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Abstract
The stop-signal task probes agents’ ability to inhibit responding. A well-known race model affords
estimation of the duration of the inhibition process. This powerful approach has yielded numerous
insights into the neural circuitry underlying response control, the specificity of inhibition across
effectors and response strategies, and executive processes such as performance monitoring.
Translational research between human and non-human primates has been particularly useful in
this venture. Continued progress with the stop-signal paradigm is contingent upon appreciating the
dynamics of entire cortical and subcortical neural circuits and obtaining neurophysiological data
from each node in the circuit. Progress can also be anticipated on extensions of the race model to
account for selective stopping; we expect this will entail embedding behavioral inhibition in the
broader context of executive control.

Introduction
Response control has been the subject of fruitful investigation using the stop-signal (or
countermanding) task (reviewed by [1,2]). Subjects must respond quickly when targets
appear but must cancel partially prepared movements when infrequent stop signals occur
(Fig. 1). This task provides crucial leverage to investigate response control, because
performance can be understood as a race between 2 processes that initiate (GO process) or
cancel (STOP process) movement [3]. Using this race model, the duration of the covert
STOP process can be derived from the proportion of successful stop trials and the
distribution of reaction times (RT) on trials without stop signals. This stop-signal reaction
time (SSRT) measures the time needed to cancel movements. This paradigm is very general,
applying to simple and choice response tasks accomplished with any effector system.

The stop-signal task enables powerful, translational research because it can be studied with
humans, monkeys, and even rats, employing behavioral [4–6], neurochemical [7],
neurophysiological [8,9], electrophysiological [10,11], magnetic and electrical stimulation
[12–14], and functional imaging [15–18] techniques. Moreover, the task provides traction to
understand the nature of clinical disorders of impulse control and response monitoring [19–
22]. From such a large and growing literature, we can focus on only a few salient
developments and emerging problems with emphasis on neurophysiological findings.
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Neural mechanism of response inhibition
The clearest mechanistic explanations of response inhibition are framed by
neurophysiological studies in the frontal eye field (FEF) and superior colliculus (SC) of
macaque monkeys performing an eye movement stopping task [23–25]. Two criteria must
be met for neurons to participate in controlling movement initiation. First, neurons must
discharge differently when movements are initiated or withheld; if neurons still discharge
when movements are canceled, their activity was not affected by the stop process. Second,
the differential modulation on canceled trials must occur before SSRT; otherwise, the neural
modulation happens after the movement has already been canceled. Neurons that initiate or
inhibit eye movements in FEF and SC modulate early enough to control movements directly
(Figure 2A). These neurons project to brainstem structures that house ocular motor neurons,
enabling them to influence response production directly [26,27]. After the target appears,
movement-related activity begins to grow toward a threshold that triggers response initiation
[28]. If the activity reaches threshold, a response is produced regardless of whether a stop-
signal was presented. However, responses are canceled when the movement-related activity
is inhibited so that it does not reach the threshold activation level. The source of this
inhibition is a signal such as that conveyed by fixation neurons in FEF and SC. Crucially,
the pronounced modulation of fixation- and movement-related activity precedes SSRT.

Single-neuron recordings resolve patterns of modulation within neural microcircuits that are
invisible to noninvasive methods such as fMRI and event related potential (ERP). For
example, neurons with purely visual responses in FEF do not satisfy the criteria necessary to
participate in controlling movements [24], and visuomovement neurons exhibit a pattern of
modulation distinct from that of movement neurons [29]. Because noninvasive techniques
are unable to resolve such heterogeneous signals in the stop-signal task, associated claims
framing mechanisms in terms of one gross anatomical structure influencing another must be
interpreted cautiously (e.g., [30]).

The straightforward criteria laid forth by the race model identifies neurons that produce
signals sufficient to control movement initiation. The results from FEF have been replicated
and extended in a task requiring changing instead of just stopping saccades [31]. Meanwhile,
neurons in other cortical areas, such as the supplementary eye field (SEF) and lateral
intraparietal area (LIP), have also been described as movement-related. However, tests with
the stop-signal paradigm have produced unambiguous results; vanishingly few neurons
modulate before SSRT in SEF [9] or LIP [32]. Thus, SEF and LIP do not satisfy the logical
criteria necessary to contribute directly to movement control. Similarly, neurons in
supplementary motor area (SMA) do not modulate early enough to control limb movements
[33]. Results from preSMA are mixed. One laboratory has recorded from preSMA [34] and
subthalamic nucleus (STN) [35] during a "saccade overriding" and a go/no-go task. The
latter task resembles a stop-signal task with SSD = 0 but lacks a measure like SSRT. These
researchers identified some neurons in both structures with increased activity on successful
no-go trials, similar to those modulating on canceled trials in SEF [9,36] and SMA [33].
However, whereas activity in SEF and SMA was too late to contribute to response inhibition
in the stop signal task, the modulation of neurons in preSMA and STN did occur within the
transition between error and correct response times. Another laboratory has described neural
activity in preSMA during the stop-signal task. Similar to findings in SMA, the majority of
these neurons modulate after SSRT [33]. Further research is needed to resolve this question
in preSMA, and data must be recorded from STN while monkeys perform the stop-signal
task to test for modulation before SSRT.

