Dirac delta function in the
equation sets a spatial constraint for the end displacement; in this expression,

 We will again collect the terms in this sum by kink number m. In the
intervals between kinks, we again introduce the WLC propagator, but this time we use the
tangent-spatial propagator G, defined by an expression analogous to Eq. (40), but with E in
place of E*.

Because we have normalized the unconstrained WLC partition function such that Ƶ≡ 1, the
tangent-spatial partition function and propagator are identical. It is convenient to introduce
the WLC spatial propagator

(41)

where we sum over the final tangent and average over the initial tangent to derive the spatial
probability density. We also introduce the one tangent summed tangent-spatial propagator

(42)

which will allow us to concisely express intermediate results. Finally for economy of
notation, we write the convolutions over both the spatial position and arc length
symbolically with ⊗, generalizing the notation introduced in Sec. IV.

The m>0 kink KWLC tangent-spatial partition function can be written in terms of the WLC
propagators:

(43)

We now introduce the WLC Fourier-Laplace transforms of the propagators G′ and K. We
denote the transformed functions with a tilde. The Laplace conjugate of contour length L is
p and the Fourier conjugate of the end displacement x⃗ is the wave number k⃗. The Faltung
theorem [Eqs. (A5) and (A10)] allows us to replace the spatial-arc length convolutions with
the products of the Fourier-Laplace transformed propagators. The m kink KWLC
transformed partition function is

(44)

which is analogous to Eq. (22) for the tangent propagator.

As before, the transformed m kink contributions can be summed exactly in a geometric
series. Abbreviating the notation somewhat, the resulting tangent-spatial transformed
partition function becomes
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(45)

We can also derive the KWLC transformed spatial partition function by averaging over the
initial tangent and summing over the final tangent. Applying the definition in Eq. (41) gives

(46)

To compute the KWLC spatial and tangent-spatial propagators, we divide the constrained
partition functions by the unconstrained partition function [Eq. (10)]. The transformed
tangent-spatial and spatial propagators are

(47)

(48)

where ℒ is the arc-length Laplace transform and ℱ is the spatial Fourier transform. The
transformed WLC spatial propagator is exactly known [33,34]

(49)

where Aj and Pj are defined

(50)

Because the KWLC transformed spatial partition function and propagator are functions of
K̃ , they are also known exactly. In principle, both K and K* can be computed by inverting
the transforms numerically. In order to compute the KWLC tangent-spatial partition
function and propagator, the WLC tangent-spatial propagator, G, must also be known. Since
G̃ is not known analytically, our solution for the tangent-spatial partition function and
propagator are formal. From the perspective of computing experimental observables, K*
will suffice for computation of the force-extension characteristic, the structure factor, and
surprisingly, the J factor, despite the tangent constraint in its definition.

A. Wave number limits
While we have written the exact transformed propagators for KWLC, like WLC, these
transforms cannot be inverted analytically. It is therefore useful to examine the exact
transformed propagators in several limits which can be computed analytically. First we
consider the long length scale (k→0) limit. We find that KWLC and WLC are identical
apart from the renormalization of the persistence length [see Eq. (37)]:
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(51)

By expanding the exponential in the definition of the Fourier transform, it can be shown that
this result is equivalent to showing that R2 is exactly renormalized. In our discussion of the J
factor it will be convenient to consider an even more restrictive limit. We now add the
additional restriction that the chain is long (p→0). In this limit we must recover the
Gaussian chain (central limit theorem)

(52)

which is the transformed Gaussian distribution function for Kuhn length 2ξ*. When
applicable, the Gaussian distribution is a power tool due to its simplicity.

The opposite limit is the short length scale (k→∞) and short contour length limit (p→∞).
In this limit WLC and KWLC are identical, both approaching the rigid rod propagator:

(53)

The rigid rod spatial propagator describes a polymer that is infinitely stiff. In the limit that
we analyze very short segments of the polymer, both the WLC and KWLC models appear
rigid since we have confined our analysis to length scales on which bending is thermally
inaccessible. In this limit, the propagators take a very simple form which is more tractable
than either WLC or KWLC. The rigid rod propagator is useful when discussing the limiting
behavior of the J factor at short contour length and is discussed in more detail in the
Appendix.

B. Partition function in an external field and force-extension characteristic
In force-extension experiments, a single polymer molecule is elongated by a bead in an
external field. The average extension of the polymer is measured as a function of external
field strength. The forces opposing extension are entropic. These entropic forces are caused
by the reduction in the number of available microstates as the polymer extension is
increased. The persistence length defines the length scale on which the polymer tangents are
correlated. For small persistence length, the number of statistically uncorrelated tangents is
greater, which increases the size of the entropic contribution to the free energy relative to the
external potential. This deceptively simple physics implies that a chain with a softer bending
modulus acts as a stiffer entropic spring resisting extension.

