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Early in development, infants learn to solve visual problems that
are highly challenging for current computational methods. We
present a model that deals with two fundamental problems in
which the gap between computational difficulty and infant
learning is particularly striking: learning to recognize hands and
learning to recognize gaze direction. The model is shown a stream
of natural videos and learns without any supervision to detect
human hands by appearance and by context, as well as direction
of gaze, in complex natural scenes. The algorithm is guided by
an empirically motivated innate mechanism—the detection of
“mover” events in dynamic images, which are the events of a mov-
ing image region causing a stationary region to move or change
after contact. Mover events provide an internal teaching signal,
which is shown to be more effective than alternative cues and
sufficient for the efficient acquisition of hand and gaze represen-
tations. The implications go beyond the specific tasks, by showing
how domain-specific “proto concepts” can guide the system to
acquire meaningful concepts, which are significant to the observer
but statistically inconspicuous in the sensory input.

cognitive development | hand detection | unsupervised learning |
visual cognition

Abasic question in cognitive development is how we learn to
understand the world on the basis of sensory perception and

active exploration. Already in their first months of life, infants
rapidly learn to recognize complex objects and events in their
visual input (1–3). Probabilistic learning models, as well as
connectionist and dynamical models, have been developed in
recent years as powerful tools for extracting the unobserved
causes of sensory signals (4–6). Some of these models can effi-
ciently discover significant statistical regularities in the observed
signals, which may be subtle and of high order, and use them to
construct world models and guide behavior (7–10). However,
even powerful statistical models have inherent difficulties with
natural cognitive concepts, which depend not only on statistical
regularities in the sensory input but also on their significance and
meaning to the observer. For example, in learning to understand
actions and goals, an important part is identifying the agents’
hands, their configuration, and their interactions with objects (1–
3). This is an example in which significant and meaningful fea-
tures can be nonsalient and highly variable and therefore difficult
to learn. Our testing shows that current computational methods
for general object detection (11–13) applied to large training
data do not result by themselves in automatically learning about
hands. In contrast, detecting hands (14), paying attention to what
they are doing (15, 16), and using them to make inferences and
predictions (1–3, 17) are natural for humans and appear early in
development. How is it possible for infants to acquire such
concepts in early development?
A large body of developmental studies has suggested that the

human cognitive system is equipped through evolution with basic
innate structures that facilitate the acquisition of meaningful
concepts and categories (9, 15, 18–21). These are likely to be not
developed concepts, but some form of simpler “proto concepts,”
which serve as anchor points and initial directions for the sub-
sequent development of more mature concepts. Major questions
that remain open are the nature of such innate concepts and how
they can guide the subsequent development of mature concepts.

Here we show in a model that the incorporation of a plausible
innate or early acquired bias, based on cognitive and perceptual
findings, to detect “mover” events (Fig. 1) leads to the automatic
acquisition of increasingly complex concepts and capabilities,
which do not emerge without domain-specific biases. After ex-
posure to video sequences containing people performing every-
day actions, and without supervision, the model develops the
capacity to locate hands in complex configurations by their ap-
pearance and by surrounding context (Fig. 2 A–C) and to detect
direction of gaze (Fig. 3 D and E).
Hands are frequently engaged in motion, and their motion

could provide a useful cue for acquiring hand concepts. Infants are
known to have mechanisms for detecting motion, separating mov-
ing regions from a stationary background, and tracking a moving
region (22, 23). However, our simulations showed that general
motion cues on their own are unlikely to provide a sufficiently
specific cue for hand learning: the extraction of moving regions
from test video sequences can yield a low proportion of hand
images, which provides only a weak support for extracting the
class of hands (SI Results and Fig. S1). Infants are also sensitive,
however, to specific types of motion, including launching, active
(causing other objects to move), self-propelled, or passive (24–27).
On the basis of these findings, we introduced in the model the
detection of active motion, which we call “mover” event, defined as
the event of a moving image region causing a stationary region to
move or change after contact (Methods, Fig. 1A–C, andMovie S8).
Mover detection is simple and primitive, based directly on image
motion without requiring object detection or region segmentation.

