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B
abies are faced at birth with
a buzzing blooming confusion of
visual stimuli (1). The set of all
possible images is truly enormous

(2), and simple calculations suggest that
only a small fraction of all possible images
have ever been seen over the entire history
and prehistory of mankind. Moreover, the
world consists of an estimated number of
30,000 objects (3), which occur in more
than 1,000 different types of scenes. How
can an infant start making sense of the
visual world?
Detailed models of how infants learn to

understand images and the balance be-
tween nature and nurture are currently
lacking. Studies suggest that visual abilities
develop in a stereotyped order (4). In
particular, infants appear to be able to
perceive motion and detect faces at an
early stage of development. They can
probably exploit the regularities that mo-
tion tends to be smooth in space and time,
which also enables them to track image
patches. Vision researchers have also
demonstrated that many vertebrates and
insects rely heavily on motion perception
for surviving in this complex visual world,
e.g., for camouflage breaking or figure
ground separation (5, 6), and there are
computational models that relate to neural
circuitry (7).

Bootstrapping Visual Concepts
In PNAS, Ullman et al. (8) suggest a twist
to this story by emphasizing the key role of
motions that cause actions as innate biases
that help bootstrap the learning of com-
plex visual concepts. They address the
phenomenon that infants are quick to
learn models of hands and estimate the
gaze direction of the owner of the hand.
They point out that these are difficult tasks
for which there are, as yet, no successful
computational models (except those
trained using supervision).
What makes a hand special for the in-

fant? More precisely, how can the infant
manage to isolate hands from the enor-
mous amount of visual stimuli it perceives
so that it can successfully learn to detect
them? The motion of hands probably
makes them interesting to the infant, but
many other things move in images. Hands
are associated with faces, to which infants
are sensitive very early (as discussed later),
but this is only indirect. The suggestion of
Ullman et al. (8) is that a key property of
hands is their ability to perform actions.

How does action help? Imagine a bil-
liard table on which one ball is at rest and
a second ball strikes it. The second ball
acts on the first, transfers motion to it, and
causes it to move. Similarly, in the infant’s
experience, a hand will often appear and
act on a static object in the world, by
moving a toy or offering a bottle. This
distinguishes a hand from most moving
objects in the infant’s environment. Many
objects can move, but those that also act
by causing other objects to move are of
particular importance. We emphasize that

Ullmann et al. suggest

that visual learning by

infants is partially driven

by simple action events.

the infant probably has no concept of
objects at this stage (with a few probable
exceptions such as faces), and the theory
of Ullman et al. (8) does not require it.
Instead, they demonstrate that simple
action events can be detected by local
analysis of motion flow patterns. More
precisely, by detecting events in which
visual motion (e.g., the movement of
a hand) flows into a previously static
region of an image (e.g., a cup), motion
flows out of the region (e.g., the hand
carrying the cup), and then the region
becomes static again (e.g., the part of the
table on which the cup was resting).
Ullman et al. (8) implement a simple

event detector and show that it will find
hands but will also respond to other stim-
uli. Nevertheless, it is sufficient to isolate
candidate regions of the image that can be
exploited by tracking and modeling ap-
pearance and context (9). This helps
bootstrap a stronger model, which is very
effective at detecting hands. The context
exploits the fact that fingers are linked to
heads by a chain of body parts. Hence, the
ability to detect heads can be used to help
the detection of fingers by using a method
developed by this research group (10).
This model for hand detection, in turn, is
used to learn a model of gaze perception,
exploiting the fact that human gaze is
frequently directed at hands.

Theory Predictions and Implications
The theory of Ullman et al. (8) raises some
interesting questions. They have demon-
strated the sufficiency of their computa-
tional model for learning hands and gaze
directions. However, do infants use it?
Their theory suggests experiments in
which a new object (e.g., a billiard ball)
that causes actions is introduced into the
visual environment of an infant or a young
monkey to see if these makes it easier to
detect this new object. The theory would
need to be extended to make concrete
predictions in such situations. Issues like
the exact timing of the action events, the
presence or absence of context cues, and
the amount of exposure required for
learning would need to be explored.
To what extent are human abilities

innate for these problems? Studies of
monkeys suggest that they have some
knowledge of faces before exposure. This
has been shown by experiments in which
animals have been raised without seeing
faces until they are tested by behavioral
experiments (11). Functional MRI studies
(12) also suggest that face perception may
be innate by contrast, for example, to the
perception of text (13). This is not sur-
prising, as monkeys and humans have been
recognizing faces and interpreting facial
expressions for more than hundreds of
thousands of years, whereas humans have
been reading text for a considerably
shorter period. However, it is unclear that
innate knowledge of faces extends to the
ability to infer gaze direction directly from
faces or to innate knowledge of hands
(which have far greater variability than
faces because of the articulation
of fingers).
What other computational theories

might be able to learn models of hands
and gaze directions? As the authors state
(8), most computational theories are
based on the statistics of images and ne-
glect concepts like action, which have
a causal flavor, although recent work has
extended statistics to include causality
(14). The idea of using simple models to
help bootstrap the learning of more
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complex models has been applied with
success to natural images (15) and, in
particular, for learning objects by com-
bining elementary parts together hierar-
chically to form complex objects (16).
However, although compositional theories
are conceptually attractive (17), there is,
as yet, no clear evidence that humans use
them. There have been surprisingly few
computational models that exploit image
sequences for learning object models in an
unsupervised manner, with a few ex-
ceptions (18). This is despite the fact that
behavioral studies show that the ability of
adults to learn objects depends strongly on
how views of the object appear in image
sequences. In particular, the work by
Wallis and Bülthoff (19) shows the im-
portance of temporal associations for
combining different views of an object into
a single representation. These sequences
of views can be obtained, for example, by
moving the object by hand or by moving
around it. Recently, computational mod-

elers are starting to use motion sequences;
e.g., Si et al. (20) have described a method
for learning causality and actions from
motion sequences. However, none of these
methods, to our knowledge, have learned
how to detect hands.
In any case, the use of action as a

starting point for bootstrapping learning may
initiate new directions of research. It also
ties in, at the conceptual level, with
other models of infant and child learning.
The “theory-theory” (21) suggests that
infants are like small scientists who learn
by performing experiments on the world,
seeking to understand its causal structure
(e.g., dropping toys to explore gravity)
and hence predict events. The ability to
detect visual actions would seem funda-
mental to detecting the causal structures
of events. A series of recent studies sug-
gest that adults are often good at detect-
ing the causal structure of visual scenes
even from static images (22). Moreover,
infants are good at estimating the causal

structure of events of the billiard-ball
launching type, and exhibit surprise when
the normal causal rules are suspended by
experimenters (23). Finally, of course,
infants can control their own hands and
are well situated to understand their
causal properties.
In summary, Ullman et al. (8) suggest

that visual learning by infants is partially
driven by simple action events that help
the infant pick out interesting parts of the
enormous set of visual stimuli and use
them to bootstrap up to complex models.
From this perspective, human fondness for
action movies, particularly those that
contain action events, may reflect a highly
successful learning mechanism rather than
a mindless search for cheap thrills.
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