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Emergence of Selectivity and Tolerance in the Avian
Auditory Cortex
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The ability to recognize auditory objects like words and bird songs is thought to depend on neural responses that are selective between
categories of the objects and tolerant of variation within those categories. To determine whether a hierarchy of increasing selectivity and
tolerance exists in the avian auditory system, we trained European starlings (Sturnus vulgaris) to differentially recognize sets of songs,
then measured extracellular single unit responses under urethane anesthesia in six areas of the auditory cortex. Responses were analyzed
with a novel, generalized linear mixed model that provides robust estimates of the variance in responses to different stimuli. There were
significant differences between areas in selectivity, tolerance, and the effects of training. The L2b and L1 subdivisions of field L had the
least selectivity and tolerance. The caudal nidopallium (NCM) and subdivision L3 of field L were more selective than other areas, whereas
the medial and lateral caudal mesopallium were more tolerant than NCM or L2b. L3 had a multimodal distribution of tolerance. Sensi-
tivity to songs that were familiar and those that were not also distinguished the responses of caudomedial mesopallium and NCM. There
were significant differences across areas between neurons with wide and narrow spikes. Collectively these results do not fit the traditional
hierarchical view of the avian auditory forebrain, but are consistent with emerging concepts homologizing avian cortical and neocortical
circuitry. The results suggest a functional divergence within the cortex into processing streams that respond to complementary aspects of
the variability in communicative sounds.

Introduction
Neurons in higher, more central areas of sensory processing path-
ways tend to have more complex response properties as com-
pared with the periphery, including larger, more nonlinear
receptive fields (Hubel and Wiesel, 1965; Sen et al., 2001; Escab í
and Read, 2003; David et al., 2006); stronger preference for be-
haviorally relevant stimuli (Leppelsack and Vogt, 1976; Suga,
1978; Desimone et al., 1984; Müller and Leppelsack, 1985);
greater selectivity between stimuli of similar complexity (Margo-
liash, 1986; Kobatake and Tanaka, 1994; Logothetis et al., 1995;
Rust and DiCarlo, 2012); and greater tolerance for noise, clutter,
and other irrelevant sources of variability (Rolls, 2000; Zoccolan
et al., 2007). Selectivity and tolerance are thought to be important
for recognizing objects and categories of stimuli (Riesenhuber
and Poggio, 2002), and to reflect learning about which sources of
variation carry behaviorally relevant information and which do
not (Sigala and Logothetis, 2002; Freedman and Assad, 2006).

Auditory systems exhibit hierarchically organized increases in

receptive field size and nonlinearity (Sen et al., 2001; Escab í and
Read, 2003; Nagel and Doupe, 2008), but the hierarchical orga-
nization of stimulus selectivity and tolerance is not as well estab-
lished. Some auditory signals, like words and phonemes, form
natural categories: they are perceived as distinct entities despite
substantial variation in how they are produced by different
speakers or in different contexts (Hillenbrand et al., 1995). Many
bird species also produce complex vocalizations that have distinct
behavioral meanings (Falls, 1982; Sharp et al., 2005) even though
they vary acoustically from rendition to rendition. For example,
European starling (Sturnus vulgaris) songs consist of a sequence
of temporally discrete “motifs” (Adret-Hausberger and Jenkins,
1988; Eens et al., 1989). Each starling has a unique repertoire of
distinct motif types, which are used in many songs and often
repeated in the same song. Motif types are relatively stereotyped,
but renditions vary in pitch, duration, and other acoustic features
(Gentner, 2004). In behavioral tasks, starlings recognize the songs
of other individuals on the basis of motif types while ignoring
variability between renditions (Gentner and Hulse, 1998; Gent-
ner, 2004).

Here we examined whether neural selectivity and tolerance
emerge at cortical levels of the starling auditory system by record-
ing from six different areas of the auditory pallium, the presump-
tive homolog to mammalian auditory neocortex (Reiner et al.,
2004; Wang et al., 2010; Dugas-Ford et al., 2012). Three areas
were subdivisions of field L, the primary thalamorecipient zone
(Karten, 1968), and the other three were the caudal nidopallium
(NCM), the caudolateral mesopallium (CLM), and the caudo-
medial mesopallium (CMM) (Fig. 1; Vates et al., 1996), which
receive input from field L and exhibit learning-dependent re-
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sponses (Gentner and Margoliash, 2003; Thompson and Gent-
ner, 2010; Jeanne et al., 2011). Single unit responses were
recorded to presentations of conspecific songs, some of which
were learned in an auditory discrimination task. We developed a
novel modeling methodology to evaluate selectivity, tolerance,
and the effects of learning from the distribution of the neural
responses across the presented motif types and variants.

Materials and Methods
Fourteen adult European starlings of both sexes (three male, six fe-
male, five unknown) were captured from farms in northeastern Illi-
nois or at O’Hare Airport. They were housed in mixed-sex flight
aviaries and received food and water ad libitum. The lighting schedule
was matched to local daylight hours in Chicago. All animal proce-
dures were performed according to protocols approved by the Uni-
versity of Chicago Institutional Animal Use and Care Committee and
consistent with the guidelines of the National Institutes of Health.
Stimuli. Songs were recorded from three adult male starlings captured
and housed under similar conditions as the experimental subjects, but at
a much earlier date, with no overlap in tenancy. During recording each
bird was housed in isolation, in a 2 m 3 double-walled sound isolation
booth (Industrial Acoustics). Recordings were made with an AT4071a
directional microphone (Audio-Technica) and amplified with a DMP3
microphone preamplifier (M-Audio). Signals were digitized with a
DB2000 PCI digital acquisition board (Measurement Computing) with a
sampling rate of 20 kHz and resolution of 16 bits per sample, without an
anti-aliasing filter. Songs were stored to disk, digitally highpass filtered
(12 dB/octave) at 100 Hz, and scaled to 96 dB peak amplitude. Between
100 and 300 complete song bouts were recorded from each bird over the
course of several days.

