
Proc. Nati. Acad. Sci. USA
Vol: 77, No. 7, pp. 4048-4050, July 1980
Biophysics

Small phospholipid vesicles: Internal pressure, surface tension, and
surface free energy

(phospholipid bilayer)

STEPHEN H. WHITE
Department of Physiology and Biophysics, University of California, Irvine, California 92717

Communicated by John A. Clements, April 25,1980

ABSTRACT Tanford [Tanford, C. (1979) Proc. NatL Acad.
Sci. USA 76, 3318-33191 used thermodynamic arguments to
show that the pressure difference across the bilayer of small
phospholipid vesicles must be zero. This paper analyzes the
implications of this conclusion in terms of Laplace's law and
the basic thermodynamics of interfaces. In its usual form, La-
place's law is of questionable value for the vesicle. If the vesicle
is in a state of metastable equilibrium, the surface free energy
must be minimal with respect to several thermodynamic vari-
ables; the condition (OF/OA) = 0 is not adequate by itself.

Tanford (1) has raised a question of fundamental importance
to understanding the physical chemistry of small phospholipid
vesicles of the type first described by Huang (2). He points out
that Laplace's law requires the existence of a pressure difference
Pi - P0 across a curved surface given by

Pi -Po =2-ylRs[1
where y is the surface tension and R, is the radius of curvature
of the surface. He further notes that the vesicle is permeable
to water and resides in a huge excess of water. At equilibrium,
the chemical potential of water in the interior cavity of the
vesicle must, therefore, be the same as that outside the vesicle.
From basic thermodynamics,

RTlna' + 3P idP = RTlnaw [2]

where at and a , are the activities of water inside and outside
the vesicle and iU is the partial molar volume of water; a' cannot
be different from a O in the absence of a solute. It follows that
Pi = PO if the vesicle is permeable to water. Tanford attempted
to reconcile this important conclusion with Laplace's law by
making assumptions about the surface tensions of the mono-
layers of the vesicle bilayer. He concluded that either both of
the monolayer surface tensions must be zero or that one must
be negative while the other is positive. He further suggested that
the dynamics of vesicle formation establish which situation
prevails.

Tanford's analysis of the vesicle surface tension rests upon
two assumptions given that Pi = PO. The first is that Laplace's
law in the form of Eq. 1 is applicable to the phospholipid vesicle.
The second is that the forces stabilizing the vesicle act to min-
imize its surface tension ('y). This last assumption supposedly
follows from the definition of y as (OF/OA)TyV, where F is the
free energy and A is surface area. The purpose of this paper is
to examine the validity of these two assumptions. I will first
discuss the nature of surface tension and its relation to the
mechanical equilibrium of a curved surface as stated by La-
place's law. I will then present a simple thermodynamic analysis
of the vesicle.

SURFACE TENSION AND LAPLACE'S LAW
Despite the fact that surfaces consist of thin layers a few mol-
ecules thick, surface tension is a macroscopic quantity because
it is determined by some macroscopic means, such as a mea-
surement of the force exerted by a surface phase on a wire
frame or a platinum plate. Surface tension can be defined
thermodynamically as (OF/OA)TV, but a more useful definition
for my purposes is that of Bakker (3, 4), given by

e = f P2[P(Z) - PIZ)JdZ. [31

In this equation, the Z axis is normal to the surface layer, and
the integration limits Z1 and Z2 include the entire surface phase;
,y arises because the layer is anisotropic. Consequently, the
pressure within the bilayer is properly a tensor. The pressure
at any point Z has been resolved in Eq. 3 into two components:
PN(Z) normal to the surface and Pi<Z) tangential to the surface.
The molecular details of the surface tension are contained
within PN and PT; y has units of force per unit length and
represents an integrated property of the whole surface.
Now consider a planar bilayer. The pressure at each side of

the surface will be P0 (atmospheric). If the surface is in me-
chanical equilibrium, PN(Z) = constant = P0, and Eq. 3 be-
comes

[4]a= [Po - P1(Z)]dZ.
Several points should be made here. First, the surface can be
in equilibrium without y = (OF/OA)TV = 0. This will be shown
later. Second, even if y = 0, PT(Z) could vary in many different
ways, the simplest being PT = PO. Eq. 4 simply demands that
the integrand be zero on the average for y = 0. Third, any at-
tempt to attribute separate surface tensions to the monolayers
of the bilayer as Tanford has done is purely arbitrary and not
really meaningful, because y is a macroscopic quantity.

