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Early warning signals have been proposed to forecast the possibility of a critical transition, such as the

eutrophication of a lake, the collapse of a coral reef or the end of a glacial period. Because such transitions

often unfold on temporal and spatial scales that can be difficult to approach by experimental manipu-

lation, research has often relied on historical observations as a source of natural experiments. Here, we

examine a critical difference between selecting systems for study based on the fact that we have observed

a critical transition and those systems for which we wish to forecast the approach of a transition. This

difference arises by conditionally selecting systems known to experience a transition of some sort and fail-

ing to account for the bias this introduces—a statistical error often known as the prosecutor’s fallacy.

By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated

rate of false-positives in common warning signal statistics. We further demonstrate a model-based

approach that is less subject to this bias than those more commonly used summary statistics. We note

that experimental studies with replicates avoid this pitfall entirely.
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1. INTRODUCTION
Mathematics . . . while assisting the trier of fact in the search

of truth, must not cast a spell over him. ([1], p. 320)
In the case of People v. Collins 1968, the California

Supreme Court considered the evidence of an expert

witness described by the court as ‘an instructor of math-

ematics at a state college’, which concluded that the

probability that a randomly selected individual would

match the description given by the victim would be less

than 1 in 12 million [1]. The prosecution had produced

an individual matching the prosecutor’s detailed descrip-

tion, and convinced by the mathematics, the lower courts

had found him guilty.

The prosecution has only observed that the probability

of seeing the evidence (E) they produced given a random

innocent individual (I), PðEjIÞ is very small. From this,

one cannot conclude that the individual is indeed guilty,

that is, that the probability the individual is innocent

given the evidence PðI jEÞ is also very small. In a city

with millions of people, there might be several individuals

who match the description of the evidence. Mathemat-

ically, PðEjIÞ need not equal PðIjEÞ; instead these

expressions are related by Bayes theorem,

PðEjIÞ ¼ PðI jEÞPðEÞ
PðIÞ ; ð1:1Þ

PðEÞ � 1 and PðIÞ � 1, so PðEjIÞ � PðI jEÞPðEÞ, and

consequently we cannot conclude that PðI jEÞ � 1 from

PðEjIÞ � 1. Realizing this mistake, the California Supreme

Court reversed the decision, and the case became a widely

recognized example of the prosecutor’s fallacy [2]. Here,

we explore how a similar misconception can arise from
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the use of historical data to evaluate methods for detecting

early warning signals of critical transitions.

Catastrophic transitions or tipping points, where a

complex system shifts suddenly from one state to another,

have been implicated in a wide array of ecological and

global climate systems such as lake ecosystems [3], coral

reefs [4], savannah [5], fisheries [6] and tropical forests

[7]. Recent research has begun to identify statistical

patterns commonly associated with these sudden cata-

strophic transitions, which could be used as an early

warning sign to identify an approaching tipping point,

which might provide managers time to react to and

avert an undesirable state shift [8,9]. An array of statistical

patterns associated with tipping point phenomena has

been suggested for the detection of early warning signals

associated with such sudden transitions. Two of the most

commonly used are a pattern of increasing variance [10]

and a pattern of increasing autocorrelation [11], which

have been tested in both experimental manipulation

[3,12–14] and historical observations [15–20].
(a) Testing patterns on historical data

Historical examples of sudden transitions taken from the

paleo-climate record provide an important way to test and

evaluate potential leading indicator methods, and have

been widely used for this purpose [15–20]. Similarly, it

has been suggested that data gathered from ecological sys-

tems such as lakes that were monitored before they

experienced sudden eutrophication, or grasslands sub-

jected to overgrazing could contain data that could help

reveal when similar systems are approaching a tipping

point [3].

However, testing methods for early warning signals

against historical examples of transitions is susceptible

to statistical mistakes that arise from selecting data con-

ditional on that data having already exhibited a sudden
This journal is q 2012 The Royal Society
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Figure 1. The prosecutor’s fallacy. (a) Plot of the model functions shown in equation (2.1) with parameters a ¼ 180, K ¼ 500,
e ¼ 0.5 and h ¼ 200. When the death rate is higher than the birth rate, the system dynamics drive the state (population size) to
smaller values. When the birth rate is higher, the system moves right, as indicated by the arrows. (b) The potential energy is
given by the negative integral of b(n)–d(n), shown in the lower plot. The potential function gives an intuitive picture of the

stability of a system by imagining the curve as a surface on which a ball is free to bounce across wells correspond to stable
points and peaks to unstable points. While most trajectories remain near the stable well, some transition out merely by
chance. An example of such a trajectory is shown in the top panel, in which time increases along the vertical axis. Though
initially oscillating around the stable state, a chance excursion carries it beyond the Allee threshold (vertical dotted line).
Such chance trajectories can produce the statistical patterns as observed in true critical transitions seen in (c): early warning

