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Two novel isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B (MIC, 8 �g ml�1) were found to be
ERG2 mutants, wherein �8-sterol intermediates comprised >90% of the total cellular sterol fraction. Both harbored an altera-
tion at Thr121 in ERG2; the corresponding residue (Thr119) in Saccharomyces cerevisiae is essential for sterol �8-�7 isomeriza-
tion. This constitutes the first report of C. glabrata harboring mutations in ERG2 and exhibiting reduced sensitivity to ampho-
tericin B.

Amphotericin B (AMB) is one of a limited number of anti-
fungals that are available for the treatment of azole-resis-

tant fungi (8). In contrast to azoles that target ergosterol bio-
synthesis through inhibition of sterol 14�-demethylase activity
(ERG11) (Fig. 1), polyenes intercalate directly with membrane
ergosterol (9), forming channels that leak monovalent ions
(K�, Na�, H�, Cl�), causing cell lysis (2). Aside from solubility
and host toxicity issues, the utility of amphotericin B is com-
promised by the emergence of strains with reduced sensitivity
(12, 29) and by species that are intrinsically less susceptible
(Aspergillus flavus, Aspergillus terreus [25], Candida lusitaniae
[22], Pneumocystis jirovecii [1]).

Unlike mechanisms governing azole resistance (drug efflux
[5], altered ERG11 [17], and mutations in ERG3 [13]), those that
influence the sensitivity of pathogenic fungi to polyenes are poorly
understood. Polyene susceptibility is related to fungal sterol com-
position and changes that result from ERG gene mutations (Fig.
1). Decreased sensitivity to polyenes is documented in clinical
isolates of Candida albicans with alterations in ERG3 (13, 19),
ERG11 (26), and ERG5 (18). It has also been reported in an ERG11
gene deletion strain of Candida glabrata (7) and in isolates har-
boring mutations in ERG1 (30), ERG6 (31, 32), and ERG11 (10).
We previously reported a clinical isolate of Cryptococcus neofor-
mans with defective C8-isomerase activity, exhibiting reduced
sensitivity to polyenes (14). Here we describe two novel clinical
isolates of C. glabrata (CG852 and CG872) that showed reduced
susceptibility to amphotericin B and harbored ERG2 mutations.

Strains in the present study were obtained from the European
Resistance Fungal Network (EURESFUN; EU FP6 project) collec-
tion, established for the investigation of antifungal resistance
mechanisms (10, 18, 19). CG852 and CG872 were isolated from
separate patients receiving treatment for fungal sepsis following
organ transplantation and maintained with previously reported
comparator strains (10) at 37°C on yeast extract peptone dextrose
(YEPD). All were assayed for susceptibility to fluconazole (FLC),
voriconazole (VRC), and amphotericin B (AMB) using standard
broth dilution methodology (4) in the presence and absence of
FK506, a putative multidrug efflux inhibitor (18) (Table 1). Gas
chromatography-mass spectrometry (18, 19) was used to analyze
sterol composition (Table 2 and Fig. 2) before and after the treat-
ment of isolates with final concentrations of FLC and VRC equiv-

alent to half the minimum required for growth inhibition (MIC �
0.5). ERG11 and ERG2 sequences were amplified from genomic
DNA (single-colony extraction; 0.2% SDS, 90°C, 10 min) using
the following gene-specific forward (F) and reverse (R) primers:
ERG11F, 5=-ATGTCCACTGAAAACACT-3=; ERG11R, 5=-CTAG
TACTTTTGTTCTGG-3=; ERG2F, 5=-ATGAAGTTCTTTATCAA
T-3=; ERG2R, 5=-TTAGAACTTTTGGTTTTG-3=. PCR products
were translated to amino acid sequences and aligned to C. glabrata
ERG11 and ERG2 reference proteins (GenBank accession num-
bers P50859 and Q6FKL1, respectively). To verify the significance
of amino acid substitutions detected in CG44, CG388, CG852,
CG872, and CG1012 (Fig. 3), ERG2 genes from additional
EURESFUN isolates exhibiting a wild-type sterol composition
(CG25, CG26, CG27, CG29, and CG30) were sequenced.

