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Structure of Hepatitis C Virus Envelope Glycoprotein E2 Antigenic
Site 412 to 423 in Complex with Antibody AP33
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We have determined the crystal structure of the broadly neutralizing antibody (bnAb) AP33, bound to a peptide corre-
sponding to hepatitis C virus (HCV) E2 envelope glycoprotein antigenic site 412 to 423. Comparison with bnAb HCV1

bound to the same epitope reveals a different angle of approach to the antigen by bnAb AP33 and slight variation in its
B-hairpin conformation of the epitope. These structures establish two different modes of binding to E2 that antibodies

adopt to neutralize diverse HCV.

Structural characterization of conserved neutralizing epitopes
provides critical information for the design of vaccines to
counteract genetic diversity of pathogens (2, 4, 7). The E2 an-
tigenic site 412 to 423 is a highly conserved neutralizing de-
termi-nant of HCV and is a prime target for vaccine design (1,
9, 11). We recently determined the crystal structure of this
conserved site in complex with a human broadly neutralizing
antibody (bnAb), HCV1 (6). The antibody-bound epitope
forms a B-hairpin displaying a hydrophilic face and a hydro-
phobic face on opposing sides of the hairpin. The antibody
predominantly interacts with the E2 residues Leu413 and
Trp420 on the hydrophobic face of the epitope that are nearly
100% conserved (1, 6). Nevertheless, HCV can escape this an-
tibody through mutations at other positions on the binding
face, e.g., N415K (in ~1% of circulating HCV) (1, 6).

To further characterize this important neutralizing determi-
nant, we report a second structure of this antigenic site in complex
with the bnAb AP33 (8, 9). The murine monoclonal antibody
(MAD) AP33 was discovered by Patel and coworkers (8), and the
antibody was found to have broad neutralizing activity to diverse
HCV isolates (9). In this study, the antibody was expressed as a
chimeric mouse-human antibody to facilitate expression and pu-
rification (see Fig. S1 in the supplemental material). The antibody
epitope has been mapped and extensively studied by overlapping
peptide scanning (8), phage-display mimotope panning (11), se-
lection of in vitro escape mutants (3, 5), and site-directed mu-
tagenesis (3). The E2 mutations N415Y, N415D, N417S, and
G418D enable viral escape from neutralization by the MAb AP33
(3,5).

The crystal structure reveals that, similar to the binding site
for the bnAb HCV1, the AP33 epitope also forms a B-hairpin
sandwiched between the heavy chain (HC) and light chain (LC)
of the antibody (Fig. 1A) (detailed methods are provided in the
supplemental material). Most of the binding is mediated by
hydrophobic interactions along the hydrophobic face of the
epitope (Fig. 1B; see also Table S2 in the supplemental mate-
rial). A number of hydrogen bonds also stabilize the interac-
tion, mostly between side chains on the Fab and main chain of
the peptide (Fig. 1C; see also Table S4 in the supplemental
material). Overall, there are many similarities between the
AP33 and HCV1 epitopes (6). The same type of B-turn (typel’)
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is found in both structures, and both antibodies bind the hy-
drophobic face of the B-hairpin (Fig. 1B; see also Table S2 in
the supplemental material). However, the anti-parallel B-sheet
in the B-hairpin in the AP33 epitope splays apart at the end
distal from the B-turn, resulting in only 4 intrapeptide hydro-
gen bonds stabilizing the hairpin instead of 5 found in the
HCV1 epitope (Fig. 1D) (6). Accordingly, AP33 buries less
surface area around the termini than HCV1 (Fig. 2D).

A direct comparison between AP33 and HCV1 structures
reveals that the antibodies approach this antigenic site from
different directions. When the epitopes are structurally super-
posed, the antibodies bind with a 22° difference in the angle of
approach (Fig. 2A). Although both peptide epitopes bind in the
cleft between Vy; and V of the antibodies (Fig. 2B, top), in the
HCV1 structure, the tip of the B-hairpin points toward V
(158-A2 buried surface), while the majority of the B-hairpin
interacts with V; (300 A%) (Fig. 2B, bottom). In contrast, V;
and Vi of AP33 interact almost equally with the N- and C-ter-
minal B-strands of the antigen (242 A* and 273 A?, respec-
tively). This difference in V| usage is highlighted when the
backbone atoms of the epitopes are superposed: Gln412-
Asn417, which interact with Vy; of both AP33 and HCV1, are
highly similar between the two structures, while differences are
more apparent in Ser419-Asn423, which interact mainly with
V. of AP33 (Fig. 2C and F).

Despite these differences, it is clear that two independent
antibody selection and maturation pathways arrived at a simi-
lar solution to engage the hydrophobic B-hairpin epitope: both
events rely on hydrophobic interactions along the cleft between
V. and V. Both antibodies use primarily their side chains for
interactions (Fig. 2D); coincidentally, the relatively few back-
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FIG 1 Crystal structure of the MAb AP33 in complex with its HCV E2 epitope. (A) The overall structure of the AP33 complex is shown with a cartoon
representation. The peptide epitope (red) is bound between the heavy (dark gray) and light (light gray) chains of the Fab. (B) The adaptive Poisson-
Boltzmann solver (APBS; http://www.poissonboltzmann.org/apbs/) was used to calculate the surface potential across the solvent-accessible surfaces of
both the paratope (top) and the epitope (bottom) (surface potential from —3 kT/e [red] to 3 kT/e [blue] for comparison with the HCV1 antibody
interaction [6]). For the peptide, the surface potential is shown looking from above the antibody (top) and for the peptide epitope (middle) viewed
from the paratope and a 180° rotation below (bottom). (C) Residues of the epitope that form hydrogen bonds with the epitope are shown with a
ball-and-stick representation. Hydrogen bonds are displayed as dashed lines. (D) Backbone hydrogen bonding that stabilizes the B-hairpin of the epitope

is shown.

