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Social network analysis is an ideal quantitative tool
for advancing our understanding of complex social
behaviour. However, this approach is often limited
by the challenges of accurately characterizing
social structure and measuring network heterogen-
eity. Technological advances have facilitated the
study of social networks, but to date, all such
work has focused on large vertebrates. Here, we
provide proof of concept for using proximity
data-logging to quantify the frequency of social
interactions, construct weighted networks and
characterize variation in the social behaviour of a
lek-breeding bird, the wire-tailed manakin, Pipra
filicauda. Our results highlight how this approach
can ameliorate the challenges of social network
data collection and analysis by concurrently
improving data quality and quantity.
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1. INTRODUCTION
Non-random and heterogeneous social interactions are
the foundation of animal social groups [1], and the
dynamic structure of these social networks can have
important implications for evolutionary processes
[2,3]. Social network analysis provides a rigorous
statistical framework for understanding the functional
and evolutionary implications of social interactions,
because it documents how individual-level patterns of
association scale-up to produce population-level
social structure [1,2]. Theoretical and empirical appli-
cations of social network theory have advanced our
understanding of how selection acts on specific beha-
viours (e.g. cooperation), and how social connectivity
influences individual fitness [4–6].

Despite the power of network analyses, models of
animal social structure in free-living populations
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often lack replication and are limited in temporal
scope, resulting in simplified binary networks (0/1
matrices) [7,8]. As such, a number of investigators
have advocated the use of weighted networks that
account for the frequency of interactions and thus
better characterize complex social dynamics [7–9].
Data collection is the most prominent challenge associ-
ated with measuring social structure in free-living
animals, because interactions can be difficult to quantify
and observer effects, including sampling biases and
error, can influence data reliability [10]. Moreover,
observational approaches are spatially and temporally
constrained by observer number and inherent limitations
on sampling time. Recent advances in proximity logging
technology that use either fixed receivers (coded
nanotags) or interactive tags (Sirtrack [11,12] and
Encounternet [13]) have begun to revolutionize the way
we collect social network data. Proximity logging can
increase both the quality and quantity of data that are
essential for constructing weighted social networks. Yet,
to date, the few applications have focused solely on
large vertebrate taxa [11,12,14]. Research testing the effi-
cacy of proximity data-loggers for small vertebrates is a
necessary step for advancing our understanding of
animal sociality.

Avian social systems have become indispensible
models for exploring the evolutionary implications of
social network structure because of their diversity and
complexity. For example, wire-tailed manakins are
cooperative lek-breeding birds that exhibit dynamic
social behaviour in which territory males perform court-
ship displays alone, in a coalition with a non-territorial
partner (floater), or in a coalition with another territory
holder. Previous work using observational approaches
has shown that display coalitions form the basis for
complex networks and that network connectivity is a
strong predictor of male fitness (social rise and
reproductive success) [5,6]. Here, we test proximity
data-loggers to quantify the frequency of social inter-
actions, construct weighted networks and characterize
variation in wire-tailed manakin social behaviour.
2. MATERIAL AND METHODS
We studied wire-tailed manakins at Tiputini Biological Station in the
Orellana province of eastern Ecuador (08380 S, 768080 W) during the
peak reproductive period (January 2012). To ensure that we captured
variation in social behaviour, we replicated sampling within each
social class (definitive territorial, n ¼ 11; definitive floater, n ¼ 3;
and pre-definitive floater, n ¼ 2; females, n ¼ 2; see the electronic
supplementary material). Individuals were fitted with coded nano-
tags (NTQB-2, 0.35 g, Lotek Wireless) that use a single very high
frequency (166.340 MHz) and emit a unique code (see the
electronic supplementary material). Tags were monitored with a digi-
tally encoded proximity data-logger (SRX-DL1; Lotek Wireless).
The data-logger notes the time and signal strength (an index related
to the log of the received signal in decibel) for each tag detection, and
from these data, we can infer when individuals are in close proximity
and their distance from the data-logger.