To compute the force-extension relation, we must compute the partition function in an
external field f which can be concisely written in terms of the spatial partition function

(54)

which is a particularly convenient expression since it is the Fourier-transformed partition
function with the wave number k⃗ analytically continued to if ⃗. Note that this is the inverse
Laplace transform of Eq. (45). The average extension is
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(55)

which may be computed by taking the inverse Laplace transform numerically. (See
Appendix A2 for the numerical method.) The results are plotted in Fig. 5. In this figure, the
KWLC theory interpolates between two WLC limits at high and low extension. The low-
force limit is clearly related to low wave number limit [Eq. (51)] via an analytic continuation
of the wave number. Therefore KWLC with effective persistence length ξ* and WLC with
persistence length ξ* correspond in the low-extension limit as can be seen in Fig. 5.

At high force, Fig. 5 shows that kinking becomes irrelevant and the extension of KWLC and
WLC both with bend persistence ξ are identical. In this limit, the chain is confined to small
deflection angles for which the effect of kinking is negligible, as can be seen in Fig. 3. In
essence the kink modes freeze out and measurement of the extension versus force measures
the bend persistence rather than the effective persistence length of the KWLC polymer
chain.

These two regimes imply that in principle the value of ζ could be determined by the
difference between the persistence length measured at small and large extension. In
experiment, this is most likely not practical. We have purposely chosen an unrealistically
large value of ζ in Fig. 5, to illustrate clearly the low- and high-extension limits. In more
realistic systems, the difference between the bend and effective persistence lengths would be
small implying that it would be difficult to detect. Furthermore, at low extension the effects
of polymer-polymer interactions can act to either increase or decrease the effective low
extension persistence length. At high extension, polymer stretch also acts to increase the
extension at high force most likely obscuring the effects of the entropy reduction due to the
loss of the kink bending modes. Figure 6 illustrates these remarks.

The force-extension characteristic is therefore unlikely to detect the high-curvature softening
induced by kinking.

C. Structure factor
Another experimental observable used to characterize polymers is the structure factor,
measured by static light scattering, small-angle x-ray scattering, and neutron scattering
experiments. Measurements of the structure factor can probe the polymer configuration on a
wide range of length scales. Symbolically the structure factor is

(56)

where X⃗ (s) is the position of the polymer at arc length s and we have included an extra
factor of the polymer contour length in the denominator to make the structure factor
dimensionless [33]. At high wave number, the structure factor is sensitive to short length
scale physics, whereas the polymer length and radius of gyration can be measured at low
wave number. The structure factor can be rewritten in terms of the Laplace-Fourier
transformed propagator

(57)
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where ℒ−1 is the inverse Laplace transform which can be computed numerically. (See
Appendix A2 for the numerical method.) As we mentioned above, the leading-order
contributions at small wave vector are the polymer length and the radius of gyration

(58)

where we have temporarily restored the length dimension of g. At large k, both WLC and
KWLC are rodlike or straight which gives an asymptotic limit for large wave number

(59)

since the chain is inflexible at short length scales.

To what extent can scattering experiments differentiate between WLC and KWLC? We
have already argued that kinking merely leads to a renormalization of the persistence length
for the radius of gyration, Rg, so both theories are identical at the low and high wave number
limits. For the rest of the interval, the theories do predict subtly different structure factors,
but for small values of ζ, the theories are nearly indistinguishable. Again, we have chosen to
illustrate the structure factor for an unrealistically large value of ζ, to exaggerate its effect.
Like force-extension measurements, scattering experiments are not sensitive to the high
curvature physics since the signal is dominated by the thermally accessible bending regime
which is essentially identical to WLC. (See Fig. 7.)

VI. CYCLIZED CHAINS AND THE J FACTOR
Although the theoretical study of the moment-bend constitutive relation is straightforward, it
is problematic experimentally to apply a moment and measure the deflection directly on
microscopic length scales. It is typically more convenient to let thermal fluctuations drive
the bending, but as we have discussed above, experiments which measure thermally driven
bending are typically not sensitive to the rare kinking events. In contrast, cyclization
experiments, although thermally driven, are sensitive to bending at any length scale. These
experiments measure the relative concentrations of cyclized monomers to noncyclized
dimers. By choosing the contour length of the monomers, any bending scale may be studied
provided the concentration of cyclized molecules is detectable. Furthermore, these
experiments are typically bulk rather than single molecule. In fact the data motivating this
work comes from recent DNA cyclization measurements of Cloutier and Widom [7] who
have shown that the cyclization probability is 103 to 104 times larger than that predicted by
WLC for DNA sequences with a contour length L≈0.6ξ, while confirming that larger
sequences (L>ξ) do cyclize at the rate theoretically predicted by the WLC.1