signals are aimed at detecting systems that are slowly moving towards a tipping point or bifurcation, illustrated in the successive
curves (deteriorating and critical). Top panel: an example trajectory from a simulation under this process shows the state of the
system as the potential moves towards the bifurcation point. The original position of the Allee threshold is shown by the vertical
dotted line (though it moves slightly as the parameter changes).
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transition. A central tenant of early warning theory is that

the system in question is slowly approaching a tipping

point that lies some unknown distance away. If nothing

is done to remedy the situation, this slow change will

inevitably carry the system beyond the tipping point,

which introduces a sudden, rapid transition into an unde-

sirable state [8]. This process can be described

mathematically as a bifurcation, in which a slowly chan-

ging parameter reaches a critical value that causes the

system stability to change.

Not all sudden transitions are caused by some ‘guilty’

process slowly driving the system over a tipping point—

the kind of process that early warning signals are designed

to detect. Some systems may experience such transitions

purely by chance, leaving a stable state on an extremely

unlikely excursion that happens to stray to far from the

stable attractor [9,18], consider this possibility in tran-

sitions that arise from analysing historical climate

record. Like the evidence presented before the California

Supreme Court in 1968, the chance of observing such

an ‘innocent’ transition a priori may be very small, but

when selected from a historical record of many possible

transitions, this possibility can no longer be ignored.

Figure 1 shows a schematic illustrating critical tran-

sitions under each of these scenarios. In figure 1a, the

system experiences a bifurcation and should contain an

early warning signal. In figure 1b, a similar-looking trajec-

tory emerges from a simulation of a stable system that

should not contain a warning signal. While the simulation

of the bifurcation scenario shown on the left produces a
Proc. R. Soc. B (2012)
similar transition every time, the transition shown on

the right is somewhat less probable, occurring in only

one per cent of simulations.
2. METHODS AND RESULTS
To investigate whether early warning signals are vulner-

able to this fallacy, we simulate a system that is not

driven towards a bifurcation such as in figure 1b. This

simulation approach allows us to determine whether

examining historical events is a valid way to test the utility

of these indicators. We simulated 20 000 replicates of a

stochastic individual-based birth–death process with an

Allee threshold [21], which arises from positive fitness

effects at low densities. Above the Allee threshold, the

population returns to a positive equilibrium size, whereas

below the threshold the population decreases to zero. The

model can be represented as a continuous time birth–

death process where births and deaths are Poisson

events that depend on the current density with rates

given by

bðnÞ ¼ Kn2

n2 þ h2
ð2:1Þ

and

dðnÞ ¼ enþ a; ð2:2Þ

a model with a linear death rate and density-dependent

birth rate that drives the Allee effect at low densities

and limits growth at high densities. In this model, n
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Figure 2. The distribution of the correlation statistic t for two early warning indicators (variance, autocorrelation) on replicates
conditionally selected for having collapsed by chance in simulations is shown in grey bars. Solid lines indicate the estimated
density of the statistic from a random sample of the simulations (not conditional on observing a transition). Positive values
of t correspond to a pattern of an indicator increasing with time; typically taken as evidence that a system is approaching a
critical transition. In these simulations, the pattern arises instead from the prosecutor’s fallacy of conditional selection.
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indicates the discrete number of individuals in the popu-

lation, K indicates a carrying capacity as set by a limiting

resource, e a per-capita death rate (the e scaling term in

the birth equation allows the carrying capacity K to corre-

spond to a positive equilibrium point), a an additional

mortality imposed on the population such as harvest, h is

a parameter controlling at what population size the

addition of more individuals switches from conferring a

positive benefit on growth from Allee interactions n , h

to a negative impact on growth owing to increased compe-

tition, n . h. The key feature of this model is the alternate

stable states introduced by this effect; other functional

forms for equation (2.1) could serve equally well for

these simulations [22]. Although this system can be

forced through a bifurcation by increasing the death rate,

in these simulations, all parameters are held constant and

no bifurcation occurs. Consequently, we do not anticipate

an early warning signal of an approaching bifurcation.

The simulation starts from the positive equilibrium

population size. Although the chance of a transition

across the Allee threshold in any given time step is

small, given enough time, this system will eventually

experience such a rare event, driving the population

extinct. We ran each replicate over 50 000 time units,

sampling the system every 50 time units. In this time,

window 266 of the 1000 replicates experience population

collapse. To keep the examples of comparable sample

size, we focus on a section of the data 500 time points

prior to the system approaching the transition.