To monitor the social interactions of territorial males and their
visitors, we placed the data-logger centrally in each territory from
06.00 to 16.30. The data-logger was rotated daily between 11 male
territories for a total of 26 sampling occasions (24.32+1.39 h per
territorial male). To ensure we recorded within-territory social inter-
actions, we used a short whip antenna and optimized receiver
settings (receiver gain ¼ 10 dB) to constrain detections within a
radius of 25 m. To test how signal strength varied with vegetation
density and distance from the data-logger, we walked 20 m transects
and collected replicated signal strength data (n ¼ 10) at 1 m
increments in five independent territories.

Given the extensive knowledge of social interactions (cooperative
display coalitions) in our system, we used proximity data from
This journal is q 2012 The Royal Society
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Figure 1. The relationship between signal strength and distance from the proximity data-logger for five male wire-tailed

manakin territories. Points represent the mean of 10 replicate signal strength measures at each distance.

Table 1. Weighted network metrics for wire-tailed manakin

males of different status calculated using a spatial proximity
approach. (Bold values denote significant differences in
network metrices between male-status classes.)

territorial
(n ¼ 11)

floater
(n ¼ 5)

network metric mean+ s.e. mean+ s.e. p

in-strength 14.18+2.33 2.20+0.92 <0.001

out-strength 8.82+0.53 13.00+3.87 0.359
in-degree 4.73+0.57 1.40+0.60 0.002

out-degree 2.73+0.19 5.00+1.41 0.184
wbetweennessa 47.10+8.83 9.40+9.15 0.013

eigenvector
centrality

0.24+0.04 0.18+0.05 0.340

aWeighted betweenness.
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nanotags to quantify weighted social networks that accounted for
the frequency of interactions. First, we defined territories using the
observed range of signal strength for each territory holder (see the elec-
tronic supplementary material, table S1). Second, we quantified joint
detections as social interactions if the males were detected less than
10 s apart and within the range of signal strength for the defined terri-
tory. Third, the duration of each interaction was measured as the time
elapsed, in seconds, between the first joint detection and the last joint
detection. Fourth, the frequency of interactions was tabulated using
only joint detections that were spaced greater than 5 min apart.
Because monitoring took place in each male’s territory, the direction-
ality of social interactions was defined with visitors (regardless of
status) as the initiator and the territory holder as the targets. When
two males were simultaneously detected as visitors in a third male’s ter-
ritory, the relationship between the visiting males was considered
reciprocal. While not all joint detections represent male–male display
coalitions, here we present non-filtered data, because many partner-
ships were confirmed by direct observation and frequent non-
random social interactions are well documented in our system [15].

We used the R package tnet v. 3.0.5 [16] and a program UCINET v.
6.0 [17] to calculate weighted and unweighted network metrics (see
the electronic supplementary material). We visualized our network
using program GEPHI v. 0.8 with nodes arranged using a force-
based algorithm. The emergent properties of the observed network
were compared with a random graph with the same number of
nodes and edges (see the electronic supplementary material, figure
S1). Network metrics were compared between male-status classes
using t-tests in the program JMP v. 8.0. Means and s.e. are reported.
3. RESULTS
During our sampling, we logged 92 040 tag detections
with territorial males being detected more frequently
(8238+1446 detections per male) than floater males
(345+169 detections per male; see the electronic sup-
plementary material, table S1). Tag signal strength was
negatively correlated with distance from receiver
(F1,99¼ 441.96, p , 0.0001, r2¼ 0.82; figure 1), yet
there was variation among male territories, presumably
as a result of vegetation density. We quantified 170 inde-
pendent dyadic social interactions for the construction of
our weighted network (2.83+0.26 interactions per dyad;
range: 1–11; figure 2). Joint detections varied from brief
Biol. Lett. (2012)
interactions to longer territorial visits; the latter proba-
bly represented coordinated display bouts (148.93+
18.53 s; range: 5–1020). Key emergent properties of
the network included a high, generalized clustering coef-
ficient (CW

real ¼ 0:574 + 0:08; CW
random ¼ 0:186 + 0:02;

p,0.0001) and short average path length (Lreal ¼ 1.98;
Lrandom ¼ 2.33) when compared with null expectations.
Finally, we found significant status-related differences
in weighted network metrics that quantified male social
connectivity (table 1 and figure 2).
4. DISCUSSION
Researchers applying social network theory to animal
populations must be aware of the challenges associated
with both data collection (representative sampling) and
analysis [9]. Our study provides proof of concept for a
relatively new technology that addresses these chal-
lenges by maximizing both the quality and quantity of
data needed to characterize biological networks and



