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Gliding morphologies occur in diverse vertebrate
lineages in Southeast Asian rainforests, including
three gecko genera, plus frogs, snakes, agamid
lizards and squirrels. It has been hypothesized
that repeated evolution of gliding is related to
the dominance of Asian rainforest tree floras by
dipterocarps. For dipterocarps to have influ-
enced the evolution of gliding in Southeast
Asian vertebrates, gliding lineages must have
Eocene or later origins. However, divergence
times are not known for most lineages. To inves-
tigate the temporal pattern of Asian gliding
vertebrate evolution, we performed phylogenetic
and molecular clock analyses. New sequence
data for geckos incorporate exemplars of each
gliding genus (Cosymbotus, Luperosaurus and
Ptychozoon), whereas analyses of other ver-
tebrate lineages use existing sequence data.
Stem ages of most gliding vertebrates, including
all geckos, cluster in the time period when dipter-
ocarps came to dominate Asian tropical forests.
These results demonstrate that a gliding/diptero-
carp correlation is temporally viable, and caution
against the assumption of early origins for
apomorphic taxa.
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1. INTRODUCTION
Gliding vertebrates are more prevalent in Southeast
Asian than other rainforests, and include squirrels
(Pteromyini), colugos (Dermoptera), Chrysopelea
snakes, Draco lizards, geckos and Rhacophorus frogs
[1–3]. Among geckos, gliding has been described or
confirmed for species in three genera: Hemidactylus
(two species formerly in the genus Cosymbotus, here
retained for clarity), Luperosaurus and Ptychozoon [4–8].
These genera are arboreal, obligate (Luperosaurus,
Ptychozoon) or facultative (Cosymbotus) rainforest dwellers
restricted to Southeast Asia. They share several
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morphological features that are rudimentary or absent in
related geckos and seemingly facilitate gliding, including
dorsoventral body flattening, extensive interdigital web-
bing, elaborate skin flaps and flattened tails with lateral
projections (figure 1) [4]. Similarly, some combination
of skin flaps and/or dorsoventral flattening has evolved
in other Asian gliding vertebrate lineages.

Several hypotheses have been proposed to account
for this parallel evolution of gliding. Three have received
the most attention. One hypothesis suggests Asian rain-
forests differ from other rainforests structurally, with
fewer lianas interlacing the canopy, favouring gliding
locomotion as a means of among-tree locomotion [9].
Subsequent studies have not supported this distinction
[10,11]. Two more widely accepted hypotheses corre-
late the evolution of gliding with the dominance of
the Asian large-tree flora by Dipterocarpaceae, a tropi-
cal tree family that is exceptionally diverse in Asia
[2,3,11]. Dipterocarps are taller than other canopy
trees, potentially favouring evolution of gliders by allow-
ing for longer glides. Alternately, the unpalatable leaves
and cyclic mast-fruiting of dipterocarps may increase
food patchiness (directly for herbivores, indirectly for
insectivores such as geckos), favouring evolution of glid-
ing as an energy-efficient means of locomotion among
foraging locations.

Dipterocarps have a Gondwanan origin, and prob-
ably colonized Asia via the Indian plate that collided
with the remainder of Asia approximately 50 million
years ago (Ma) [12–14]. In Southeast Asia, the first evi-
dence of dipterocarps soon followed, from the Middle/
Late Eocene (49–34 Ma) of Myanmar. Dipterocarps
became increasingly common through the Oligocene
and Miocene, and dominant parts of the Southeast
Asian tree flora by 20 Ma [15,16]. If the evolution of
gliding-associated traits is correlated with the develop-
ment of dipterocarp forests, we expect a date of origin
for gliding lineages during the period 50–20 Ma, as
this floral shift occurred.