In cyclization measurements, the configurational free energy is isolated in the J factor which
is ratio of the cyclization equilibrium constant to the dimerization equilibrium constant [38].
This ratio eliminates the dependence on the end-end interaction free energy. For nontwist
storing polymers, the J factor is proportional to the tangent-spatial propagator [38]

(60)

1Cloutier and Widom’s discussion assumed that the ligase enzyme used in their experiments acts in the same way when ligating a
single DNA or joining two segments. Although this assumption is standard in the field, it may be criticized when the length of the
DNA loop becomes not much bigger than the ligase enzyme itself. We believe that effects of this type cannot account for the immense
discrepancy between the measured J factor and that predicted by the WLC theory.
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which is the concentration of one end of the polymer chain at the other (x⃗ =0) with the
correct tangent alignment. The factor of 4π is due to the isotropic angular distribution of
monomer in free solution. Our analysis will neglect additional complications relevant to the
study of real DNA. First, in DNA the twist must also be aligned, which requires the use of a
variant of WLC, helical wormlike chain [3]. This additional constraint modulates the J factor
with a 10.5 bp period equal to the helical repeat. Our interest here is in the value of the J
factor averaged over a helical repeat for which the effects of twist can be roughly ignored
[3]. A second complication in real DNA is sequence dependent prebending [39,40].
Prebending effects alone cannot explain the high cyclization rates observed for short DNA
[37,43]; in this paper we focus instead on kink formation.

Although cyclization experiments are fairly straightforward, extracting mechanical
information from the results poses a difficult theoretical problem due to the combination of
tangent and spatial constraints. In fact, there is no exact analytic expression for the J factor
in the WLC theory; the following sections and Appendices will develop the numerical
methods we need.

A. The looping J factor
Due to these computational complications, we shall initially dispense with the tangent
alignment condition and compute a modified J factor that is relevant for processes that do
not fix the tangents of the chain. For example some protein-DNA complexes exhibit a
behavior that is believed to be better represented by looping (free end tangents) than
cyclization (end tangents aligned) [13]. We define the looping J factor as the ratio of the

looping to the dimerization equilibrium constants. The KWLC looping J factor, , can be
written in terms of the spatial propagator as

(61)

which can be interpreted as the concentration of one end at the other. We have again
neglected the effect of twist. In this case the explicit 4π in Eq. (60) is not needed, as the
definition of K already includes an integral over angles. Both from the standpoint of
developing intuition and computational convenience it is useful to explicitly expand K* in
the kink number. We introduce the WLC closed spatial propagator convolutions which we
denote

(62)

where again the ⊗ represents both spatial and arc length convolutions. The computation of
the (m) is discussed in Appendix A1. In terms of the (m), the free tangent J factor is

(63)

where we have defined the (m) to be independent of the kinking parameter ζ. The kink
number sum is illustrated with a diagrammatic expansion in Fig. 8. The probability of the m
kink state can be concisely written in terms of the (m)

(64)
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This expression can be interpreted as the kink number distribution for a looped chain, a
constraint that induces kinking in a manner roughly analogous to the tangent constraints
already discussed in detail. The looping J factor is plotted in Fig. 9. In this figure, we can see
that the intuition we developed computing the moment-bend constitutive relation is borne
out in the looping J factor, despite the fact that the process is thermally driven. In the short-
length limit, the ability of the chain to kink dramatically reduces the bending energy and
increases the looping J factor. In the short-length limit, a single kink is nucleated in a
manner almost exactly analogous to the process we have described in detail for the moment-
bend constitutive relation. We will discuss these results and their scaling in more detail after
computing the KWLC J factor.

B. The cyclization J factor
Although the computation of the free tangent J factor is more direct and intuitive, the J
factor with tangent alignment is of more phenomenological interest. The computation begins
with the tangent-spatial partition function defined in Eq. (45) for end distance zero and
aligned tangents. Since the transformed WLC tangent-spatial propagator is unknown, it
would initially appear to preclude exploiting the exact results derived above. But intuitively
we know the chain may be closed at any point resulting in an identical J factor. For kinked
chains, it is convenient to close the chain at a kink where the tangent alignment condition is
no longer required. The only chains for which this simplification cannot be applied are the
unkinked chains for which the J factor is already known [2]. To show this explicitly, we
write the transform of Eq. (45) in its expanded form and specialize to t⃗ = t⃗0 to obtain the
cyclization partition function:

(65)

We can now use the composition property of the propagators to replace the initial and final
tangent-spatial propagators with a single spatial propagator. Some care is now required in
performing the convolution, as described in Appendix A1. The cyclization partition function
then becomes [Eq. (A13)]

(66)

where we have expressed the result in terms of the zero end distance spatial propagator
convolutions, (m). The kink number sum is illustrated with a diagrammatic expansion in
Fig. 8. This equation has an analogous form to the looping J factor in Eq. (63). The only
complication here is that for kinked chains, the state counting has subtly changed since we
close the chain at a kink. For inverse transform numerical computations, it is convenient to
write a transformed partition function