To test whether selecting systems that have experienced

spontaneous transitions could bias the analysis towards

false-positive detection of early warning signals (the prose-

cutor’s fallacy), we selected replicates conditional on
Proc. R. Soc. B (2012)
having collapsed in the simulations. We then selected a

window around each system that ended just before the col-

lapse, while the population values were still above the Allee

threshold. For each replicate, we calculated the most

common early warning indicators, variance and autocorre-

lation [8,10,16], around a moving window equal to half the

length of that time series.

To test for the presence of a warning signal in these

indicators, we computed values of Kendall’s t for both

indicators for each of the 266 replicates. Kendall’s t is a

non-parametric measure of rank correlation frequently

used to identify an increasing trend (t . 0 in early

warning signals [16,23], defined as t� 1
2
nðn� 1Þ in

n observations.1 t takes values in (21,1). The distribution

of t values observed across these replicates is shown in

figure 2. We compare the distribution of t from all the

simulations to the distribution conditioned on experien-

cing a chance transition to the alternative stable state.

To avoid an effect of sample size, the time series are all

chosen to be of the same length.

To demonstrate that the effect we observe is not

unique to models with Allee effects, we provide an

example of the effect arising in a discrete-time model

with two non-zero stable states adapted from [4],

Xtþ1 ¼ Xtexp r 1�Xt

K

� �
� a�XQ�1

t

X
Q
t þHQ

 !
: ð2:3Þ

which combines a logistic growth model with a saturating

predator response (see [24] for detailed discussion),

shown in figure 3. Code to replicate the analysis can

be found at https://github.com/cboettig/earlywarning/

tree/prosecutor/.

https://github.com/cboettig/earlywarning/tree/prosecutor/
https://github.com/cboettig/earlywarning/tree/prosecutor/
https://github.com/cboettig/earlywarning/tree/prosecutor/
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Figure 3. The identical analysis from figure 2 is shown for the model in equation (2.3), using parameters r ¼ 0.75, K ¼ 10,

a ¼ 1.7, Q ¼ 3 and H ¼ 1. A similar statistical bias, particularly towards positive values of t, occurs in this model as well.
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For each of these replicates, we also take a model-based

approach, estimating parameters for an approximate

linear model of the system approaching a saddle node

bifurcation, as described by Boettiger & Hastings [25],

dX ¼ ffiffiffiffi
rt

p ðwðrtÞ �XtÞdt þ s
ffiffiffiffiffiffiffiffiffiffi
wðrtÞ

p
dBt : ð2:4Þ

In this model, the parameter m describes the approach

towards the saddle-node bifurcation. Estimates m , 0 are

expected in systems approaching a bifurcation, while for

stable systems, m should be approximately zero. None

of the estimates across the 266 simulations differed from

zero in our study; hence the model-based estimation

shows no evidence of bias on data that has been selected

conditional on collapse.
3. DISCUSSION
The attempts to detect early warning signs for critical

transitions are based on the concept of a deteriorating

environment as embodied in a changing parameter [8],

which is a different kind of transition than one that is

driven instead by stochasticity in an environment that

is otherwise constant and exhibiting no directional

change. When trying to use historical data to understand

critical transitions, we often do not know which category,

changing environment or simply chance, an observed

large change falls into.

We have shown here that systems that undergo rare

sudden transitions owing to chance look statistically

different from their counterparts that do not, even

though they are driven by the same stochastic process.

In particular, such conditionally selected examples are

more likely to show signs associated with an early warning

of an approaching tipping point, such as increasing
Proc. R. Soc. B (2012)
variance or increasing autocorrelation, as measured by

Kendall’s t. This increases the risk of false positives—

cases in which a warning signal being tested appears

to have successfully detected an underlying change

in the system leading to a tipping point, when in fact

the example comes instead from a stable system with no

underlying change in parameters. Figure 2 shows that

many of the chance crashes show values of t that are sig-

nificantly larger than those observed in the otherwise

identical replicates that did not experience a chance tran-

sition, thus ‘detecting’ an underlying change in the system

dynamics that is not in fact present.

(a) Chance transitions are false positives for early

warning signals

It seems tempting to argue that this bias towards positive

detection in historical examples is not problematic—each

of these systems did indeed collapse; so the increased prob-

ability of exhibiting warning signals could be taken as a

successful detection. Unfortunately, this is not the case.

At the moment the forecast is made, these systems are

not likely to transition, because they experience a strong

pull towards the original stable state. A closer look at the

patterns involved shows why common indicators such as

autocorrelation and variance can be misleading.