From the song bouts recorded for each bird, 10 representative seg-
ments of about 10 s each (hereinafter songs) were extracted, sampling
equally from the beginnings, middles, and ends of the bouts. Each song
was manually segmented into motifs (11–17 per song segment; median
13.5) based on visual examination of the spectrograms. Motifs are tem-
porally discrete vocal elements between 500 and 1200 ms in length com-
posed of a fairly stereotyped pattern of notes (Eens et al., 1989). We
grouped the recorded motifs into types based on note-level similarity,
with the rule that motifs sharing �50% of their notes in common, or in
which the notes were sung in a markedly different order, were considered
different types. In the text to follow, “motif type” and “motif variant” are
used to refer to this scheme, whereas motif is used in a more generic sense
to refer to a specific recording of a variant but ignoring its type. The term
“category” is used exclusively to refer to a behavioral response category
imposed by operant training (see next section), or to whether a motif is
familiar or unfamiliar. The 373 motifs recorded from all three singers
comprised 107 unique types, with 1–13 variants of each type (median 3).

Behavioral training. Starlings were operantly trained to recognize
songs following previously described procedures (Gentner and Margo-
liash, 2003). Briefly, after the bird probed a detection port to start a trial,
one of the song stimuli was presented. After stimulus playback, there was

a 2 s window when responses were rewarded with food or punished with
a 10 s period when the lights were extinguished and no trials could be
initiated. Three sets of stimuli each consisted of six songs from one of the
singers. For birds trained on a go-no-go paradigm (n � 12/14), one set
was designated as “S�,” meaning that responses were rewarded, and
another set was designated as “S�,” meaning that responses were pun-
ished. Failure to respond was neither punished nor rewarded. Two birds
were trained on a two-alternative-choice paradigm, which required them
to peck one of two keys during the response period. One set of stimuli was
assigned to each key, and the birds were rewarded if their choice was
correct and punished if it was not. The third song set was not presented to
the bird at any time before electrophysiological recording. Training was
balanced across subjects so that each set was familiar to some birds and
unfamiliar to others.

Each bird was trained on the task until it reached an average accuracy
of at least 85% over three consecutive blocks of 100 trials. Stimuli were
presented randomly with replacement, except during trials after an in-
correct response, when the stimulus was the same as on the previous trial.
These correction trials help to speed learning and reduce response bias.
Discrimination performance was plotted using D-prime (Macmillan et
al., 1977), d� � z( phit) � z( pfa), where z is the z-score, and phit and pfa are
the proportion of hit and false alarm responses in the block.

Electrophysiology. After the birds reached criterion behavioral perfor-
mance, an annular metal chamber used for head fixation was surgically
implanted under anesthesia, either Equithesin (3.75 mL/kg, i.m.) or iso-
flurane gas (1–2% by volume in air). The scalp and upper layer of skull
were removed over the caudal forebrain, and the implant was affixed to
the skull using dental acrylic. Birds were allowed to recover in isolation
for several days before beginning recording. On recording days, birds
were food deprived and anesthetized with urethane (20% by volume, 5
mL/kg, i.m.).

Recordings from field L, NCM, CLM, and CMM in both hemispheres
were made using 16-channel single shank silicon multi-electrode arrays
with 413 �m 2 or 117 �m 2 recording sites separated by 50 �m (models
A1x16 –5mm50 – 413 and A1x16 –5mm50 –117; NeuroNexus Technolo-
gies). Recordings were in 1–3 areas per bird (median 2), and each area
was recorded in 4 –7 birds (median 4.5). Signals were amplified and
bandpass filtered between 300 and 3000 Hz (Model 15; Neurodata, Grass
Instruments), digitized at 20 kHz (DB3000; Measurement Computing),
and stored to computer disk. The spiking responses of single units were
extracted from recordings using principal-components-based sorting.
Spike clusters were first calculated automatically using KlustaKwik and
then manually refined with Klusters (K. Harris, L. Hazan, G. Buzsáki lab,
Rutgers, Newark, NJ) (Hazan et al., 2006). A unit was considered to be
well isolated only if �0.1% of the interspike intervals were �1 ms and the
cluster was significantly separated in the principal component space
from all other clusters and the unsorted noise (MANOVA: p � 0.05).
Neurons in L2a are small and highly clustered (Fortune and Margoliash,
1992), and only one unit from L2a was sufficiently isolated to meet these
criteria, so this area was not included.

Due to the linear geometry of the electrodes, the same unit was some-
times recorded on a different channel after the electrode had been ad-
vanced to a new site. Whenever well isolated units were recorded within
25 �m of a previously recorded unit (n � 39), the responses to stimuli
presented at both sites (6 –24 songs, median � 6) were visually compared
to determine whether both recordings had the same response properties
(spike shape, average rate, phasicness, etc.) and temporal patterns of
evoked activity. In 24/39 cases the responses were essentially identical,
and the trials from the two sites were considered as a single unit. In the
remaining cases the trials were considered as coming from separate units.
Neurons were categorized as wide spike or narrow spike by averaging the
spikes for each unit, aligning their peaks, and using affinity propagation
clustering (Frey and Dueck, 2007) on the first two principal components
(PCs). There were two large clusters in the PC space, one corresponding
to spikes with a narrow peak and a narrow, deep trough (hereafter, nar-
row spikes) and the other to spikes with a broader peak and a broad,
shallow trough (wide spikes). Spike shapes for all neurons are shown in
Figure 4b. A few neurons in CLM and CMM exhibited a sharp initial dip
before the peak of the spike but were otherwise like the wide-spike neu-

Figure 1. Auditory areas of the avian cortex. Outlines are traced from two parasagittal sec-
tions from a European starling at 0.6 mm (a) and 1.8 mm (b) from the midline. Dashed lines
indicate boundaries that are defined by gradual transitions between cytoarchitectures. L2a and
L2b (light gray) are the primary thalamorecipient areas. Arrows represent connections between
areas as described in zebra finches (Vates et al., 1996) and pigeons (Wild et al., 1993); darker
arrows indicate connections within larger subdivisions. Hp, hippocampus; LaM, lamina meso-
pallialis; LAD, lamina arcopallialis dorsalis; all other areas are subdivisions of field L.
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rons and were treated as such for this study. The two neuronal classes
were well separated in the principal components space (MANOVA: p �
10 �15).