(67)

although the expression is understood to only have physical meaning when the chain is
closed (x⃗ =0). Our derivation of the cyclized partition function implies that the KWLC
tangent-spatial propagator is known for one special case

(68)
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which is precisely the expression we need to compute the J factor. In terms of the KWLC
tangent-spatial propagator, the KWLC J factor is

(69)

where we have explicitly expanded the J factor in kink number. The J(m) are defined by

(70)

Figure 10 compares experimental data to our theoretical calculation of J*. Details of the
calculation are discussed in Appendix A3. Note that setting the kink density to ζ≈10−2/ξ =
0.2/µm roughly reproduces the experimental cyclization data. Equation (7) connects ζ to the
density of vertices ℓ and the free energy cost ε of creating a kink. Assuming that the site
density is just the DNA base pair length ℓ =0.34 nm, we can estimate the kink energy,

(71)

Although we do not discuss detailed microscopic models in this paper, it is interesting to
note that molecular modeling studies have found that in B-form DNA, base pairs indeed
open individually and noncooperatively with an activation energy similar in magnitude to
the estimate in Eq. (71) [44].

C. Topologically induced kinking
It is useful to discuss kink number in chains that are topologically confined to be cyclized.
These chains have both the kink inducing tangent and spatial constraint.

We can write the kink number distribution concisely in terms of the J factor

(72)

which is analogous to Eq. (64) and depicted in Fig. 11.

The effects of kinking on the J factor are dramatic even when the kinking parameter ζ is
small. Figure 10 shows that the WLC J factor precipitously decreases with loop contour
length due to the increasing elastic energy required to close the loop:

(73)

In dramatic contrast, the KWLC J factor, while tracking the WLC J factor at large contour
length, turns over at small contour length and increases divergently. Physically, this small
contour length divergence can be understood as an increase in the ratio of available cyclized
to noncyclized states which is roughly inversely proportional to the physical volume
explored by the chain when one end is fixed. This divergent increase in the density of states
can also be seen for the Gaussian chain in the short length limit, although this limit is not
physical for polymer systems. For the Gaussian chain, the J factor is monotonically
decreasing with contour length since the only obstruction to the ends finding each other is
entropic, and the number of available noncyclized states scales like L3/2 [Eq. (C2)]. For
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KWLC, once the chain is kinked twice, it is advantageous to shorten the chain which, while
decreasing the degeneracy of the first kink location, ∝L [Eq. (70)], increases the density of
cyclized states, ∝L−2 Eq. (B7)]. Therefore, there is a net L−1 scaling of the two kink term

(2) [Eq. (70)]. In this limit, the contributions from chains with kink numbers greater than
two scale like Lm−3 [Eqs. (70) and (B14)], implying that at short lengths the two kink term
dominates. In addition, in most physically interesting scenarios the kinking parameter ζ is
small. The probability of m kink number state scales roughly like the average kink number
for the unconstrained chain to the mth power (Lζ)m [Eq. (69)], which further decreases the
importance of higher kink number states. The dramatic transition from the zero kink to the
two kink state at short contour length is evident in Fig. 11. Interestingly, recent molecular-
dynamics simulations on a 94 bp DNA minicircle indicate the presence of two sharply
kinked regions [45].

Physically, we can understand the onset of this transition by roughly comparing the free
energies of the two kink term and the zero kink term to find the length at which these two
are roughly equal. Here we merely wish to motivate our results as clearly and simply as
possible so we shall ignore the difference in the density of states, even though its effect is
quantitatively important. We therefore treat the free energy of the zero kink term as the
bending energy only and the free energy of the two kink term as twice the kink energy in the
discrete model [Eq. (7)]

(74)

When the bending energy equals the energy required to nucleate two kinks, the transition
occurs. It is important to remember that the ζ dependence is relatively weak while the
bending energy scales like the inverse of the contour length. Below L~ξ, the bending energy
grows divergently implying that even for very small kink densities, kinking always becomes
important at short enough contour length. That is to say, we are almost assured of observing
elastic breakdown effects below contour lengths of roughly a persistence length.

Previously we had shown that for moment-bending, only a single kink was nucleated, in
contrast to the current example where the one kink contribution to the J factor, (1), is of
little scaling importance since the chain must still bend as illustrated schematically in Fig. 8.

This will not be the case for the KWLC looping J factor, , which lacks the tangent
constraint implying that only one kink is required to relieve all the elastic bending. The one

kink term of  therefore diverges like L−2 [Eq. (B7)] as explained above.  is plotted in
Fig. 9.