It is tempting to hypothesize that movement and fixation neurons instantiate the race model.
But the central assumption that finish times of the GO and STOP processes must be
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independent complicates this interpretation [3]. If circuits that instantiate the race model
consist of interacting neurons, how can they produce behavior that appears to result from
independent processes? This paradox has been resolved through a model network of
interacting GO and STOP units with randomly accumulating activation ([37] see also [38]).
The model fits performance data and replicates neural data if and only if the STOP unit
inhibits the GO unit in a delayed and potent fashion (Figure 2B). Thus, a neurally plausible
mechanism of interaction is the only way that the model naturally fits behavior. This
interactive race model has since been extended to a network of biophysically realistic
spiking neurons [39]. Others have modeled behavioral inhibition in Bayesian terms [40], but
the utility of this approach for elucidating neural mechanisms is uncertain. Only the race
model has afforded precise description at multiple levels, both neural and behavioral, during
the stop-signal task. This rare coordination between psychophysics, formal mathematical
modeling, and neurophysiology establishes a clear linking proposition between the GO and
STOP processes of the race model and gaze-shifting and gaze-holding neurons in the ocular
motor circuit. We are curious to know if this interactive race framework will extend
gracefully to explain manual stopping, and we expect that this framework will be necessary
to understand the diversity of selective stopping findings across stimulus conditions and
effectors.

Meanwhile, a series of clinical and MRI studies have drawn attention to a specific region of
ventral prefrontal cortex as a central focus of response inhibition in conjunction with
preSMA and the STN. The evidence began with a correlational study relating frontal lesion
location and size to SSRT [41]. Further work showed haemodynamic activation in right
inferior frontal cortex (rIFC) and STN during response inhibition [42]. Based on findings
that deep brain stimulation (DBS) of STN in Parkinson’s disease (PD) patients improved
stopping performance [43], and evidence from diffusion tensor tract tracing for a direct
connection between IFC and STN [44], a hypothesis was advanced that rIFC inhibits
responses directly and immediately through the hyperdirect pathway by increasing β
synchronization. β synchronization has been reported to decrease in primary motor cortex
(M1) and STN locally during manual response initiation in patients [11,45,46]. Another
study reported that DBS of STN in PD patients improved response inhibition and was
associated with increased β power in surface EEG [10].

Confidence that rIFC is the seat of inhibition must be tempered, however, because key
aspects of the data are uncertain and alternate hypotheses explain more observations.

1. The evidence for potent anatomical connectivity between rIFC and STN is
uncertain. In monkeys, prefrontal inputs to STN arise from FEF and dorsal medial
frontal areas but not from ventral PFC [47]. Moreover, the prefrontal inputs
terminate in a ventral sector of STN which does not overlap with the M1 and SMA
terminals [47,48]. In humans, a recent comprehensive survey of STN connectivity
shows that fibers connecting IFC to STN are vanishingly weak in comparison to
those connecting STN to caudate, putamen, globus pallidus, and thalamus [49].
Although some have hypothesized that a common inhibitory mechanism operates
in humans and rats [50], comparison across species must be made with caution
because STN connectivity differs between rodents and primates [51].

2. Numerous studies identify rIFC with functions other than response inhibition [52].
In particular during the stop-signal task, activation of rIFC may be caused by
cognitive functions such as attentional capture [16,53] (although these effects are
difficult to parse from increased RTs in these studies) or violations of event
expectations [17]. Outside of the stop-signal task, IFC is consistently implicated in
stimulus driven attentional capture [54,55] and this activation scales with the
degree of stimulus unexpectedness [56,57]. In general, rIFC is often implicated as
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part of a network involved in orienting attention toward salient stimuli (reviewed
by [58]). While the specific homologue of IFC has not been identified in nonhuman
primates, it is probably located ventral to the principal sulcus and rostral to or in the
arcuate sulcus. This region has not been explored extensively neurophysiologically,
but an fMRI study in macaques identifies its activation with cognitive set shifting
[59]. Thus, plausible alternative hypotheses about the role of IFC abound.