Stimuli were presented free-field in an anechoic chamber (IAC-3)
from a speaker positioned in front of the bird, at an root mean square
amplitude of 67–70 dB sound pressure level, measured from the position
of the bird’s head. All 18 training songs plus 6 additional songs, repre-
senting a total of 296 unique motifs, were used when searching for re-
sponsive units. Once sufficient isolation of a single unit was achieved on
at least one channel, responses to between 5 and 50 repetitions (median
10) of one or more songs were recorded. For some neurons, 6 –19 songs
(familiar and unfamiliar) were presented in random order. For other
neurons, one of the songs was presented along with stimuli derived from
the song, which were used in a different study (Meliza et al., 2010); up to
three songs (chosen pseudorandomly to ensure equal sampling of songs
from each singer) were tested in this way for as long as the recording
remained stable. The number of unique motif types tested on a neuron
ranged from 5 to 90 (median 20), with a median of 2 variants per type
(range 1–9).

Responses were analyzed by dividing them into intervals correspond-
ing to the component motifs of the song stimuli and counting the num-
ber of spikes that occurred in each interval. The intervals spanned from
the onset of each motif to the onset of the following motif. (The last
interval in the song ended at the offset of the last motif, plus an interval
equal to the average gap between motifs in the song.) The number of
spikes that occurred during a baseline silent period 2000 ms before the
onset of the stimulus was also counted. Motifs were coded as “familiar” if
they had been presented in the operant training and “unfamiliar” if they
had not. The same analyses were repeated with motifs coded for response
association (i.e., S�, S�, unfamiliar; or left, right, unfamiliar), but this
greatly reduced statistical power and we failed to find significant differ-
ences between familiar response categories.

Histology. At the end of the recording session, one or two fiduciary
lesions were made, and birds were given an overdose of Nembutal (250
mg/kg) and transcardially perfused with heparinized saline followed by
10% formalin. The brains were cryoprotected in 30% sucrose formalin
until saturated (2– 4 d). Tissue was sectioned at 50 �m parasagittally
using a cryostat and stained with cresyl violet. The locations of the re-
cording sites were assigned to areas CMM, CLM, NCM, L1, L3, or L2b,
generally following the divisions outlined by Fortune and Margoliash
(1992; Fig. 1). Neurons with ambiguous locations were excluded from
further analysis (58/431 auditory units). The majority of the excluded
neurons came from the border of L2b and L3 (n � 30), where the larger,
more widely spaced neurons that distinguish L3 emerge gradually. Neu-
rons from the portion of NCM dorsal to L2b and caudal of CM (n � 13)
were also excluded. We deliberately avoided recording near the rostro-
caudal boundary of L2b and NCM and the mediolateral boundary of
CLM and CMM, which are also gradual. The division between CLM and
CMM was taken to be the first section in which L2a could be distin-
guished (usually 1.0 –1.2 mm from the midline). All sites were at least 0.1
mm from the center of any gradual boundary. Some L2b sites may be
from the L subdivision (Fortune and Margoliash, 1992), which has cyto-
architecture similar to L2b but is not thought to receive direct thalamic
input. Within NCM, 37/50 units (74%) were from the dorsal half. A
dorsal/ventral physiological distinction has been noted for NCM (Vates
et al., 1996; Thompson and Gentner, 2010).

Measures of selectivity and tolerance. Neuronal selectivity was initially
quantified using a nonparametric measure called activity fraction (AF) or
sparseness (Vinje and Gallant, 2000; Lehky et al., 2005), an index calcu-
lated from the response of a neuron to each of N stimuli. We used the

formula A �
1 � �¥ri/N�2/¥ri

2/N

1 � 1/N
, where ri is the rate of the neuron’s

response to stimulus i, averaged across trials.
To quantify the degree to which selectivity was due to differences

between motif types (between-type) versus differences between variants
of the same type (within-type), we used a generalized linear mixed-effects
model (GLMM) (Gelman and Hill, 2006). GLMMs are commonly used
in ecology and psychology but their application in neuroscience is rela-
tively new, so a detailed description follows.

In essence, a GLMM is a linear regression model in which (1) the
distribution of the response variable does not have to be Gaussian and (2)
the regressors can modeled as random effects, which are factors that are
not under complete experimental control or that otherwise represent a
sample from some larger distribution. For example, in most neuronal
preparations the spontaneous firing rate drifts over time, which can in-
fluence the strength of responses to stimuli presented at different times.
Including spontaneous rate as a random effect allows us to factor out this
source of variability. Between- and within-type variabilities were also
calculated from random effects: we assume that the motifs we presented
are samples from the much larger universe of starling motifs, and we are
interested in the variance of the neuron’s responses over this population.
This approach is more reliable than estimating the response to each
stimulus (as a fixed effect) and calculating the variance of the estimates,
as this calculation may be unduly influenced by outliers or by stimuli that
evoke zero spikes (the true firing rate is not known). The GLMM used
here is specified by the following probability model:

p� yi��i� � Poisson ��iTi� (1)

log��i� � Mk � Vi � �j � �i (2)

Mk � N��, �type
2 � (3)

Vl � N�0, �variant
2 � (4)

� j � N��� , ��
2 �

�i � N�0, ��
2�.

The response, yi, is the number of spikes observed in a given trial i and Ti

is the duration of the motif (Eq. 1). A trial is defined as the interval
corresponding to one presentation of a motif. As yi must be a non-
negative integer, it was modeled as a Poisson random variable with an
expected firing rate �i. The firing rate is in turn modeled as a linear sum
with a log link function (which ensures that � is non-negative) (Eq. 2).
The linear predictors are Mk, the response strength for motif type k (Eq.
3); Vl, the additional response strength associated with motif variant l
(Eq. 4); �j, the spontaneous rate in the jth song presentation; and �i, a
residual error term to account for additional sources of variability. The
index variables are nested: the trial index i specifies a specific motif vari-
ant l[i], of motif type k[l], presented during the j[i]-th song presentation.