Tanford defined the vesicle as a three-phase system consisting
of (a) external solution, (b) phospholipid bilayer, and (c) internal
solution, and he attributed surface tension yab to the outer
monolayer and ybc to the inner one. Tanford concluded from
Laplace's law that two cases were possible: Either 'yab = ybc =
0 or Yab/Ro = - ybc/R1 where R0 and R1 are the outer and
inner radii of the vesicle. What he has done in effect, is to spe-
cify two ways in which Pa(Z) may vary to cause the macroscopic
-y to be zero. There are many other possibilities, however.

Tanford used Laplace's law to arrive at conclusions about Yab
and ybc. However, Laplace's law is usually applied to macro-
scopic systems such as soap bubbles, air bubbles in liquids, and
droplets of liquid in air. In all these systems, the radius of cur-
vature of the surface is large compared to molecular dimensions.
Whether or not Laplace's law can be applied as written in Eq.
1 to vesicles is problematical, since the radius of curvature is of
molecular dimensions and about the same size as the thickness
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of the surface. The thickness of the surface of a soap bubble is
negligible compared to the radius; the surface can consequently
be considered as two-dimensional with an easily measured and
understood macroscopic surface tension A.
The vesicle is a microscopic system; its macroscopic surface

tension cannot be measured, even though it can be defined
formally as in Eq. 3. That is, y could be calculated if the pres-
sure tensor for the bilayer of the vesicle were known. Laplace's
law presents additional difficulties, because the thickness of the
bilayer cannot be ignored. One approach to this problem is to
divide the surface arbitrarily into a series of nested contiguous
surfaces and ascribe a microscopic surface tension to each one.
The condition of mechanical equilibrium for each microscopic
surface is Laplace's law. Fig. 1 shows a schematic drawing of
a vesicle in which a microscopic surface aq of thickness r1 - r
is shown. rj and ri are chosen so that rj-r << rj. By applying
Eq. 3, the microscopic surface tension rij is defined as

ryj= [PN(r) - Pi[r)]dr. [5]

For mechanical equilibrium, Laplace's law requires

PN(rd)-PN(rj) = A. [6]

Eq. 6 is formally a complete solution, but without a detailed
knowledge of PN and PT, it is useless. Tanford proposes that the
pressure in the aqueous cavity of the vesicle is the same as
outside the vesicle. This places no strictures upon the value of
the macroscopic tension of the bilayer. The surface tension, y,
can be zero or nonzero as calculated from Eq. 3; Eqs. 5 and 6
could be satisfied in either case. Thus, in considering the vesicle,
one has no way of knowing whether y is zero or not. It would

be useful and interesting to know the value of By for vesicles, but
its exact value is not necessary for understanding the vesicles'
thermodynamics.

THERMODYNAMIC ANALYSIS OF THE
VESICLE

I assume that the phospholipid vesicle is at least in a metastable
statp of equilibrium in the sense used by Guggenheim (5). Since
vesicles have long life times, this is a reasonable assumption. In
the following analysis, one should keep clearly in mind that the
bilayer has a definite thickness and is not two dimensional. The
bilayer is perhaps best described as a molecular bulk phase. A
statement by Guggenheim (5) should also be kept in mind:
"Since the surface layer a is a material system with a well-
defined volume and material content, its thermodynamic
properties require no special definition. We may speak of its
temperature, Helmholtz function, composition, and so on just
as for a homogeneous bulk phase. The only functions that call
for special comment are the pressure and the interfacial ten-
sion.

Consider the Helmholtz surface free energy (FO) of the
"surface" which must be distinguished from the surface tension
oy. The differential of Fo is given by Guggenheim (5) as

dF = -SOdT-PdV + ydA + Maui4dn
i

[7]

where So is the surface entropy, A is the area, and V' is the
volume of the surface. The "surface" should be considered as
consisting of the phospholipid plus whatever water (6) associates
with it. Since the surface has two components, water (w) and
lipid (e), Eq. 7 may be written at constant temperature as

dF' = -PdV'7 + ydA + A fdno + ./4dno.