3. Confidence in the claim that β oscillations serve to synchronize rIFC and STN to
interrupt movement preparation must also be tempered. One study reporting
increased intracranial β power over rIFC when responses were canceled was clear
in just one of four patients. In monkeys, increased β power has been observed in
cortical areas in which no neurons modulate early enough to contribute directly to
response inhibition, and such elevation is dissociated from increased γ power that
is most commonly associated with spike rate modulation [60]. Another study
reporting that DBS of STN in PD patients improved response inhibition with
increased β power in surface EEG [10] has an inconsistent behavioral effect [61].
In fact, several studies have noted that DBS of STN reduces or reverses response
inhibition in PD patients under conditions of decision conflict [62,63]. And others
have recorded increased impulsivity measures in PD patients undergoing DBS
([64] but see [65] for a possible reconciliation). Causal links between β power,
STN, and behavioral inhibition are therefore far from established.

4. Other cortical areas and basal ganglia pathways are known to contribute to
response inhibition [18,66]. Of these, the SMA and preSMA have received
considerable attention (e.g. [15]). But recent work suggests that medial frontal
areas may play a more nuanced role in behavioral inhibition that will be discussed
below. Meanwhile, as reviewed above, FEF and SC contain neurons with the
connectivity and patterns of modulation sufficient to explain response inhibition
and execution. Neurons in premotor cortex likewise modulate before SSRT [8], and
parallel results are obtained in M1 (Stuphorn personal communication). Studies
using paired pulse transcranial magnetic stimulation show that inhibition in M1 is
recruited in humans carrying out the stop-signal task [12]. Ultimately, an effective
model of response control cannot emphasize one node or pathway in a complex
system at the exclusion of other, more powerful pathways; it must include the
dynamics of the entire network.

General vs. specific inhibition mechanisms
Most stop-signal experiments with humans test manual responses. As detailed above, our
laboratory has used this task to investigate gaze control [67]. To investigate the generality of
stopping mechanisms across effectors, we tested whether human subjects could stop eye and
hand movements independently [6]. SSRTs were longer for hand movements than for eye
movements, and advanced knowledge of which effector to stop did not confer any stopping
advantage. We concluded that there must be some independence between the processes
which stop eye and hand movements. Additional evidence for differences between effectors
comes from studies examining the fine dynamics of movements on stop trials. Several
groups have reported partial muscle activation when overt manual responses are canceled
[33] and one group has reported reduced response force on noncanceled trials [68].
Similarly, when combined eye and head gaze shifts are canceled, neck muscles are often
active [69,70]. However, partial muscle activation is not observed when eye movements are
canceled in isolation, and eye-movement dynamics are indistinguishable on no-stop and
noncanceled trials [71]. This ballistic "all or nothing" property of saccadic eye movements
highlights a difference between the control of eyes and hands in typical testing conditions.
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In addition to generality across effectors, how general is inhibition across strategies? And
what is the relationship between slowing and stopping outright? These ethologically
appealing issues have recently received attention under the headings of (1) global versus
selective stopping, and (2) proactive versus reactive inhibition. Much work has focused on a
role for the SMA and preSMA in proactive and selective inhibition in humans [10,17,72]
and nonhuman primates [9,14,60,73]. These medial frontal areas exhibit single neuron and
haemodynamic modulation that anticipates presentation of stop signals and relates to the
quality of performance of the task. The contributions of other brain regions remains
uncertain, though. Moving forward, we see issues needing clarification:

1. Many tasks confound proactive versus reactive stopping with selective versus
global stopping (eg [74]). It is often implicitly assumed that proactive inhibition
strategies are selective, whereas reactive inhibition is global (e.g. [1]). At least one
study suggests that, under certain conditions, exerting proactive control leads to
more selective inhibition [13], but care should be taken to manipulate one or the
other of these variables until more data have been collected.