VII. DISCUSSION
Our main results are summarized in Figs. 5, 6, 10, and 11. We formulated a generalization of
the WLC model, in which a semiflexible polymer can develop flexible sites of an alternative
conformation. We found that taking the density of kinks in the unstressed polymer to be
about 0.01 per persistence length has negligible effect on the force-extension relation, but
vastly enhances the probability of cyclization for chains shorter than a persistence length, as
seen in recent experiments on DNA [7]. Several results similar to ours were independently
obtained Yan and Marko [21].

Various microscopic mechanisms could furnish the kinking mechanism in DNA, for
example single-basepair flipout or strand separation. But any complete, microscopic analysis
of high-curvature DNA conformations would also have to include a variety of effects, for
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example those arising from the significant thickness of the DNA molecule on the few-
nanometer scale of a short circle, strong polyelectrolyte effects, and so on. We have taken
the attitude that any net nonlinear softening at high curvature will lead to generic new
phenomena. By summarizing all such effects into a single phenomenological parameter, our
model focuses attention on the general mesoscale physics of kinking. The KWLC’s
generality also makes it a useful starting point for studying the conformations of other stiff
biopolymers, such as actin.

Other diagnostics of low-curvature physics, for example light scattering, also turned out to
be almost indistinguishable from the linearly elastic wormlike chain model. It is only by
conducting experiments that are explicitly sensitive to high curvature, that we can measure
the nonlinear response to bending. DNA cyclization offers one experimentally tractable
measurement sensitive to the high-curvature physics of free DNA in solution; we gave
predictions for other, future tests, for example the moment-bend relation and the kink
number as a function of constraints. Our kinking hypothesis has direct structural
implications for very small DNA loops, and for processes involving such loops, for
example, the looping implicated in some gene-regulatory mechanisms [8–13]. Recent
simulations indeed suggest that spontaneous kinking may play a role in such situations [45].

Some mathematical aspects of the model, for example the divergence of the theoretical J
factor at small contour length (Fig. 10), are artifacts of the simplified picture we have
proposed. The small contour length divergence is due to the two kink term, which can close
a loop without elastic bending regardless of the contour length, via the creation of 180°
kinks. Clearly due to the finite thickness of the chain, this divergence is unphysical. We can
consider a number of modifications to the theory to fix this problem: kink angle cutoffs,
kinks that are not perfectly flexible, etc. But all these proposals require adding additional
parameters to the model, rendering it both less tractable and less predictive, since the
additional parameter must then be fit to experimental data.

The KWLC is in essence a coarse-grained, effective theory for systems where kinking
occurs and the kinks are localized compared with the chain persistence length. Its virtue is
that it offers a simple way to characterize stiff biopolymers, and a quantitative guide to the
mesoscale effects of kinking. Thanks to this simplicity, we were able to compute many
results in this paper exactly, without extensive numerical simulation. We discuss the specific
application of KWLC to DNA at length elsewhere [19].
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APPENDIX A: FOURIER AND LAPLACE TRANSFORMS AND
CONVOLUTION THEOREMS

The relations listed below are well known [32] but essential to our derivations. We define
the 3D spatial Fourier transform and inverse transform
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(A1)

(A2)

The Faltung theorem states that Fourier transform of a convolution is the product of the
Fourier transforms

(A3)

for functions F and G where the spatial convolution is defined

(A4)

The generalization of the Faltung theorem is true for n functions

(A5)

We define the 1D contour length Laplace transform and inverse transform

(A6)

(A7)

where ∫ℒ denotes a contour integral along the Laplace contour. The Faltung theorem states
that Laplace transform of a convolution is the product of the Laplace transforms:

(A8)

for functions F and G, where the arc length convolution is defined

(A9)

The generalization of the Faltung theorem is true for m functions

(A10)

1. Circular convolutions
For the closed chain, we need to evaluate a special type of convolution which is circular. By
circular we mean that the end points are identified so that the arc-length position of the chain
ends is not at an end point of the propagator. In this case it is convenient to redefine the arc-
length coordinate system to be zero at the position of the first kink, L1, and sum over the
position of the chain ends as depicted in Fig. 12. The m kink contribution to the partition
function is therefore
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(A11)

where the factor of L comes from the integration over the end position and varies in the
convolution. To simplify this result it is convenient to go to the transformed partition
function

(A12)

where the L has been transformed into a p derivative. We now return from Fourier-Laplace
space, giving

(A13)

which is written in terms of convolutions of the spatial propagator only.

2. Numerical inverse transforms
To compute the numerical inversions of the Fourier and Laplace transforms involving the
spatial propagator, we first truncate the continued fraction [33] in Eq. (49), then we compute
the numerical inversion with the built-in Mathematica functions InverseLaplaceTransform
and InverseFourierTransform. In particular, the structure factor and partition function in an
external field involve only a single numerical inverse Laplace transform.