Results
Our model detects mover events and uses them to train a hand
classifier. Training and testing of the entire model used a total of
30 video sequences (approximately 65 min) showing people
moving about, moving their hands, manipulating objects, and
some moving objects (SI Materials and Methods and Movies S1–
S7). First we use the detected movers (Fig. 1 D–F) to train
a standard classifier (28). Because hands are highly represented
in the mover-tagged regions (approximately 65%), after this
learning phase, hands are classified with high precision (97%)
but with low recall rate (2%) (Fig. 2D). (Precision/recall mea-
sures classification performance; the classifier’s output contains
2% of all hands in the input, with 97% accuracy.) Recall is initially
low because detection is limited to specific hand configurations ex-
tracted as movers, typically engaged in object grasping (Fig. 1 D
and E). Recall rate rapidly increases in subsequent iterations of
the learning algorithm based on two mechanisms: tracking and
body context (Fig. 2 D and E). Detected hands are tracked over
a short period, and additional hand images are extracted during
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the tracking period. Context is useful for detecting hands on the
basis of surrounding body parts in ambiguous images. Develop-
mental evidence indicates that infants associate hands with other
body parts at approximately 6–9 mo (29) [possibly earlier with
faces (30, 31)]. We therefore included in the model an existing
algorithm that uses surrounding body parts, including the face,
for hand detection (32).
Because hands are detected on the basis of either appearance

or body context, we found that the two detection methods co-
operate to extend the range of appearances and poses used by
the algorithm. The context-based detection successfully recog-
nizes hands with novel appearances, provided that the pose is
already known (“pose” here is the configuration of context fea-
tures, on the shoulders, arms, etc.). The newly learned appear-
ances lead in turn to the learning of additional poses. The
learning was applied to the input videos in several iterations
(Methods). The results show that appearance-based and context-
based recognition guide each other to boost recognition per-
formance (Fig. 2 and Movie S9). Performance improves rapidly
during the first three iterations, approaching the performance of
fully supervised training on the same data.

Direction of Gaze. Finally, we propose that detected mover events
provide accurate teaching cues in the acquisition of another in-
triguing capacity in early visual perception—detecting and fol-
lowing another person’s gaze on the basis of head orientation,
and later, eyes direction (33–35). This skill, which begins to de-
velop at approximately 3–6 mo, plays an important role in the
development of communication and language (36). It remains

unclear how this learning might be accomplished, because cues
for direction of gaze (head and eyes) can be subtle and difficult
to extract and use (37).
Infants’ looking is attracted by other people’s hands engaged

in object manipulation (15, 16), and they often shift their gaze
from face to a manipulating hand (31). People often look at
objects they manipulate, especially slightly before and during
initial object contact. Our algorithm therefore uses mover events
as an internal teaching signal for learning direction of gaze. It
detects presumed object contacts by detecting mover events,
extracts a face image at the onset of each mover event, and
learns, by standard classification techniques, to associate the face
image with the 2D direction to the contact event (Fig. 3 A–C).
Consistent with developmental evidence (38, 39), we assume that
initial face detection is present before gaze learning, and locate
the face with an available face detector. The resulting classifier
estimates gaze direction in novel images of new persons with
accuracy approaching adult human performance under similar
conditions (Fig. 3 D and E and Movie S10).

Alternative Cues. The algorithm focuses on motion-based cues,
but additional visual mechanisms [e.g., biomechanical motion
(40)] as well as nonvisual sensory motor cues (41, 42), supplied
in part by the mirroring system (43), may also play a role in the
learning process. In particular, a possible contribution can come
from observing one’s own hands in motion. Our testing shows,
however, that using own-hands images is not as effective as
using mover instances in detecting hands in general and hands
engaged in object manipulation in particular (Figs. S2 and S3). In

Fig. 1. Mover events. Upper: Mover event detected in the red cell: motion (A) flows into the cell, (B) stays briefly in the cell, and then (C) leaves the cell,
changing its appearance. Motion is shown in color, where warmer colors indicate faster motion. Lower: Examples of detected movers: (D) detected hands, (E)
appearance variations added by tracking (each row is taken from one track), and (F) nonhand detections.
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addition to “own hands,” we tested a number of other potential
cues in terms of their ability to provide an internal teaching
signal for learning about hands (SI Results). First, we tested the
visual saliency of hand-containing regions, using a state-of-the-
art visual saliency model (13). Second, we applied a recent com-
putational method for locating image regions that are likely to
contain objects of interest (11). Finally, we applied an in-
formation-based method to extract image features that are
typical of person images. Formally, these are image features that
have high mutual information with respect to images of a person
(12). None of these methods provided a sufficiently reliable cue
for training our hand detection scheme. For example, the frac-
tion of correct hand images produced by these three methods
was <2% (out of 2,500 extracted image regions by each method),
compared with 65% provided by mover events (Fig. S1 and
Table S1).