The linear regressors are modeled as normal distributions ( N), whose
means and variances are the parameters of real interest. The parameter ��
is the average spontaneous rate, and its variance from presentation to
presentation (i.e., across j) is ��

2 . The averaged evoked response is �, and
the variance across motif types is �type

2 . The variance associated with
different renditions of the same motif type (pooled across all motif types)
is �variant

2 , and the residual variance is ��
2.

The total stimulus-related variance (i.e., ignoring distinctions between
motif types; the variance of Mk � Vl) is the sum of the between- and
within-type variances, �stim

2 � �type
2 � �variant

2 . The total stimulus-
independent variance is given by �resid

2 � 1 � ��
2 � ��

2 (1.0 is the
residual variance of the Poisson distribution). By analogy to d�, which is
often used to compare the discriminability of two stimuli (Theunissen et
al., 2004), we defined an overall selectivity metric S� � �stim/�resid. Stan-
dard deviations are used so that S� is on the same scale as the response.
Like d�, S� is unitless and indicates how much the responses to a broad
range of motifs differ from each other relative to the amount of intrinsic
variability. Note that due to the log link function in Equation 2, param-
eters are interpreted multiplicatively; this reflects the fact that a neuron
with a low average rate (and thus a low variance) may carry as much
information in small differences of firing rate as a fast-spiking neuron
(with high variability) does with large differences. Thus, an S� of 1.0
would indicate that responses to different stimuli vary by a factor of 2.7
more than responses to the same stimulus. Tolerance was defined as the
proportion of the total stimulus-related variance explained by the
between-type variance, T � �type

2 /�stim
2 . Values of T close to 1.0 indicate

that most of the variance in the response strength distribution is ex-
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plained by differences between motif types and that there is little variabil-
ity in responses to the same type.

As a test for whether any of the parameters of the model were biased by
the number of presented stimuli (which varied substantially among neu-
rons), we chose five neurons that had been presented with 12–19 differ-
ent songs (comprising 147–228 motifs and 73–90 unique motif types)
and subsampled the data, randomly choosing without replacement be-
tween 1 and N � 1 of the songs (where N is the total number of songs).
The subsampled datasets comprised 9 –219 motifs (mean � SD � 104 �
61; n � 54 – 62 subsamples per neuron). The neurons were chosen to
span the range of selectivity and tolerance seen in the entire population.
The model was fit to each subsample of data, and the effects of sample size
on estimates of �� , ��

2 , ��
2, �type

2 , �variant
2 , S�, and T were assessed with

repeated-measures ANCOVAs. Only ��
2 showed a significant effect from

sample size, but the effect was very small, decreasing by – 0.01 � 0.005%
per motif (mean � SE; p � 0.04).

There are several assumptions in the model that may influence inter-
pretation. First, the response is assumed to be conditionally Poisson with
additive residual variance, a formulation that can only account for over-
dispersion. Second and relatedly, the log link function (Eq. 2) implies
that the predictors interact multiplicatively. With regard to both of these
assumptions, an alternative error model (e.g., truncated Gaussian or
gamma; Hsu et al., 2004) with a linear link function may be more appro-
priate. However, we were not able to fit such a model to a large propor-
tion of the neurons with standard tools. Third, the response strength
distribution may not necessarily be log-normal (as a result of the log link
function, the normal distribution in Eq. 3 results in a log-normal distri-
bution of the response variable), and thus the variance may not be a full
description of the neuron’s selectivity. If the response distribution is
bimodal or has significant higher moments, an information-theoretic
approach may be preferable, but it also requires substantially more data
to reliably estimate the shape of the distribution.

GLMM analysis of the effects of learning. To examine whether learning
affected response strength distributions, we modified the GLMM to in-
clude an effect for training. Based on preliminary analyses it appeared
that learning could affect both the mean and the variance, so we replaced
Equations 2 and 4 with the following:

log��i� � Sl � �j � �i (5)

Si � � N��, �unf
2 � if unfamilar,

N�� � 	,�fam
2 � if familar.

The term for motif type and Equation 3 were dropped because the num-
ber of familiar and unfamiliar motif types was insufficient to give good
estimates for the effects of learning on both between- and within-type
variances. The parameter 	 is the difference in the neuron’s average
response to familiar and unfamiliar stimuli, and the parameters �fam

2 and
�unf

2 are related to the selectivity within each category of motifs.
Model fitting and inference. Each neuron was fit to the GLMM using

JAGS (http://www-fis.iarc.fr/	martyn/software/jags; version 3.1), a
Bayesian modeling toolkit that allows specification of GLMMs and other
complex models using a simple equation-like syntax. JAGS uses a
Markov Chain Monte Carlo (MCMC) algorithm to sample from the
posterior distribution of the model parameters, which are the values of
the parameters most likely to give rise to the data.

Bayesian analysis requires prior distributions, which are essentially
statements about what values of the parameters are reasonable and likely.
The prior for �, the average spontaneous rate, was N(0, 6.0), a broad
distribution with 95% of its density between 	0.01 and 100 Hz. This
range extends well beyond the maximum observed spontaneous rate (25
Hz) in these recordings, while at the lower end the prior serves to regu-
larize the model for the small number of neurons (n � 5) that fired no
spikes during baseline recordings. When additional data were available
(from recordings of the neuron not used in this analysis), the prior was
further refined by setting the prior mean to the empirical spontaneous
rate in these recordings, and reducing the prior variance to 1.0 to reflect
a higher degree of confidence about the value of �� . The prior for � was set
to N(1.0, 2.0), corresponding to a belief that for 95% of the neurons the

average evoked response would be between 	0.2 and 40 times the spon-
taneous rate. When 	 was included in the model, its prior was N(0.0, 4.0).
Noninformative inverse gamma priors were used for the variance
parameters.