2. Logan’s original race model must be extended to understand selective stopping. For
example, when different movements or effectors are used, multiple GO processes
and possibly multiple STOP processes will be required [75]. In addition, many
selective stopping studies have reported violations of race-model assumptions, with
noncanceled RTs equal to or exceeding no-stop RTs (e.g. [76,77]). Such data
invalidate the face-validity of SSRT calculated using Logan's original race model.
Therefore, caution should guide interpretation of results until the underlying
processes are understood through the next generation of race models. We believe
that the interactive race model provides a foundation for models of selective
stopping with different stimuli, rules and effectors. Like any RT, SSRT is
comprised of successive stages, an initial encoding stage followed by an interactive
stage during which the GO process is interrupted [37]. Encoding duration will vary
based on stop-signal modality, task rules, history, or context. However, the
interactive stage must be brief to produce noncanceled RTs faster than no-stop-
signal RTs. Under selective stopping conditions, delayed noncanceled RTs can
arise when the influence of the STOP process is weaker and prolonged. Thus, the
interactive race model may extend naturally to selective stopping conditions. By
whatever means the interaction between the GO and STOP processes is adjusted,
an executive control circuit is necessary to register the need for these adjustments.

Executive control of stopping
An extensive body of work has associated areas of human medial frontal cortex with
executive control. Consistent with this framework, SEF and anterior cingulate cortex (ACC)
of monkeys both contain distinct populations of neurons active after errors or in association
with reinforcement [36,73,78] (Figure 3). SEF also contains a population of neurons active
after successful withholding of a partially prepared eye movement and proportional in their
activation to the momentary co-activation of gaze-shifting and gaze-holding neurons. These
neurons are hypothesized to signal response conflict. Several theories dealing with the
precise functions carried out by medial frontal cortex have been advanced, ranging from
error detection or prediction, to reinforcement learning to conflict monitoring. The existence
of distinct populations of neurons signaling error, reinforcement, and putative response
conflict indicates that each hypothesis has merit. But no neurons or LFPs have been
recorded in monkey ACC that could signal conflict [78–80]. Some have proposed that
macaque monkeys do not have the neural substrates necessary to generate performance
monitoring ERPs similar to those observed in humans [81,82]. However, the presence of
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monitoring signals in both single units and LFPs as well as a monkey homologue of the
error-related negativity (see below) call into question the merits of this proposal.

Error-related activity in SEF and ACC may contribute to an ERP recorded over medial
frontal cortex known as the error-related negativity (ERN) [83]. This ERP was the first
physiological signature of a supervisory control system. A bridge between the monkey
single-neuron results and the human ERN began with a series of studies showing that LFPs
in ACC and SEF exhibit polarization corresponding precisely to the ERN [79,84]. This was
followed by the keystone finding that macaque monkeys exhibit an ERN recorded from the
cranial surface consistent with a current source in medial frontal cortex [85] (Figure 3), and
nearly identical in form and distribution to that recorded from humans performing the same
task [86]. The neural origins and cognitive correlates of the ERN have been subjects of
intense research, and an animal model of the ERN will certainly provide effective leverage
on elucidating mechanisms.

As soon as performance monitoring signals were discovered, their relationship to
performance adjustment was explored [83]. After mastering the stop-signal task, fine
adjustments of performance continue [4,87,88]. For example, RT is delayed as more stop-
signal trials are encountered or expected [4,89]. The role of medial frontal cortex in
performance monitoring has been tested through intracortical microstimulation of SEF while
monkeys performed the stop-signal task [14]. Stimulation was delivered simultaneous with
stop-signal presentation, at current levels well below threshold for eliciting eye movements.
Microstimulation of sites in SEF improve performance by reducing the fraction of non-
canceled responses.

A reanalysis of data from FEF and SC shows how this behavioral slowing is accomplished
[90]. RTs are presumably adapted to minimize errors and maximize rewards. Stochastic
accumulator models commonly account for this adaptation through changes in response
threshold. However, Pouget et al. [90] demonstrated that RT adaptation is accomplished not
through a change of threshold, baseline, or accumulation rate, but instead through a change
in the time when presaccadic movement activity first begins to accumulate. This result
highlights the subtlety of mapping computational models onto neural processes.

Of course, performance adjustments need not be implemented via RT adaptation alone. In
the stop-signal task, subjects may also adjust SSRT. The question of how motivational
factors may influence SSRT is particularly interesting. To date, only one study has
manipulated motivational state and tested for changes in SSRT [91]. These researchers
manipulated reward contingencies to favor either speed or accurate inhibition, and found
that SSRTs were lower when subjects were encouraged to value stopping. Unfortunately,
SSRT estimates in this study were unreliable since only a single SSD was used. When
estimating SSRT from a single SSD, it is important to use the SSD which yields 50% errors.
Since the probability of making a noncanceled error was higher in the motivated speed
condition, sampling error rates in both conditions at a single SSD means that SSRT was
estimated from different tails of the RT distribution. Thus, the observed SSRT differences in
this study probably represent well-known confounds in SSRT estimates rather than
motivational factors. This study should be repeated using standard staircasing procedures.
Until then, the effect of motivation on SSRT remains an open topic of great interest and
importance.