Discussion
Using natural dynamic visual input and without external super-
vision, the algorithm learns to detect hands across a broad range
of appearances and poses and to extract direction of gaze. The
acquisition of these concepts is based in the model on an innate
or early-learned detection of mover events, supported by infants’
sensitivity to launching and active motion (24, 25), and evidence
of associating hands with causing objects to move (3, 16). Future
studies may resolve whether the sensitivity to mover events is
based on some innate capacity or learned early in development,
on the basis of an even simpler capacity. The algorithm also uses
in an innate manner the spatiotemporal continuity in tracking
and an association made by infants between hands and face
features (30, 31).
Learning body-parts detection and gaze direction are two

capacities in which the gap between computational difficulty and

A B C

D E

Fig. 2. Hand detection. Upper: Hand detection in test videos using the final detector. (A) Green square shows detected hands. Warm colors indicate high
detection score. (B and C) Examples of hands detected by appearance (B) and by context (C). Lower: Hand detection performance. (D) Detector trained from
mover events only (magenta), and after one (blue) and three (green) iterations of cotraining by appearance and context. The top curve (red) shows per-
formance obtained with full (manually) supervised learning. (E) Results after three iterations of training as before (green), without using context (blue) and
without tracking (cyan). Error bars indicate SE across eight folds of cross-validation. Abscissa: Recall rate (fraction of detected hands out of all of the hands in
the data); ordinate: precision (fraction of hands out of all detections).

Ullman et al. PNAS | October 30, 2012 | vol. 109 | no. 44 | 18217

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
CO

M
PU

TE
R
SC

IE
N
CE

S
SE

E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207690109/-/DCSupplemental/pnas.201207690SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207690109/-/DCSupplemental/pnas.201207690SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207690109/-/DCSupplemental/pnas.201207690SI.pdf?targetid=nameddest=ST1


infant learning is particularly striking (37, 44). This model is
a demonstration of learning to detect hands and gaze direction
in an unsupervised manner, in natural images. The learning
succeeds because the internal teaching signals, produced by the
algorithm based on mover events, identify candidates of mean-
ingful features and make them easily learnable, even when they
are nonsalient and highly variable. The results of the model and
computational tests complement and extend prior empirical
studies: the mechanisms used by the model have been discovered
and studied empirically, and the present study demonstrates that
they supply surprisingly effective teaching signals for hand de-
tection and gaze direction.
The model relies on mechanisms that seem to exist in early

development, in particular, initial forms of motion analysis and
face detection. It also gives rise to predictions that can be tested
empirically, for example by testing for selective adaptation in
infants to mover events, testing whether manipulating hands are
the first hand stimuli to be acquired, and possibly preferential
looking at faces after looking at mover events. Physiologically, the
model suggests that if monkeys are shown during development

objects being moved consistently by an artificial mover device,
representations of the artificial mover may become incorporated
in hand-specific brain regions, possibly in the mirror system (45).
Similarly, sufficient exposure to mover events by an artificial mover
is predicted to promote hand-like expectations in infants (1, 3).
On a general level, the results demonstrate a useful combi-

nation of learning and innate mechanisms: a meaningful complex
concept may be neither learned on its own nor innate. Instead,
a simple domain-specific internal teaching signal can guide the
learning system along a path, which leads to the gradual acqui-
sition of complex concepts that are difficult to learn and do not
emerge automatically otherwise.

Materials and Methods
Data. Training and testing of the entire model used a total of 30 video
sequences (approximately 65 min) showing people moving andmanipulating
objects (more details in SI Materials and Methods).

Mover Detection. To detect mover events, each video frame is divided into
cells of 30 × 30 pixels. (With fixed cell size, changes in hand size of 4:1

A B C

D
E

Fig. 3. Gaze direction (gaze direction recovered within the image plane). Upper: Training. (A) Detected mover event. Yellow circle marks location of event,
providing teaching signals for gaze direction (yellow arrow). (B) Face image region used for gaze learning. (C) Examples of face images with automatically
estimated gaze direction, used for training. Lower: Results. (D) Predicted direction of gaze: results of algorithm (red arrows) and two human observers (green
arrows). (E) Performance of gaze detectors: detector trained on mover events (red), detector trained with full manual supervision (blue), chance level (magenta),
and human performance (dashed green). Chance level was computed using all possible draws from the distribution of gaze directions in the test images. Human
performance shows the average performance of two human observers. Abscissa: maximum error in degrees; ordinate: cumulative percent of images.
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produced similar mover detections.) A mover event is detected in cell C
whenever the following sequence occurs. (i) C is initially stable for at least
2 s. (ii) A sufficient amount of visual motion entering C followed by visual
motion flowing out of C within 1 s. (iii) C becomes stable again for at least
2 s. (iv) The appearance of C differs from its previous stable appearance.
(Detection is not sensitive to the choice of the timing parameters). Mover
detection therefore requires local motion and change detection, which are
computed as follows. Motion is computed using a standard optical flow al-
gorithm (46), which is similar to biological models (47). The computation
requires only the local flow of individual pixels between adjacent cells,
without delineating objects or coherent regions, and without any longer-
term motion tracking. To define stability and change, we filter out cells
undergoing brief transience in appearance. For transience detection, the
appearance At of a cell at time t (its 30 × 30-pixel values) is compared
with its smoothed version At obtained by exponential moving average
ðAt =  0:3At +  0:7At�1Þ. If jAt �  Atj exceeds a threshold, the cell is transient.
We detect mover events only in stable cells, in which no transience has oc-
curred for 2 s. Finally, a change in the cell before the incoming and after the
outgoing motion is detected using a threshold on the difference in intensity
gradient magnitudes, to filter out overall lighting changes over time.