Posterior distributions were sampled with three independent MCMC
chains starting from different initial guesses. After a burn-in period of
25,000 iterations, 30,000 iterations were calculated, keeping every 100th
sample. Convergence and stationarity for the parameters of interest were
assessed visually and using the Gelman-Rubin diagnostic with R � 1.2
(Brooks and Gelman, 1998). We also generated posterior predictive dis-
tributions (samples of the responses we would expect given the data and
the model) and compared them to the actual data to visually assess the
quality of the fit.

Neurons were considered auditory if there was at least one motif with
response strength greater or less than zero (at 95% confidence). Out of a
total of 410 well-isolated single units recorded in the target areas, 373
(91%) met this criterion. An additional 21 auditory units were recorded,
but could not be unambiguously assigned to one of the target areas and
were excluded. Overall selectivity and tolerance were calculated on a
sample-by-sample basis from the posterior distributions. It would be
possible to add an additional level to the model to compare the distribu-
tions of selectivity at the population level, asking, for example, whether
different neurons responded to different motifs. Given the great increase
in computational complexity such an analysis would imply and lacking
strong reasons to assume anything about these distributions, we used
point estimates (medians) of the parameters for each neuron. To com-
pare values among areas and spike types, two-way ANOVAs were used
followed by post hoc Tukey’s tests. Dependent measures were log-
transformed or rank-transformed as necessary to achieve normality (as-
sessed by Shapiro–Wilk tests with � � 0.05). When p values for pairwise
comparisons are reported in sets, only the largest value is given. To infer
the effects of training, we used planned, orthogonal comparisons within
each area, i.e., a linear regression of 	 or �fam � �unf versus area. The
same results obtained using independent t tests in each area, but the
linear regression allowed us to test if training affected wide- or narrow-
spiking neurons differently, by adding spike type (and its interaction with
area) to the regression and evaluating whether the fit improved using
ANOVA.

Results
Fourteen adult European starlings of both sexes were trained
to recognize two sets of conspecific songs in an operant dis-
crimination task (Gentner and Margoliash, 2003). All the
birds achieved accuracies significantly better than chance
within 3–11 blocks (mean � SD � 6.5 � 2.4; 100 trials per
block), 1.0 – 4.8 d after the start of training (mean � SD �
2.2 � 1.1). Birds completed trials at an average rate of 470 � 110
trials/d (mean � SD, n � 14). Discrimination performance
reached asymptotic levels around block 20 (Fig. 2), with a final d�
of 2.88 � 0.70 (mean � SD, n � 14).

After training, the responses of 373 auditory single units
(7– 63 per bird; mean � SD � 26.6 � 17.4) were recorded under
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Figure 2. Behavioral performance of starlings during operant discrimination training. Sym-
bols show mean d� with 95% confidence intervals across birds (n � 14), estimated by boot-
strapping. Blocks are 100 trials each.
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urethane anesthesia in CLM (n � 75 units from four birds),
CMM (63, 6), NCM (49, 5), and subdivisions L1 (39, 4), L2b (39,
7), and L3 (108, 4) of field L. Recorded spikes had either a broad
peak and a broad, shallow trough (wide spikes, n � 275), or a
narrower peak and a narrow, deep trough (narrow spikes, n �
98). Both classes of neurons were found in all areas, but narrow
spikes were more frequently recorded in L1 (n � 16 units, 41%)
and L2a (21, 54%) than in CLM (10, 13%), CMM (12, 19%),
NCM (14, 29%), or L3 (25, 25%). The nonuniform distribution
of narrow and wide spikes across regions was statistically signifi-
cant (
 2 � 29, df � 5, p � 0.0001).

Representative examples of the response patterns evoked by
conspecific song stimuli are shown in Figure 3. In all areas, re-
sponses were generally characterized by phasic excitatory and
suppressive episodes associated with specific acoustic features of
the songs. For example, the L2b neuron responded strongly co-
incident with a low-frequency broadband element present in sev-
eral motifs and both songs (Fig. 3b), while the L3 neuron
responded strongly at the ends of only four of the motifs (Fig. 3c).
These responses may reflect tuning to simple low-level acoustic
features, as seen earlier in the auditory pathway (Woolley et al.,
2009), tuning to more complex vocal elements, as previously
reported for CMM neurons (Meliza et al., 2010), or some com-
bination of these properties. Until further testing, such hypothe-
ses are speculative, but from these data one can objectively
ascertain that the L3 neuron was more selective, in the sense that
it responded only during a small proportion of the presented
stimuli. In contrast, the L2b neuron was active almost through-
out all stimuli.

Motif selectivity differs between areas
To quantify selectivity, the responses were divided into intervals
corresponding to motifs (Fig. 3a, vertical gray lines), and the
average firing rate during each interval was taken as the response
strength for the corresponding motif. The distribution of re-
sponse strength over the set of presented motifs gives a measure
of its selectivity. Selective neurons responded strongly to a few
motifs and weakly to the rest, resulting in narrow distributions
with long tails (for example, Fig. 4a, L3, cyan trace). Nonselective
neurons responded similarly to all the motifs, resulting in broad
response distributions (Fig. 4a, L2b, cyan trace). Comparing
these distributions between areas, there were clear qualitative dif-
ferences. All the areas exhibited a fairly broad range of selectivity,
but L1 and L2b had few of the highly selective units seen in the
other areas. CLM and CMM had the broadest range of selectivi-
ties, and in NCM and L3 the distribution appeared to be skewed
toward more selective neurons. When the neurons in each area
were separated into groups based on spike shape (Fig. 4b,c), the
wide-spike neurons appeared to be more selective on average
(Fig. 4a, compare blue and red lines).