This timeframe seemingly precludes it from acting
as a causative agent in some lineages. For example,
Luperosaurus is sister to Lepidodactylus [17]. Gecko
genera with similar species richness to Lepidodactylus
(e.g. Gehyra) are significantly older than Mid-Cenozoic
in age, and the divergence between Gekko and
Lepidodactylus has been estimated to have occurred
near the K/T boundary, 65 Ma [18,19], hinting at ear-
lier ages of origin for Luperosaurus as well. We performed
phylogenetic and timing analyses on a dataset, includ-
ing Asian flap-bearing geckos, as well as most other
Southeast Asian and Pacific gekkonid genera, to both
investigate evolutionary relationships among the arboreal
Asian gecko genera and evaluate the tenability of a cor-
relation between dipterocarp forest development and
the evolution of gliding morphologies. Comparative
analyses were performed using existing sequence data
for each of the other gliding Asian vertebrate lineages.
2. MATERIAL AND METHODS
Our gekkonid nucleotide sequence dataset includes two Cosymbotus,
two Luperosaurus, two Ptychozoon (three specimens), 20 Gekko
(23 specimens), 10 Lepidodactylus (16 specimens) and two Pseudogekko.
We also included five Hemidactylus, 18 gekkotan and two non-gekkotan
outgroups (see the electronic supplementary material, table S1). The
dataset includes the mitochondrial gene ND2 and flanking tRNAs,
plus portions of nuclear genes RAG1 and PDC (2766 bp total; new
This journal is q 2012 The Royal Society

mailto:matthew.heinicke@gmail.com
http://dx.doi.org/10.1098/rsbl.2012.0648
http://dx.doi.org/10.1098/rsbl.2012.0648
http://dx.doi.org/10.1098/rsbl.2012.0648
http://rsbl.royalsocietypublishing.org
http://rsbl.royalsocietypublishing.org
http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2012.0648&domain=pdf&date_stamp=2012-09-12


(a) (b)

(c) (d )

(e) ( f )

Figure 1. (a,c,e) Gliding geckos and (b,d, f ) non-gliding relatives. Note digital webbing and lateral flaps in gliders.
(a) Hemidactylus (Cosymbotus) craspedotus; (b) Hemidactylus garnotii; (c) Luperosaurus cumingii; (d) Lepidodactylus vanuatuensis;
(e) Ptychozoon lionotum and ( f ) Gekko vittatus.
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sequences have GenBank accession numbers: JX515611–JX515652).
Phylogenetic analyses were performed under likelihood, parsimony
and Bayesian criteria. For comparative analyses of other Asian gliding
vertebrates, we assembled the most comprehensive datasets possible
from available GenBank sequences (see the electronic supplementary
material, tables S2–S5): two genes (2059 bp) and 34 taxa (14 gliding)
for Pteromyini; two genes (1169 bp) and 18 taxa (1 gliding) for Chry-
sopelea; six genes (2915 bp) and 39 taxa (15 gliding) for Rhacophorus;
three genes (1813 bp) and 52 taxa (32 gliding) for Draco. All alignment
matrices are deposited in the Dryad repository (http://dx.doi.org/10.
5061/dryad.jh3sb). For Dermoptera, we use the results of a published
19-gene, 14 000 bp analysis [20]. Divergence times for the gekkonid
and comparative analyses were calculated using Bayesian relaxed-
clock analyses and multiple fossil calibrations; post burn-in posterior
samples of node heights from these analyses were used to calculate
posterior probabilities of divergences occurring from 50 to 20 Ma.
Details of specimens used and methods are provided in the electronic
supplementary material.
3. RESULTS
Phylogenetic analyses of the combined gekkonid dataset
recover several strongly supported groups (figure 2a).
Analyses support an arboreal Gekko group comprising
the genera Gekko, Lepidodactylus, Pseudogekko, Lupero-
saurus and Ptychozoon. Monophyly of each constituent
genus of the Gekko group is not supported—as in recently
published analyses, sampled Ptychozoon species are
embedded within Gekko [17], but we also recover
Luperosaurus and Pseudogekko as embedded in Lepidodac-
tylus. There is significant phylogenetic structure in the
Gekko/Ptychozoon subgroup; Ptychozoon is most closely
related to species in the Gekko vittatus and G. petricolus
groups. In the Lepidodactylus/Luperosaurus/Pseudogekko
subgroup, patterns of relationships are not as well estab-
lished. There is strong support for the grouping as a
whole, and for Luperosaurus being most closely related
to the Melanesian species Lepidodactylus guppyi and
L. vanuatuensis. Relationships of Cosymbotus to other
Hemidactylus, as well as relationships among other
sampled gekkotan taxa, conform to the results of
previous studies [21] and are not discussed further.
Evolutionary relationships in the Pteromyini, Chrysopelea,
Biol. Lett. (2012)
Draco and Rhacophorus analyses also conform to results of
previous studies (see the electronic supplementary
material, figures S1–S4).