3. J factor computation
We have chosen to present most of our results in the last section as explicit series in kink
number rather than writing them in the summed form [Eqs. (48) and (67)]. The purpose is
twofold. First these expansions allow J to be computed efficiently for many small values of
ζ, because the K(m) are independent of ζ and only the first few must be computed explicitly
for sufficient numerical accuracy. Furthermore the K(m) are simply related to the kink
number distribution allowing the same computation to suffice for both results. Our
computational discussion will mainly focus on the short contour length limit where these
kink number expansions converge quickly. As we have already discussed at length, the large
contour length limit can trivially be computed with the WLC results using the renormalized
effective persistence length, ξ*. This corresponds to the k→0 and p→0 limit where the
theories are identical. In fact, in this limit, we can use the Gaussian chain to compute the J
factor. This computation appears briefly in Appendix C.

It is at short contour length where the two theories significantly diverge and kinking is
induced. As we have discussed above, in the limit as the contour length goes to 0, the
polymer resembles a rigid rod. It is problematic to directly compute the inverse transforms
of K* or K numerically in this limit since

(A14)

which, although it can be computed analytically by expanding sine into two exponentials
then integrating them on different contours, is problematic numerically. It is therefore
convenient to use the expanded definition of K* in terms of the (m) [Eq. (62)]. In the short
contour length limit, an asymptotic expression already exists [3] for J and K(0;L).
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Convolutions of K must still be computed. Numerical computations of the inverse
transforms of powers of K̃ are still problematic in the L→0 limit since, while they are more
convergent than K, they must be integrated to large k where it is difficult to compute
accurate Laplace transforms. But this implies it is in precisely this limit that bending is
really irrelevant and that the mechanics of these kinked chains becomes kink dominated.
Once there are two or more kinks, the chain can now be closed without elastic bending. That
is to say that, when these terms become difficult to calculate numerically, they can be well
approximated by the kinkable rigid rod. The kinkable rigid rod is treated in Appendix B. As
a practical matter there is a small contour length regime (L~1), between the rigid rod limit
and the contour length at which numerical transform inversion are rapidly convergent and
where it is most convenient to use direct Monte Carlo integrations to compute the (m).
These direct Monte Carlo integrations serve as a useful check on our other numerical and
analytic computations. For large dimensionless kink densities, the kink-number expansion is
not rapidly converging and direct numerical inversions of the exactly summed transformed
results are required. For most computations of the J factor at small kink density, the rigid rod
approximation suffices to compute the two kink term and the kink number sum can be
truncated at this point as illustrated schematically by Fig. 11.

APPENDIX B: KINKABLE RIGID ROD
In this section we develop the theory of kinkable rigid rods, the infinite persistence length
limit of the KWLC. This theory is useful for discussing the short loop limit of the J factor.
The rigid rod tangent-spatial propagator is

(B1)

The spatial propagator, K, is obtained by averaging and summing over the two tangents [Eq.
(41)]

(B2)

The Fourier and Fourier-Laplace transform spatial propagator are

(B3)

(B4)

In order to discuss the J factor limit, we will need the convolutions

(B5)

which is proportional to the probability density of the end distance being 0 after arc length L
and m−1 kinks. (1) is zero since the rod is rigid and the ends cannot meet unless the chain
kinks.

(2) is also fairly straightforward. It is convenient to compute the convolution explicitly
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(B6)

(B7)

where the Fourier transform delta function has been used to evaluate the integral.

The computation of (3) requires some care. Again it is convenient to compute the
convolution explicitly

(B8)

(B9)

(B10)

For convolution number m>3, we exploit the Fourier-Laplace transform method

(B11)

(B12)

where we have made the substitution k′=k/p. Now let us compute the k′ integral, which
must be done numerically. We now make the substitution tan x=k′. The integral in k′
becomes

(B13)

which we computed using Mathematica.

The p integral is now a simple contour integral which gives

(B14)

for m>3. The first few values of I are computed numerically in Table I.

The kinkable rigid rod theory, derived above, provides a very useful analytic check of the
KWLC model at short contour length. For short cyclized polymers, the bending between
kinks can be ignored since these segments are significantly shorter than a persistence length.
As we have illustrated above, the computation of the dominant two kink contribution is
straightforward in this limit.
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APPENDIX C: GAUSSIAN LIMIT
The Gaussian limit provides a useful analytic limit to the KWLC theory for long contour
length. In this limit, the length of the polymer makes the initial tangent condition irrelevant
and describes the spatial distribution for chain extensions short compared with the contour
length.

For large L, we can work with the Gaussian distribution. The Gaussian distribution is

(C1)

for persistence length ξ. The J factor is

(C2)

For KWLC, the persistence length is replaced by the effective persistence length ξ*:

(C3)

In the Gaussian limit, the convolution functions (m) can be computed without difficulty:

(C4)

But this expression holds only when the number of kinks is small.