To quantify differences in the shapes of response strength
distributions, we first used the AF or sparseness index (Vinje and
Gallant, 2000; Lehky et al., 2005; see Materials and Methods).
This index is 0 if a neuron responds the same to all stimuli, and 1
if it responds to only one. There were significant differences in
selectivity among areas (Fig. 4d; two-way rank-transformed
ANOVA: F(5,361) � 14.28, p � 10�14). Selectivity in L3 and NCM
was greater than in the other areas (Tukey’s tests: p � 0.01), but
not significantly different between L3 and NCM or between any
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of the other areas. This result was unexpected, given that L3 is
often considered to be at a similar level of the auditory hierarchy
as L1. Across areas, wide-spiking neurons were more selective
than narrow-spiking neurons (F(1,361) � 6.66, p � 0.01), and
there was no significant interaction between area and spike type
(F(5,361) � 0.23, p � 0.95).

Selectivity between and within motif types differs
among areas
A concern in using AF to quantify selectivity is that the stimuli are
not equally different from each other. Starling songs often con-
tain repeated renditions of the same motif type that vary slightly
in pitch, duration, and note complement (Figs. 3b,c, 5a). Some
neurons were more tolerant of this within-type variability than
others. For example, the CMM neuron in Figure 5a gave similar
responses to each variant of motif types A and B, whereas the
NCM neuron responded more strongly to the first instance of A
and most strongly to the last instance of B. This difference can be
clearly observed in plots of the response distribution where mo-
tifs are grouped by type. For the CMM neuron (Fig. 5b) the
within-type variance was low, indicated by points closely scat-
tered about the means for each type. In contrast, the NCM neu-
ron (Fig. 5c) had a high within-type variance, indicated by the
large scatter about the means for each type.

To quantify the between- and within-type variances, we de-
veloped a GLMM. This model partitions the variance in the re-
sponses of single units into two stimulus-dependent terms, the
motif type and variant, and two stimulus-independent terms
associated with the spontaneous rate and other stochastic fac-
tors (see Materials and Methods). For the example CMM neu-
ron (Fig. 5b), the model indicated a between-type variance of

0.45 and a within-type variance of 0.02; for the NCM neuron
(Fig. 5c), the between-type variance was 0.24 and the within-
type variance was 1.04.

As a test of the model, we first looked at the overall selectivity
of the neurons by pooling the between- and within-type variances
and normalizing by the stimulus-independent variance (S�; see
Materials and Methods). Similar to the results obtained using AF,
S� indicated significant increases in selectivity from L1 and L2b to
L3 and NCM (Fig. 6a). The two metrics were highly correlated
(r � 0.80; t(371) � 25.3, p � 10�15) and their distributions in each
area were similar (compare Figs. 4d, 6a). One notable exception
was for the wide-spike neurons in L3. Whereas AF for these neu-
rons was uniformly distributed across the range of the metric, S�
was skewed such that a large proportion of the neurons had se-
lectivity less than the mean. Other areas did not show this degree
of compression. We hypothesize that this difference reflects the
way the two metrics handle stimulus-independent variability. AF
uses point estimates of the response strength for each stimulus.
Increased intertrial variability results in increased variance of
these estimates, and thus AF can be positively biased by noise
(Rust and DiCarlo, 2012). In contrast, the GLMM explicitly in-
cludes terms for stimulus-independent variability, which are fac-
tored out to provide unbiased estimates of stimulus-dependent
variability. Consistent with this hypothesis, wide-spiking neu-
rons had higher stimulus-independent variability than narrow-
spiking neurons, particularly in L3 (Fig. 6b). The functional
significance of greater intertrial variability in some areas and
classes of neurons is unclear, but may reflect more nonlinear
integration or increased input from nonauditory areas.

When examined separately, between- and within-type selec-
tivity had the same generally increasing trend as seen for overall
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selectivity. However, the relative contributions of these terms
differed among areas. Between-type selectivity was lower in L1
and L2b and higher in CMM, NCM, and L3 (Fig. 7a). There also
appeared to be a large number of wide-spiking neurons in CLM
that had high between-type selectivity, but as there was no sig-
nificant interaction between area and spike type, no statistical
inferences about this difference could be made. In contrast,
within-type selectivity was low in L1, L2b, CLM, and CMM,
and high in NCM and L3 (Fig. 7b), indicating that neurons in
CLM and CMM were sensitive to the differences among types
and tolerant of the differences among variants, whereas NCM
and L3 neurons were sensitive to differences both among and
within types. This increased selectivity between variants of the
same type might indicate a sensitivity to small-scale acoustic dif-
ferences as well as sensitivity to larger scale differences in the
sequence and context of the motifs.

To test whether individual neurons were more sensitive to
between- or within-type differences, we calculated a tolerance
index, defined as the ratio of between-type variance to the total

stimulus-dependent variance: T � �type
2 /��type

2 � �variant
2 �. For a

perfectly tolerant neuron that responded identically to every variant
of all the motif types, the between-type variance would be equal to
the total variance, giving T � 1. As within-type variance increases, T
approaches zero. For the exemplar CMM and NCM neurons (Fig.
5), T was 0.96 and 0.18, respectively. As seen in Figure 7c, CLM and
CMM were both highly tolerant relative to other areas, and wide-
spike neurons were more tolerant (mean � SE � 0.51 � 0.02) than
narrow-spike neurons (0.40 � 0.03; F(1,361) � 3.89, p � 0.049). In
L3, the tolerance did not differ significantly from any of the other
areas, but among wide-spike neurons the distribution appeared to
be multimodal, with large clusters of neurons tending to have low,
medium, or high tolerance.

NCM is considered to be secondary auditory cortex, yet it
exhibited particularly low tolerance (Fig. 7c). One possibility is
that differences in its responses to the same motif types might in
fact reflect sensitivity for sequence or context, in which case neu-
rons might respond preferentially to the first or last variant in a
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run (Fig. 5a). As a post hoc test of this hypothesis, we used a simple
mixed-effects model to determine whether the first or last vari-
ants in runs of the same type were stronger or weaker than motifs
from the middle. The effect was not significant (p � 0.89), indi-
cating that there was no consistent primacy or recency effect in
NCM. However, a stronger test, in which the order of variants is
manipulated, is necessary to determine whether NCM is sensitive
to more global contextual features.