W/YPU

O/GG

O/BR

G/RG

O/GPI

G/GG
O/O

PI/PI

B/GR

R/O

LB/LB

G/BY

W/GPU

B/G

PI/B Y/O

BPI/PU

G/PIY

Figure 2. A weighted social network of wire-tailed manakin social interactions. Individuals are represented by nodes
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analyse network heterogeneity. The benefits of nanotags
and proximity data-loggers include: (i) increased quan-
tity and quality of network data; (ii) minimized observer
effects on focal animals and reduced sampling bias;
(iii) the ability to collect longitudinal data on the
frequency and duration of social interactions; (iv) versa-
tile tag configurations with 500þ unique codes (weight:
0.29–2.6 g, pulse rate: 1–40 s and battery life with 12 h
on/off programming: 45–928 days); (v) flexible data
collection (variable scan time and number of
frequencies, multiple antenna, gain/detection range:
5 m–20 km); and (vi) waterproof data-loggers that can
run autonomously (approx. two weeks) and record
more than 250 000 detections.

Despite the clear benefits of using proximity
approaches to collect social network data, there are
also a number of important limitations to consider.
First, researchers must realize that proximity data
cannot differentiate types of interactions (cooperation
versus aggression) and that associations based on spatial
proximity (gambit of the group) must use biologically
relevant criteria [2]. As such, researchers must apply
species-specific knowledge of social behaviour to inter-
pret and analyse networks generated from spatial
proximity data. Here, our detailed knowledge of the
manakin social system, frequent social interactions and
Biol. Lett. (2012)
consistent use of space facilitated the use of spatial proxi-
mity approaches to quantify social networks. Second,
tags (199 US dollars per tag) and data-loggers (2495
US dollars per logger) are expensive, and thus the costs
as well as the benefits of proximity logging must be
weighed against those of observational approaches.
Third, proximity logging may yield yet unknown sources
of bias and/or error (false-positive joint detections and
tag-induced behavioural changes), although we did not
experience these problems with our data and study
species. Finally, while improved data collection tech-
niques will advance our understanding of complex
social systems, increased data quantity and quality
alone do not negate other analytical challenges (non-
independence, data filtering and management; see the
electronic supplementary material) and the importance
of using null models for testing network hypotheses [9].

Here, we advance our previous work on manakin
social networks [5,6] by using a proximity logging
approach to characterize weighted social networks.
Two complementary measures of average network
structure and topology suggest that males are both clo-
sely connected (path length) and highly clustered
(clustering coefficient), with leks probably serving as
densely interconnected neighbourhoods. Our weighted
network data also suggest that social status is a strong
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predictor of a male’s centrality and the extent to which
he initiates display partnerships. Ultimately, the ability
to measure individual variation in social behaviour
using weighted network metrics will begin to advance
our understanding of how behavioural phenotypes
influences dominance and subsequent fitness.

The technique and data presented here suggest that
proximity approaches can be used to streamline social net-
work data collection in small vertebrates when there is
sufficient a priori knowledge of a species social system.
Proximity technology greatly enhanced our ability to
quantify social networks in the manakin system by redu-
cing sampling time (see the electronic supplementary
material, table S2), detecting previously unrecognized
complexity in the frequency and directionality of male–
male interactions, and capturing rare social interactions
between territorial males at different leks. We believe
that proximity approaches can also advance data collec-
tion in other areas of behavioural ecology (parental care,
territorial intrusions, flocking behaviour and cooperative
breeding). One particularly promising application would
be the study of reproductive behaviours (female mate
searching, extra-pair behaviour) that are often cryptic yet
drive patterns of male reproductive success. While limited
in scope, our data suggest proximity tags can successfully
be used to collect data on patterns of female visitation in
lekking birds (also see Mennill et al. [13]). Ultimately,
the ability to autonomously collect longitudinal data on
social networks is a promising starting point for under-
standing the mechanisms that drive social network
structure and selection on social behaviour.

This research followed Smithsonian Institutions ACUC
guidelines.
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