As the system gets farther from its stable point, it is

more likely to draw a random step that returns it towards

the stable point. Despite this, there is always some prob-

ability that it will move further still; so systems that do

cross the tipping point must do so rather quickly by a

string of events. This pattern, clearly visible before the

crashes in each of the examples in figure 1, produces a

string of observations that appear more highly autocorre-

lated (if we are sampling the system frequently enough to
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catch the excursion at all) than we observe in the rest of

the fluctuations around the equilibrium. Yet, this auto-

correlation comes from a chance trajectory moving

quickly away from the stable state, not from the critical

slowing down pattern in the return times to the stable

state that precede a saddle-node bifurcation and motivate

the early warning signal.

This longer than expected excursion results in a higher

than expected variance in that window as well. Both var-

iance and autocorrelation are calculated using a moving

window over the time-series, which allows the method

to pick out a pattern of change as the window moves

along the sequence. If this chance excursion that precedes

the crash happens to fill a significant part of the moving

window, the resulting pattern will tend to show an

increase in autocorrelation or variance. If the chance

excursion is relatively rapid compared with the frequency

at which the system is observed (spacing of the data) or

the width of the moving window, the excursion may not

significantly alter the general pattern. In this way, some

of the events in which a crash is observed will appear to

present these statistical patterns of increased variance or

autocorrelation without being harbingers of approaching

critical transitions.
(b) The truncation of observations

If we had a complete knowledge of the system dynamics,

then we could eliminate the bias we observe here because

the bias arises from the transient branch of the trajectory

that crosses the threshold, and if the system were trun-

cated at the minimum of the potential, then the effect

we emphasize here would not appear. But, it is not pos-

sible to truncate the system in any practical application.

The precise location of the minimum of the potential

(the location of the deterministic equilibrium) is

unknown. Moreover, under the hypothesis that the

system is approaching a critical transition, the location of

the minimum potential moves; so it cannot easily be esti-

mated by previous observations, (see figure 1c where the

equilibrium point moves in the direction of the transition).

Thus, it is neither practical nor desirable to suggest that

historical time series can be used by following a simple

truncation rule that avoids the branch of a trajectory cross-

ing the threshold to another basin of attraction. Exactly

where a particular study will choose to truncate such a tra-

jectory will necessarily be arbitrary without an underlying

model of the process. Frequently this is done by removing

the very steep, monotonic branch of the trajectory

expected, once the system crosses the unstable threshold.

Such an approach corresponds with our choice of termin-

ation and produces the bias we discuss here.

The examples of figure 1, though only single replicates,

may be useful in illustrating these issues. Figure 1c, top

panel shows a sample trajectory of a system with a par-

ameter shift, while 1b shows a trajectory without a shift.

Both trajectories become more highly autocorrelated

and higher variance near the end of the time series

(time increases on the y-axis in figure 1). The part of

the time series following the critical transition shows a

fast and monotonic trajectory to the unstable trajectory,

and would usually be excluded by an analysis for warning

signals in advance of the transition. No such clear pattern

exists prior to the transition in figure 1b. An alternative
Proc. R. Soc. B (2012)
proposal to terminate the trajectory in (b) earlier would

also risk decreasing the signal seen in (c), and would

be inconsistent with the application of warning signals

in the forecasting context, where there would be no

such truncation.

(c) Comparing to the model-based method

In our numerical experiment, the model-based estimate

of early warning signals appears more robust than the

summary statistics, producing the same estimates on

both the conditionally selected replicates as on a

random sample of the replicates. This is a consequence

of the more rigid specifications that come with a model-

based approach—the pattern expected is less general

than any increase in variance or autocorrelation, but

instead must be one that matches its approximation of

the saddle-node bifurcation. This observation highlights

the difference between the pattern driving the false posi-

tive trends in increasing variance and increasing

autocorrelation and the pattern anticipated in the

saddle-node model. This should not however be taken

as evidence that the model-based approach is immune

to the bias of the prosecutor’s fallacy.

(d) Importance of experimental approaches

The problem we highlight ultimately stems from the diffi-

culty of having only a single realization with which to

examine a complex problem. The only way to deal with

this problem embodied is through replication, as can be

done in an experimental system in laboratory manipula-

tions such as Drake & Griffen [12], Veraart et al. [13]

and Dai et al. [14] and at the scale of whole lake ecosys-

tems in Carpenter [3]. Experimental procedures avoid the

hazard of the prosecutor’s fallacy by generating a com-

plete sample of replicates, rather than by selecting a

subset of cases from some larger historical sample.
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ENDNOTE
1A pair of observations (xi, yi ) and (xj, yj ) are concordant if xi . xj and

yi . yj or xi , xj andyi , yj and discordant otherwise; equalities excepted.
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