Azole treatment of C. glabrata is known to be compromised by
the activity of drug efflux mechanisms (5, 27), and our data (Table
1; efflux-inhibited MIC values) support this knowledge. Similarly,
the growth of all isolates in the presence of amphotericin B at �2
�g ml�1 also supports findings from other studies (6, 21, 23)
which suggest that C. glabrata is inherently less sensitive to poly-
enes than other fungi. It is noteworthy that FK506 reduced the
azole MICs of CG852 and CG872 far more than other strains
(Table 1); in the absence of compensatory drug efflux mecha-
nisms, their altered sterol content (Table 2; �8-sterol intermedi-
ates were �90% of the total) may affect membrane permeability
to azoles and/or azole transport. The accumulation of ergosta-
5,8,22-trienol in CG852 and CG872 (Fig. 2B) may also account for
their reduced sensitivity to amphotericin B; wild-type comparator
strains comprising �80% ergosterol, the primary target of poly-
enes, were 4-fold more sensitive (Table 1).

No alterations in ERG11 protein sequences were detected in
any of the study isolates; this is consistent with sterol data (Fig. 2).
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Briefly, the accumulation of 14�-methylated sterols following az-
ole treatment with FLC or VRC (Table 2) indicates classical azole
inhibition of sterol 14�-demethylase activity (Fig. 1). Conversely,
several amino acid changes (Fig. 3) were identified in ERG2 pro-

tein translations and were as follows: (i) I207V, all isolates; (ii)
L60F, present only in CG852 and CG29; (iii) T121V, CG852 only;
and (iv) T121I, CG872 only. That replacement of Thr121 with
valine or isoleucine (CG852 and CG872, respectively) impaired
ERG2 function (Table 2; trace amounts of ergosterol) is consistent
with a prior investigation of the equivalent threonine residues in
human emopamil binding protein (Thr126), Zea mays 8,7SI
(Thr124), and Saccharomyces cerevisiae ERG2 (Thr119); all are re-
quired for sterol �8-�7 isomerization (20, 24). It has been postu-
lated that this threonine residue might form a hydrogen bond with
the 3-hydroxy group of the sterol substrate, locating it in the active
site of the isomerase protein (24).

Given that ERG2 is not the target of azoles or polyenes, the
factors that resulted in the selection of ERG2 mutations in CG852
and CG872 are of interest. Polyene-resistant Candida can be se-
lected using amphotericin B (3), and polyene-resistant strains of
Ustilago maydis possessing defective ERG2 have also been re-

FIG 1 Schematic representation of the ergosterol biosynthetic pathway in C. glabrata. (A) Sterol intermediates (boxed with a single line) that accumulate due to
perturbations in C8-isomerase (ERG2 protein) activity. (B) Sterol intermediates that accumulate following azole inhibition of sterol 14�-demethylase (ERG11
protein). The fungistatic sterol 14�-methylergosta-8,24(28)-dien-3�,6�-diol is highlighted (boxed with a double line). Broken arrows, multiple enzymatic steps;
unbroken arrows, single enzymatic step. ERG3, ERG4, ERG5, ERG6, ERG25, ERG26, and ERG27 encode C5-desaturase, C24-reductase, C22-desaturase, C24-
methyl transferase, C4-methyloxidase, C4-decarboxylase, and C3-ketoreductase, respectively.