APPENDIX D: SUMMARY OF NOTATION
We imagine a chain of total contour length L, with L/ℓ elementary segments of length ℓ.
Individual segments will be referred to by their sequence number n=0, …N, where N =(L/ℓ)
−1, or by arclength s=nℓ. A configuration Γ consists of a sequence of tangent vectors {t⃗0 …,
t⃗N}.

The stiffness parameter (WLC persistence length) ξ, one-vertex partition function Q, kink
formation energy ε, and kinking parameter ζ are defined in Secs. II and III. ξ* and Q* are
related quantities relevant to the KWLC. The kink length is ξkink≡ζ−1.

The measure d2t⃗ denotes solid angle on the sphere of unit vectors t⃗. Square brackets denote
the functional measure [dt⃗(s)t⃗i; see Eq. (8).

The partition functions Ƶ(L) and Ƶt ⃗f, t⃗i;L) refer to unconstrained and constrained functional
integrals over a chain of length L in the continuum limit. Rotation invariance implies that
the constrained function depends only on the angle θ between the vectors, so we sometimes
write it as Ƶ(θ;L). Discretized versions of the partition functions are denoted with the
subscript “discrete,” and KWLC versions with a star. Related quantities include the free
energy F(θ;L) =−log Ƶ(θ;L) [Eq. (28)] and the normalized tangent partition function (or
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propagator) H(t⃗f, t⃗i;L)=Ƶ(t⃗ft⃗i;L)/Ƶ(L). Laplace transforms of these functions on L are denoted
with a tilde.

When it is important to maintain spatial information, we introduce space-dependent
functions Ƶ(x⃗, t⃗f, t⃗i;L) [Eq. (40)], K(x⃗;L) [Eq. (41)], and G′ (x⃗, t⃗;L) [Eq. (42)]. Fourier-
Laplace transforms of these functions on x⃗, L are again denoted with a tilde.

Laplace and Fourier transformations, and the corresponding convolution operation ⊗, are
defined in Appendix A. Repeated convolutions of K give the functions K(m) [Eq. (62)], and
the related (m) [Eq. (70)].

The partition function in an external force is Ƶf⃗ [Eq. (54)]; the cyclization partition function

is  [Eq. (65)].

In an expansion in kink number, m labels the number of kinks and i=1, …, m labels which
kink is in question. The kinks are taken to be located at ni, or at arc length position Li=ℓni.
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FIG. 1.
(a) The discretized KWLC is a chain of wormlike and kinklike vertices. In this illustration
N=4; thus there are four vertices, of which one is kinklike. When a vertex i is wormlike
(σi=1), the energy is given by the normal wormlike chain energy; if it is kinklike (σi=0), the
energy is ε, independent of θi. (b) The continuum version of this theory. Although the
number of vertices is now infinite, the continuum limit maintains a finite average kink
density.
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FIG. 2.
(a) Diagrammatic representation of the kink expansion for the tangent partition function.
The dashed curve represents the KWLC theory and the solid curves represent the WLC
theory. It is convenient to collect the terms by kink number as shown. (b) Detail of the two-
kink term, showing the relation to the underlying discrete model. u⃗i and v⃗i are the tangent
vectors flanking kink number i.
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FIG. 3.
The tangent propagator and the tangent free energy as functions of the deflection angle for
the illustrative values L=0.2ξ and ζξ=10−2. The solid curves are KWLC and the dashed
curves are WLC with the same value of ξ. In the absence of kinking, the WLC distribution
(H) is essentially zero away from small deflection. For the small value of ζ chosen above,
WLC and KWLC are indistinguishable in the top panel. The presence of kinks adds a
background level to the propagator which is independent of θ, but is thermally inaccessible
—too small to distinguish from zero in the top panel, but visible in the free energy in the
lower panel. The tangent free energy gives an intuitive picture of the system interpreted as
as single-state system with an effective bending modulus which saturates due to kinking.
Most thermally driven experiments measure the polymer distribution as it is pictured in the
top panel and are therefore insensitive to the high-curvature constitutive relation. But
experiments which do probe this regime, short-contour-length cyclization for example, will
be extremely sensitive to the difference between the theories due to the large free energy
difference at large deflection.
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FIG. 4.
The bending moment τ and average kink number 〈m〉 as functions of the tangent deflection
angle for illustrative values L = 0.2ξ and ζξ=10−2. The solid curves are KWLC and the
dashed curves are WLC with the same bend persistence length. At small θ, the normalized
bending moment exhibits a linear spring dependence and the chain is unkinked. The limiting
linear behavior of the short rod limit is the dotted curve, labeled T=0 corresponding to the
mechanical limit of WLC. For large deflection, the chain kinks and the moment drops to
zero. This correspondence between kinking and the moment is clearly illustrated in the short
length limit depicted above.
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FIG. 5.
Force-extension characteristic for KWLC compared to WLC and rigid rod for L=4ξ and ζξ
=4. At low extension, the force extension of KWLC (solid curve) approaches WLC (dashed
curve) with a persistence length equal to the effective persistence length of KWLC. At high
extension, the kink modes are frozen out and the KWLC force-extension characteristic
approaches WLC (dotted curve) with a persistence length equal to the bend persistence
length of KWLC. Rigid rod (dot dashed curve) has been plotted for comparison. The
extension of rigid rod corresponds to alignment only.
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FIG. 6.
Left: Semilog plot of the best fit of the WLC model (ζ=0) to experimental data on the force-
extension relation of a single molecule of lambda DNA. Right: Best fit of the KWLC model
to the same data, taking ζξ =0.05. The fits are equally good, even though this value of ζ is
larger than the one that we will argue fits cyclization data. Thus, force-extension
measurements can only set a weak upper bound on the value of ζ. (Data kindly supplied by
Vincent Croquette; see [4].)
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FIG. 7.
The structure factor and the role of effective persistence length. The solid curve is the
structure factor for KWLC with contour length L=4ξ, and kink parameter ζ =4/ξ. For
comparison, we have plotted the structure factor for WLC of the same contour length for
identical bend persistence lengths (dashed) and identical effective persistence length
(dotted). At short length scales (large wave number) the KWLC structure factor approaches
that for WLC with an identical bend persistence length. At long length scales (small wave
number), the KWLC structure factor approaches that for WLC with a persistence length
equal to its effective persistence length ξ*. We have also plotted the structure factor for rigid
rod (dot dashed curve) for comparison.
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FIG. 8.
The diagrammatic representation of the kink number expansion for cyclized polymers. The
dashed curve represents the KWLC theory which is the sum of the m kink contributions. In
the interval between the kinks, the polymer is described by WLC, represented by the solid
curves. For each m kink contribution, we sum over the kink position. In order to meet the
tangent alignment conditions for cyclized polymers, we close the chain at a kink for kink
number one or greater.
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FIG. 9.