Spontaneous firing rates were lower in L3 than any other area
(two-way ANOVA: F(5,361) � 12.33, p � 10�10; Tukey’s tests: p �

0.002), and lower for wide-spiking neurons (F1,361 � 5.44, p �
0.02), but there was no significant interaction between spike type
and area. Across areas and spike types, there was a negative cor-
relation between spontaneous rate and selectivity (r � – 0.6, t(371)

� �14, p � 10�15); when the data were split into separate areas
the correlation was significant in all areas except L1. Across areas,
there was no significant correlation between tolerance (T) and
selectivity (S�; r � 0.02, p � 0.66), but when the data were split by
area the correlation within CMM was significantly negative (r �
– 0.32, p � 0.01).

Learning affects selectivity and average response strength in
CMM and NCM
Out of the 373 auditory units, 323 (87%) remained isolated long
enough to record sufficient responses to both familiar and unfa-
miliar stimuli (n � 73, 55, 41, 31, 28, 95 units in areas CLM,
CMM, NCM, L1, L2b, and L3). For many neurons, there were
striking differences in the distribution of responses to the two
categories. Some neurons were more selective within one cate-
gory of stimuli than the other. For example, the CMM neuron
shown in Figure 8a had nearly the same average response to fa-
miliar motifs (open circles) as to unfamiliar motifs (filled
squares), but the variance was much higher among the familiar
motifs (compare error bars). Other neurons, like the NCM neu-
ron in Figure 8b, were more similar in their selectivity within each
category, but showed a difference in the means (i.e., a bias for one

category over the other).
To quantify these effects, we modified

the GLMM to include an independent
mean and variance term for each category
of motifs. We also removed the term asso-
ciated with motif types, as the number of
unique motif types in each category was
not large enough to give reliable estimates
for all the parameters. Using this model
for the exemplar CMM neuron (Fig. 8a),
the difference in means (bias) was – 0.06
log Hz and the difference in selectivity (S�)
was 0.39. In contrast, the NCM neuron
(Fig. 8b) had a bias of – 0.14 log Hz and a
selectivity difference of – 0.23, indicating
that both the mean and variance were
lower for familiar motifs.

In NCM, the average bias was signifi-
cantly less than zero (mean � SE �
– 0.23 � 0.10 log Hz; planned contrast: p
� 0.029; Fig. 8c), indicating that response
strengths were 20% lower on average for
familiar motifs. There was a tendency in
all areas for the magnitude of the bias to
increase with selectivity because of sam-
pling variability (for the neurons that re-
sponded to few motifs, the probability

that those motifs would be evenly balanced between familiar and
unfamiliar was low even if the true bias was zero). However, the
average bias was not significantly different from zero in any other
area but NCM. The effect of spike type was not significant
(ANOVA: F(6,311) � 1.52; p � 0.17).

CMM neurons, on the other hand, were consistently more
selective between familiar motifs than between unfamiliar motifs
(Fig. 8d). As with bias, many individual neurons in all areas
showed large differences in within-category selectivity by chance.
Only in CMM was there a significant difference in the population
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(mean difference � SE � 0.21 � 0.08;
planned contrast: p � 0.005). As with bias,
there was no significant difference in the
effect of training on wide- and narrow-
spiking neurons (ANOVA: F(6,311) � 0.84;
p � 0.54). The increase in selectivity due
to familiarity, without a concomitant in-
crease in average response strength, sug-
gests that learning led to increased
excitation for some motifs and increased
suppression for others, as in Figure 8a.

Discussion
These results demonstrate differences in
selectivity and tolerance between areas of
the starling auditory cortex. Areas L1 and
L2b exhibited low selectivity, responding
similarly across a broad range of stimuli.
L3 and NCM were distinctly more selec-
tive than other areas. CLM and CMM ex-
hibited intermediate levels of selectivity,
but they were more tolerant than other
areas of differences between renditions of
the same motif types. The effects of per-
ceptual song learning were evident princi-
pally in CMM and NCM. Our results
support a functional hierarchical view of the avian auditory cor-
tex but motivate a revision of that view, and indicate a divergence
within the cortical hierarchy into parallel, functionally distinct
streams.

Selectivity and tolerance in the avian auditory system
In songbirds, conspecific songs elicit responses from neurons
throughout the auditory cortex, including higher order areas
where many neurons respond selectively to a subset of songs
(Leppelsack and Vogt, 1976; Müller and Leppelsack, 1985; Chew
et al., 1996). One method of assessing selectivity is through recep-
tive field (RF) models, which represent neuronal responses as
functions of low-level acoustic properties of the stimulus. Models
based on the spectrotemporal envelope (Theunissen et al., 2001)
have provided significant insight into processing in the midbrain,
thalamus, and primary thalamorecipient cortex (Woolley et al.,
2009), but at higher levels RFs become more nonlinear and more
difficult to model (Sen et al., 2001; Sharpee et al., 2011). Here,
rather than attempt to characterize RFs, we took a complemen-
tary approach of characterizing the distributions of neuronal re-
sponses over a broad range of representative stimuli. These
distributions reflect the relationship between the neuron’s RF
and the distribution of features in the stimuli.

We assessed response selectivity using a statistical frame-
work to evaluate the sources of variation in the neuronal re-
sponses. We hypothesized that neurons would differ in
sensitivity to variability between motif types and variability
within motif types, and that neurons would differ across areas
in the amount of information they carried about motif types.
The novel mixed-effects model-based approach we developed
allowed us to measure the variance in the neuronal responses
to different motif types along with the variance due to other
stimulus-dependent and -independent factors.

This model yielded similar measures of overall selectivity as
AF (or sparseness; Vinje and Gallant, 2000), a commonly used
nonparametric selectivity index. In its approach to factoring out
stimulus-independent variance, it is similar in principle to mu-

tual information (Rolls et al., 1997; Nelken and Chechik, 2007),
but where mutual information quantifies the amount of response
entropy that depends on stimulus identity, the mixed-effects
model uses only the variance. The advantages of the model-based
approach are that the variance estimates are robust and almost
completely unbiased (see Materials and Methods) and can be
flexibly partitioned to reflect structure in the task or stimuli.