Conclusions
Investigation of the stop-signal task in humans and animal models will likely accelerate
because of the paradigm's powerful utility for elucidating mechanisms of response control
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from muscles to cognition. Its unique translational leverage is afforded by the race model,
which provides a common language linking behavior, models, and neurons. The race model
also provides powerful constraints on mechanisms and predictions, encouraging the use of
strong inference. We look forward to new insights pinpointing neural circuitry responsible
for interrupting responses in multiple effector systems, resolving mechanisms of proactive
and reactive inhibition, and placing behavioral inhibition in the broader context of
performance monitoring and executive control.
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Highlights

• The stop-signal task probes response inhibition in multiple effector systems and
species.

• Neurophysiological studies in monkeys demonstrate mechanisms for stopping in
motor structures.

• Clinical and imaging studies in humans indicate complex circuits accomplishing
stopping.

• Differences in stopping mechanisms across effectors and task conditions are
under active study.

• Stop-signal studies afford effective investigation of executive control.
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Figure 1.
The stop-signal task measures response inhibition. Two trial types are randomly interleaved.
"No stop signal", "No signal, or simply "Go" trials do not contain stop signals (top). A GO
signal instructs subjects to initiate a response. The times between GO signals and responses
are the subject's reaction times (RTs). "Stop signal", "Signal", or "Stop" trials are randomly
interleaved (middle and bottom). With some delay after the GO signal (stop-signal delay or
SSD), a stop signal is presented. This cues subjects to cancel impending responses, which
they are able to do with varying success. Short SSDs increase the probability of cancelation
(middle) while long SSDs decrease the probability of cancelation (bottom). If responses are
elicited in spite of the stop signal, trials are classified as "Signal respond", "Noncanceled",

Schall and Godlove Page 15

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



or "Stop failure" trials. If no response is elicited, trials are classified as "Signal inhibit",
"Canceled", or "Stop success" trials. Stop-signal reaction time (SSRT) measures the time
necessary for the covert inhibitory process to cancel responses. RTs faster than SSD plus
SSRT will result in Signal respond trials, while RTs slower than the stop process will lead to
Signal inhibit trials.
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Figure 2.
Neural and computational mechanisms of movement inhibition. (A) Normalized activity of
FEF gaze-shifting (left) and gaze-holding (right) neurons. Activity on trials in which
movements were produced but would have been canceled if the stop signal had been
presented (thin line) are compared with activity on trials when the planned saccade was
canceled because the stop signal appeared (thick line). Presentation of the stop signal is
indicated by the solid vertical line. The time needed to cancel the planned movement - stop
signal reaction time (SSRT) - is indicated by the dashed vertical line. When the movement
was canceled, gaze-holding activity increased and gaze-shifting activity decreased abruptly
immediately before SSRT. The timing of this modulation demonstrates that FEF neurons
convey signals sufficient to control the initiation of the movement. (B) The interactive race
model elucidates how a network of mutually inhibitory GO and STOP units (left inset) can
produce behavior consistent with the Logan race model. With proper parameters, the
network produces error rates (left) and RT distributions (right) that are indistinguishable
from observed values. Moreover, using the same parameters, GO and STOP unit modulation
(right inset) correspond quantitatively to the form of actual neural activation. Movement
inhibition can be accomplished only by late, potent interruption of the GO process by the
STOP process. (Adapted from [37])
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Figure 3.
Performance monitoring signals in and over medial frontal cortex of macaque monkeys
during the stop-signal task. Schematized coronal section on top left illustrates location of
intracranial recordings from SEF, ACC, and cranial surface recordings. Intracranial signals
from microelectrodes were amplified and filtered to provide spikes or LFP, and cranial
signal was processed as typical EEG (right panels). Solid lines plot activity on no-stop
(correct) trials, and broken lines plot activity on noncanceled (error) trials. In both SEF and
ACC, many neurons show increased activity following noncanceled error responses.
Simultaneously, the LFP at some sites in SEF and most sites in ACC exhibit greater
polarization after errors. These LFPs contribute to the greater polarization recorded on the
surface, corresponding to the ERN, as indicated by the current sources calculated from the
surface voltage distribution projected onto dorsal and medial surfaces of structural MRI data
(lower left). Adapted from [36,78,79,84,85].
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