FIG. 1. Schematic drawing of a phospholipid vesicle. The mac-

roscopic surface tension y will be given by Eq. 5 in which ri = Ri and
rj = Ro. Laplace's law, as stated by Eq. 1, is of questionable validity,
since R0 - Ri is the same order of magnitude as Ri or R, A condition
of mechanical equilibrium for the vesicle, Eq. 6, based on Laplace's
law can be defined by considering a microscopic surface aij whose
tension is given by Eq. 5. The formulation does not allow one to draw
conclusions about the value of y without knowing the pressure tensor
of the bilayer. It is possible for -y F 0, even though the hydrostatic
pressure in the cavity of the vesicle may be the same as the pressure

outside the vesicle.

[8]

At equilibrium, dFa = 0. Therefore, V, Ay, A, c4, n,, and nfe
are interrelated and must adjust themselves in such a way that
dF7 = 0. This explains the differences in packing and areas per
molecule observed in vesicles (7, 8). The particular size of the
vesicle, no doubt, is also a result of this fact. P and ju4 are con-
stants, because the external pressure can be fixed and g4 must
have the value of bulk water. Thus, if the vesicle is at equilib-
rium, the composition of the bilayer and the molecular inter-
actions of the components must be such that dF'7 = 0.

Tanford (1) assumes that FO minimizes itself only with re-
spect to changes in A. This leads to the conclusion that the
surface tension of a planar bilayer must always be zero, since
y = (F/OA )TV. This is clearly unjustified by Eq. 8 and is not
observed experimentally (9). Tanford used the principle of
opposing forces (10), which requires an optimum area per
molecule in bilayers. He concluded that -y would be positive
when A exceeds its optimum value and negative when A is less
than its optimum value. This would be reasonable if -y repre-
sented the total free energy of the surface and A were the only
variable to be adjusted in minimizing free energy. It is clear that
ydA represents only part of the free energy, and it adjusts itself
relative to other terms to help dF'7 = 0. Taking (OF/dA)TV =
0 as the statement of equilibrium is incorrect.

Eq. 8 under equilibrium conditions does not require the total
surface free energy F" to be zero; rather, it requires only that
it be minimized. Indeed, with the vesicle being spherical, F"
is probably not zero because the sphere is the geometric shape
that encloses a given volume with the smallest surface area. The
vesicle is spherical to insure the lowest possible value of total
free energy given by F".
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DISCUSSION
The validity of Laplace's law as stated in Eq. 1 is questionable
for phospholipid vesicles. Eqs. 5 and 6 are more appropriate;
but without knowing the pressure tensor of the bilayer, we can

come to no conclusions about the value of y. We cannot rule
out the possibility that oy 0, even though the hydrostatic
pressures of the water inside and outside the vesicle are equal.
On the other hand, we cannot rule out the possibility that y is
zero.

Extreme care must be exercised in using the principle of
opposing forces (10), which focuses on free energy changes with
respect to changes in area per molecule. Many other variables
are important in determining the free energy of the system. Eq.
8 includes all of the relevant thermodynamic variables-not
the least of which is the chemical potential of the lipid, which
must also be considered in the principle of opposing forces.
Even though y has units of energy per unit area, it is best not
to view it solely from the point of view of surface free energy.
Rather, it should be treated as a force making a special addition
to the free energy of the "PdV type". Guggenheim (5) notes
that all of the equations of thermodynamics for bulk systems
can be applied to surface systems if the PdV term is replaced
by PdV - ydA; y is often equated to surface free energy, but
this is properly done only for pure liquids (11).

Vesicles have been assumed to be metastable in this paper,

because they apparently must be produced by sonication (2)
or some other energy-requiring procedure (12-14). An analysis
similar to that presented here can also be applied to the multi-
lamellar liposomes that form spontaneously when phospholipids
are placed in water above their gel-to-liquid crystal transition
temperature. Values of Au, Va, n', n , F ', and By can be dif-
ferent from the values for vesicles, even though both structures
are acting to minimize Fo. If Fa for the vesicle is greater than
FU for the liposomes, then eventually the vesicles must condense
into liposomes. The work of Suurkuusk et al. (15) suggests that
this is the case.
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