The KWLC looping J factor, , as a function of contour length plotted for various values of
the kinking parameter ζ. The numbers labeling the curves indicate the value of the
dimensionless quantity ξζ. WLC is the curve labeled 0. For large contour length L, the
effect of kinking can be accounted for by computing JL for the effective persistence length,
ξ*. But as the contour length shrinks to a persistence length, the effect of kinking becomes
dominant, even for small ζ. At short contour length the looping J factor is one kink
dominated and diverges in contrast to the WLC looping J factor which approaches zero
precipitously for short contour length.
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FIG. 10.
(Color) The KWLC cyclization J factor as a function of contour length L for various values
of the kink parameter ζ. As discussed in the text, our theory does not include the twist
induced 10.5 bp modulation of the J factor. The numbers labeling the curves indicate the
value of the dimensionless parameter ξζ. The WLC theory corresponds to ζ =0. For large
contour length L, the effect of kinking can be accounted for by computing the J factor using
the effective persistence length, ξζ. As the contour length L falls below a persistence length,
kinking dramatically increases the J factor, even for small ζ. For small L, the chain is two
kink dominated and diverges, in contrast to the WLC theory which precipitously falls to zero
at small L. Experimental cyclization data for DNA are plotted for comparison, assuming
ξ=50 nm. (Data sources: CW [7], SB [41], SLB [42], and VV [43].) At contour length
L=0.6ξ, the experimentally measured J factor is ≈104 times larger than predicted by the
WLC theoretical curve. The KWLC with ζξ=10−2 correctly captures this behavior, while
matching the WLC theory at large contour length.
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FIG. 11.
The kink-number distribution compared for cyclized chains (solid curves) and unconstrained
chains (dotted curves) as a function of contour length L. To illustrate constraint-driven
kinking, we have chosen the illustrative value ζξ=10−2. At large contour length L, the
cyclization constraint is irrelevant but as the arc length shrinks to roughly a persistence
length, the bending energy required to cyclize the chain becomes significant and there is a
dramatic transition to the two kink state which dominates at short contour length. The
contributions of one and m>2 kink states are secondary.
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FIG. 12.
A schematic diagram of the coordinate transformation exploited to compute the circular
convolution. The crosses represent chain ends and dots represent kinks. The center line
represents a periodic coordinate system. For regular convolutions, we set the chain end to be
the zero and we compute the convolution in the s coordinate system. For the circular
convolution, it is more convenient to choose L1, the first kink arc length position as the zero
and sum over the chain end position as represented by the s′ coordinate system.
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TABLE I

Values for the numerically computed integral Im for the first few m.

Convolution
number m

Integral
Im

4 2.249

5 0.841

6 0.461

7 0.300

… …
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