The results indicate three groupings of starling auditory areas.
L1 and L2b had low selectivity within and among motif types,
indicating that they responded to features common to many
stimuli. CMM and a subpopulation of wide-spiking neurons in
CLM exhibited increased selectivity among types, suggesting that
they were more sensitive to features that differed among types.
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NCM and L3 were more selective among types than L1 or L2b,
but were also more selective among variants of the same types.
This sensitivity, or lack of tolerance, could be to local differences
in the pitch, duration, or complement of notes in the variants, to
the song context in which the variant occurs, or to both.

We note that these data are from urethane-anesthetized birds,
which facilitated collecting relatively large samples in single ex-
periments from each bird. In earlier CMM recordings (Meliza et
al., 2010), we found that urethane reduced spike precision and
intertrial correlation but did not significantly affect selectivity. In
the midbrain, urethane reduces intrinsic excitability but does not
affect selectivity (Schumacher et al., 2011), and studies in field L
have also found no effect on selectivity (Narayan et al., 2006). We
expect that some measures of selectivity may be higher in awake
birds as a result of decreased stimulus-independent variability,
but that relative differences between areas are likely to remain
unchanged.

Effects of learning on response distributions
Motifs were also grouped into categories based on whether the
animal had learned them in an operant task. Familiar motifs were
behaviorally salient, associated with specific responses and re-
ward contingencies, whereas unfamiliar motifs had no such as-
sociations. In NCM, responses were significantly weaker to
familiar motifs (Thompson and Gentner, 2010). In CMM, the
selectivity among familiar motifs was higher than for unfamiliar
motifs (Gentner and Margoliash, 2003; Jeanne et al., 2011). This
effect is likely to reflect increased selectivity between stimuli as-
sociated with different behavioral responses (i.e., left vs right, or
S� vs S�) as well as increased selectivity within each of these
categories (Jeanne et al., 2011). Additional experiments are nec-
essary to determine whether training affects within-type and
within-category tolerance in a manner that would support the
emergence of learned categorical perception (Sigala and Logo-
thetis, 2002).

Divergent hierarchical processing in support of natural
category recognition
Our results fit into a hierarchical view of the physiological orga-
nization of the avian cortex but modify the prevailing conception
of that hierarchy. Taken together, anatomical and physiological
studies have been interpreted to support a feedforward hierarchy
with L2a at the lowest level; L2b, L1, and L3 at intermediate levels;
and CLM, CMM, and NCM at the highest (Theunissen and Shae-
vitz, 2006). The present results are consistent with some aspects
of this model. The secondary areas NCM, CLM, and CMM are
more selective among types and/or variants than L1 and L2b, and
both NCM and CMM exhibited the expected learning-dependent
effects. Strikingly, however, L3 was much more selective than L1,
L2b, and even CLM. Previous studies of field L did not report
differences between L1 and L3 in starlings (Bonke et al., 1979;
Scheich et al., 1979; Müller and Leppelsack, 1985) or zebra
finches (Sen et al., 2001; Nagel and Doupe, 2008), and many
studies pool results from all of field L (excluding L2a). The spec-
trotemporal RF models used in more recent studies, however,
predict �25% of the variance of responses outside L2a and may
have failed to capture critical nonlinearities that contribute to
differences in selectivity. Additionally, the most selective neurons
in L3 have extremely low spontaneous rates (Scheich et al., 1979)
and were typically only detected on other channels of the elec-
trode after recording was started. Single channel electrodes may
introduce greater biases against sampling such neurons.

The differences in selectivity and tolerance seen in this study

can be related to recent insights into the connectivity within the
avian auditory cortex. In chicks, projections within field L and
CM are radially organized and span both areas (Wang et al.,
2010). The pattern of connections between subdivisions is similar
to the canonical interlaminar circuit in mammalian auditory cor-
tex (A1), from thalamorecipient L2a to superficial L1 and CLM
and then deeper to L3 (Fig. 9). The broad range of selectivity in
CLM including possible differences between narrow- and wide-
spiking neurons (which are thought to correspond to inhibitory
interneurons and excitatory projection neurons (McCormick et
al., 1985; Atencio and Schreiner, 2008), suggest that local process-
ing may result in increased selectivity among motif types. Local
connectivity is high within CLM (Vates et al., 1996), as it is in
layer 2/3 of neocortex (Douglas and Martin, 2004). High selec-
tivity in L3 is consistent with its position as an output of the avian
auditory cortex. L3 selectivity may be inherited from CLM and
passed on to NCM and descending pathways.

Both NCM and CMM showed effects of learning in their re-
sponses, a hallmark of secondary sensory areas (Kobatake et al.,
1998; Freedman et al., 2006). In this view, connections between
CLM and CMM, and between L3 and NCM might represent
corticocortical connections to secondary or auxiliary auditory
cortex (Fig. 9). Interestingly, the two mesopallial areas exhibited
high selectivity and high tolerance, whereas L3 and NCM in the
nidopallium were characterized by high selectivity and low toler-
ance. We propose that auditory processing diverges within CLM
into functionally specialized nidopallial and mesopallial path-
ways culminating in CMM and NCM. In NCM, neurons were
sensitive to differences within motif types and responded more to
novel stimuli, suggesting that it may act as a novelty detector. In
contrast, learning increased selectivity in CMM. Learning may
play a role in the acquisition of tolerance in the mesopallium, if
the learned features are ones that vary between different motif
types. CMM may form invariant representations of motif types
that can be associated with specific behavioral categories.

The proposed processing hierarchy shares several features
with the mammalian auditory cortex (Fig. 9) (Atencio et al.,
2009). The pattern of connections is consistent with recent mo-
lecular evidence homologizing regions of avian forebrain with
neocortex (Dugas-Ford et al., 2012). We propose that object and
category recognition rely on circuit mechanisms that are con-
served across modalities and phylogenetic taxa.
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