Molecular clock analyses support Cainozoic stem
ages for all Asian gliding vertebrates save Dermoptera
(figure 2). Among geckos, Ptychozoon is the earliest
diverging gliding genus, diverging from Gekko 49
(57–41) Ma. Of the remaining non-gekkotan gliders,
Draco diverged from Japalura during a similar timeframe
50 (61–40 Ma). Credibility intervals of stem ages for all
other Asian gliding vertebrates do not predate 50 Ma.
Posterior probabilities of stem ages (figure 2b) show
that only the Dermoptera stem age falls significantly
outside the 50–20 Ma interval, and it is most probable
that six of eight stem ages fall within the 50–20 Ma
interval (figure 2c).
4. DISCUSSION
The results of our timing analyses broadly overlap the
period in which dipterocarps dispersed into Southeast
Asia and came to dominate the large-tree flora.
Median stem ages for six of eight gliding groups fall
within this period. The two exceptions, Dermoptera
and Draco, both have potential caveats. The long time
period (more than 65 myr) between the dermopteran/
primate split and divergence between living dermopter-
ans suggests that in this group stem age is not a reliable
time estimate for the evolution of gliding morphology.
Meanwhile, Draco belongs to an ancestrally Indian
group [22], and thus probably evolved in the presence
of dipterocarp forest. Among other gliding groups,
differences in stem ages may partly result from distinct
biogeographic histories. For example, among geckos,
Ptychozoon, the oldest genus, is deeply nested within
Gekko, whose centre of diversity is Southeast Asia.
By contrast, Lepidodactylus (in which Luperosaurus is
nested) has its centre of diversity in Melanesia, and
most Hemidactylus (in which Cosymbotus is nested)
occur in relatively arid habitats stretching from East
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Figure 2. (a) Timetrees of gliding geckos and other vertebrates. The gecko timetree is based on the combined dataset, with

support values (ML bootstrap/Bayesian PP/MP bootstrap) and 95% credibility intervals of age indicated for key nodes.
For other vertebrates, schematics of stem and crown ages of gliding taxa are depicted, with 95% credibility intervals of age;
corresponding full timetrees are in the electronic supplementary material. (b) Posterior probability distributions for gliding ver-
tebrate stem ages falling inside the 50–20 Ma temporal interval. (c) Posterior probabilities for the number of gliding vertebrate
stem ages (of eight total) falling within the 50–20 Ma temporal interval.
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Africa to India. In both cases, the evolution of gliding
morphologies seems to have quickly followed dispersal
into Southeast Asian rainforests. It is possible that
Cosymbotus and Luperosaurus evolved gliding mor-
phologies in areas of Southeast Asia not occupied by
Ptychozoon, occupying an empty niche, but our
Biol. Lett. (2012)
sampling lacks the necessary comprehensiveness requi-
red to estimate such fine-scale biogeographic patterns.

While our results are consistent with a temporal
overlap between the evolution of gliding Southeast
Asian vertebrates and development of dipterocarp
forests, they cannot differentiate between either of the
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dipterocarp-related hypotheses (tree height or food
patchiness). Likewise, we do not discount alternative
evolutionary pressures, such as to promote crypsis, as
having had no effect in the evolution of body flaps and
webbing in Asian gliding vertebrates [4]. Instead, we sus-
pect that a complex interplay among evolutionary
pressures, morphological structures and behaviours has
contributed to the evolution of gliding morphologies in
Southeast Asian geckos and other vertebrates, and
based on temporal patterns evident from our analyses,
the development of dipterocarp forests cannot be
discounted as having played a role.

Our study has additional implications beyond testing
the tenability of the dipterocarp/gliding correlation.
Most notably, our phylogenetic results highlight the
frequency with which morphologically aberrant taxa
are embedded within radiations of more conservative
species. Just within geckos, many similar findings have
been made in recent years (e.g. Palmatogecko in
Pachydactylus [23]). These results should serve as a
caution against assigning distinct taxonomic status or
assuming ancient origins for species exhibiting
morphological specializations or novelties.
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