TABLE 1 MIC data determined for fluconazole and voriconazole (with
or without 10 �M FK506) and amphotericin Ba

Isolateb

MIC (�g ml�1)

CG44 CG388 CG1012 CG852 CG872

FLC 64 64 64 128 64
FLC � FK506 32 32 32 8 4
VRC 2 2 2 2 1
VRC � FK506 0.5 0.5 0.5 0.125 0.0625
AMB 2 2 2 8 8
a FK506 is a putative multidrug efflux inhibitor.
b Additional isolates (CG25, CG26, CG27, CG29, and CG30) selected for ERG2 sequencing
exhibited the same azole and polyene sensitivity as CG44, CG388, and CG1012.
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ported (11). There is some evidence that clinical prophylactic use
of polyenes may select for resistant fungi (15); thus, it is possible
that such pressure resulted in the selection of mutations occurring
in the ERG2 genes of CG852 and CG872. Interestingly, yeast ERG2

binds several clinically relevant drugs (e.g., haloperidol, opipra-
mol, and pentazocine), and novel compounds developed for other
receptor systems also interact (16). Although specific information
regarding the treatment history of the patients from whom CG852

TABLE 2 Sterol (%) composition of untreated, fluconazole-treated, or voriconazole-treated isolates of C. glabrata

Sterol

% of each sterol in the total sterol composition of each isolatea

Untreated FLC-treated VRC-treated

44 388 1012 852 872 44 388 1012 852 872 44 388 1012 852 872

Ergosta-5,8,22-trienol 59.7 51.8 8.4 14.3 7.3 17.3
Zymosterol 3.2 3.1 5.0
Ergosta-8,22-dienol 4.4 4.5 1.9
Ergosterol 75.5 82.7 77.6 4.1 4.2 50.0 63.8 40.0 43.5 60.1 37.9
Ergosta-7,22-dienol 1.5 1.1 1.7 1.1 1.7 1.6
Fecosterol 2.6 2.6 1.7 11.8 13.9 4.0 7.2
4,4 dimethyl cholesta-8,24-dienol 3.4 1.4 6.6
Ergosta-8-enol 0.5 0.6 0.4 17.6 22.4
Ergosta-5,7-dienol 4.3 3.0 3.4
Episterol 2.2 1.4 2.3
Ergosta-7-enol 0.5 0.7
14�-methyl-3,6-diolb 6.4 10.0 29.7 60.4 11.4 7.4 15.6 31.6 51.5
Lanosterol/obtusifoliolc 3.6 2.5 3.3 50.0 29.8 50.0 52.2 21.2 45.2 32.5 46.5 47.3 31.2
Unknown 1.7 0.6 0.9 1.3 1.5 0.7 0.8
Dimethyl zymosterol 4.3 2.4 2.9

a The percentage of the most abundant sterol in each isolate is shown in bold. All cultures were treated with final azole concentrations equivalent to 0.5 times the MIC. Additional
isolates, CG25, CG26, CG27, CG29, and CG30, all exhibited wild-type sterol composition (�80% ergosterol).
b Fungistatic 14�-methylergosta-8,24(28)-dien-3�,6�-diol.
c 14�-methylated sterols with identical molecular weight (MW) and retention time.

FIG 2 Typical sterol chromatograms for wild-type (WT) sterol (A) and ERG2 mutant (B) isolates following growth on YEPD medium (bold traces) and after treatment
with an FLC concentration equivalent to 0.8 times the MIC (thin traces). Sterol intermediates are as follows: 1, ergosterol (ergosta-5,7,22-trienol); 2, 14�-methylergosta-
8,24(28)-dien-3�,6�-diol; 3, lanosterol; 4, ergosta-5,8,22-trienol; 5, ergosta-8,22-dienol; 6, fecosterol (ergosta-8,24[28]-dienol); 7, ergosta-8-enol.
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and CG872 were isolated is limited, both were organ transplant
recipients receiving immunosuppressive drugs. A novel immuno-
suppressant (SR 31747) has been shown to inhibit ERG2 activity
in S. cerevisiae (28), and it is tempting to speculate that ERG2
mutations may be selected for by unexpected or hitherto unfore-
seen ligands.
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