Initial Hand Detection. When a mover event is detected, a region of size 90 ×
90 around the detected cell is extracted as a presumed hand image and
tracked for 2 s. From these regions in the Movers dataset (SI Materials and
Methods), a total of 2,500 image patches containing movers are extracted
and serve as positive examples to a standard classifier (28), using a non-
parametric model variation (32). A total of 2,500 random image patches
from surrounding regions serve as negative, nonclass examples. The result-
ing classifier is the initial hand detector, which is later extended automati-
cally during the appearance–context iterations.

Appearance–Context Iterations. The initial hand detector learned frommovers
is automatically improved by combining two detection methods, one based
on local appearance and the other on body context (28, 32). The twomethods
teach each other: hands detected by appearance provide a teaching signal
for learning new context, and vice versa. All learning is completely un-
supervised. The algorithm is applied in iterations, each iteration goes once
over the full training data. This was used to compare performance attainable
by internal teaching signals with full supervision. (In actual learning new data
will be continuously supplied, which we tested, obtaining similar results.)

Each iteration performs the following. The highest scoring detections of
the current detector are automatically chosen and tracked for up to 2 s (over
which tracking is reliable). Image patches (90 × 90 pixels) around the tracked
objects are used as presumed class examples. Patches from surrounding
regions are used as nonclass examples. The existing appearance-based clas-
sifier (28) and a context-based classifier (32) are trained on the extracted
patches. Briefly, the context-based classifier learns chains of features leading
from the face to the hand through other body parts. The two new classifiers

are used in conjunction by combining their detection scores, and the com-
bined detector is used for training the next iteration.

Our experiments used a leave-one-out scheme, training on sevenmovies in
the Freely moving hands dataset (SI Materials and Methods) and testing on
the eighth unseen movie. This was repeated eight times, each time with
a different test movie. Detection criteria increased over time: the first iter-
ation was trained on the highest scoring 2% of detections by the initial
movers-based detector. The second and third iterations used the top 10%
and 20% of the previous detections, respectively. These percentages were
determined once for all repetitions.

We compared our performance to fully supervised results. The supervised
detector used the same algorithms for appearance and context but was
trained on manually labeled hands from the entire training movies, using
a similar leave-one-out scheme.

Gaze Detection. Gaze learning is done automatically, using mover events.
Each detected mover event serves as a training example that assigns a pre-
sumed gaze direction to a face image. The face is detected at the onset of the
event using an available face detector (48, 49) and represented using the HOG
(Histogram-of-Gradients) descriptor (50). (If a face is not detected, the corre-
sponding event is not used.) The gaze direction is taken as the direction from
the center of the face produced by the detector, to the center of the cell that
triggers the mover event. To estimate gaze direction in a novel image, the
algorithm detects the face center, computes its HOG descriptor, and finds its K
nearest neighbors in the training data, using L2 norm (K = 10 in all experi-
ments). The predicted gaze direction is a weighted average of the gaze
directions of the neighbors (weighted by similarity of the HOG descriptors).

Our experiments used a leave-one-out scheme, training on sevenmovies in
the Gaze dataset (SI Materials and Methods) and testing on the eighth un-
seen movie. This is repeated eight times, each time with a different test
movie, showing a different person.

For evaluation purposes we manually labeled events of object grasp and
release, marking the target object at the frame of initial contact, and the
center of the face. The direction from the face-center to the target is used as
ground truth for measuring performance. The test set consists of patches of
automatically detected faces in the labeled frames. For comparison, we
evaluated human judgment of gaze direction: two observers were presented
with the same test face patches as the algorithm and were asked to mark the
gaze direction. Images on which either face detection failed or both human
observers disagreed with the ground truth by more than 30° were removed
from the test set. The final eight test sets contain 807 images in total (out of
887 initial contact images). We also compared the results with a supervised
version of the algorithm using a similar leave-one-out procedure. It was
trained on the manually labeled events of seven movies, using the same K
nearest neighbors algorithm, and tested on the left-out movie.
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