bone interactions are mediated by their L3 loops (Fig. 2E). In
both structures, a hydrogen bond is formed with the Gly418 tip
of the peptide (Fig. 1C) and the major hydrophobic interac-
tions are with Leu413 and Trp420 (see Tables S2 and S3 in the
supplemental material). These interactions define the essential
features of this antigenic site for broad neutralization of HCV.
Interestingly, these similar solutions were realized using
very different antibody complementarity-determining region
(CDR) loops (Fig. 2E and F). For the MAb AP33, all CDR loops
except L2 are involved in the interactions (Fig. 2E). For the
MADb HCV1, CDR H2, H3, and L3 loops account for most
interactions, although framework region (FR) 2 and L1 also
contribute to some interactions (Fig. 2E). Also, MAb HCV1
binding relies on an insertion in CDR H3 that is not present in
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MADb AP33 (Fig. 2F). The lack of CDR L2 involvement in anti-
gen binding for both MAbs is not unusual for small-molecule
or linear peptide interactions (10, 12). The MAb AP33, on the
other hand, has alonger L1, with inserted residues immediately
upstream of a contacting residue in the CDR L1 loop of the
paratope (Fig. 2F).

The structure also helps explain how different mutations
escape the MAb AP33. In addition to hydrophobic interactions
with E2 Leu413 and Trp420, binding of the MAb AP33 also
requires hydrogen bonding to Asn415 and Gly418 (Fig. 1C and
3A), thus explaining some of the known escape mutants of the
antibody (N415Y and N415D) (3, 5). AP33 also interacts with
Gly418 and may not accommodate substitutions with bulkier
side chains, such as those for the known escape mutant G418D.
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FIG 2 Comparison of the MAb AP33 and HCV1 binding to the antigenic region. (A) Different angles of approach for AP33 and HCV1 are shown, with
the superposed antigenic regions as flat strands and the antibodies as Ca ribbon traces. The angle was calculated between the V-V, pseudo 2-fold axes
in each Fab. (B) The orientations of the bound antigenic region in the AP33 (top) and HCV1 (bottom) structures are shown as ribbons relative to the
combining regions. The antibody is presented as a transparent Connelly molecular surface, with the CDR loops shown as ribbons. (C) The backbone
atoms of the antigenic regions in the AP33 and HCV1 structures were superimposed and are shown with a ball-and-stick representation. Larger
differences are observed on the C-terminal side, which interacts with different portions of the antibodies in the two structures. (D) Burial of residues on
the E2 epitope by AP33 and HCV1. (E) Side-by-side comparison of CDR loop usage of AP33 (left) and HCV1 (right), shown by buried surface area. (F)
All contacts between the epitope and the CDR loops of AP33 and HCV1 are shown. The sequences of the CDR loops are aligned, and the specific E2
residues interacting with them are highlighted in red (AP33) and green (HCV1).

Interestingly, the antibody forms two hydrogen bonds with
both the main chain and the side chain of Asn415 (Fig. 1C; see also
Table S4 in the supplemental material), whereas only one hydrogen
bond to the main chain of that residue is found in the HCV1 structure
(6). Consequently, the MAb AP33 does not bind mutants with
Asn415 replaced by any of the residues found in natural variants (Fig.
3B) and does not neutralize infectious pseudotype virus harboring
these mutations, in contrast to HCV1 (Fig. 3D) (6). In addition, an
E655G mutation has been reported to help the virus to escape the
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MADb AP33 (5). E2 Glu655 is found in ~74% of known HCV isolates,
and the E655G mutation does not appear to be directly involved in
forming the AP33 epitope (Fig. 3C). Instead, the mutation enhances
viral infectivity (Fig. 3D), which may help compensate for reduced
viral infectivity due to mutations in the conserved AP33 epitope (5).

The comparative study of two independent structures of the
conserved E2 antigenic site 412 to 423 further defines it as a
prime vaccine target and demonstrates how antibodies of dif-
ferent genetic origins adopt similar solutions to recognizing
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FIG 3 Escape mutants of MAb AP33. Binding of MAb AP33 to alanine scan-
ning mutants of E2 region 412 to 423 (A) or mutants with a substitution at
position 415 (B) or 655 (C). (D) Resistance to MAb AP33 by mutations leading
to loss of binding. The antibody used in this study (huAP33) is a chimeric form
of the MAD, with the murine variable domains fused to human kappa LC and
IgG1 HC constant regions. Functional verification of this chimeric MAbD is
provided in Fig. S1 in the supplemental material.

this type-I" B-hairpin on E2 for neutralization. The structures
provide useful information for the design of immunogens that
will optimally present this site of vulnerability. An immunogen
directing neutralizing antibody responses to this conserved an-
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tigenic site may form the basis of a broadly effective HCV vac-
cine.

Protein structure accession number. The atomic coordinates
have been deposited in the Protein Data Bank under PBD identi-
fication (ID) code 4G6A.
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